共查询到20条相似文献,搜索用时 46 毫秒
1.
在田间对作物的果实图像进行实时、准确地目标识别提取,是采摘机器人视觉系统的关键技术,而目标提取的实质是图像分割。大部分水(蔬)果处于采摘期时,表面颜色与背景颜色存在较大差异。而同一品种果实表面颜色相近,体现为在色彩空间果实表面颜色和背景颜色存在着不同的分布特性。根据这一特性,提出了一种基于色彩空间参照表的适用于水果采摘机器人视觉系统果实目标提取的图像分割算法。该算法先由果实样本图像建立色彩空间参照表,再根据色彩空间参照表采用一种类似于“卷积”的方法进行图像分割。与现有其他方法比较,本方法基于彩色的信息处理,可将背景除去得更干净;对背景不做分割处理、无复杂运算,有利于机器人实时图像处理。采用该算法分别对草莓、橙子、西红柿的图像在L^*n^*6^*,Hsv,YCbCr色彩模型下进行了实验,结果显示该算法在这些色彩模型下均可取得理想的图像分割效果。 相似文献
2.
3.
针对目前生猪目标检测算法模型较大,实时性差导致其难以在移动终端中应用等问题,将一种改进的轻量化YOLOv4算法用于生猪目标检测。在群养猪环境下以不同视角和不同遮挡程度拍摄生猪图像,建立生猪目标检测数据集。基于轻量化思想,在YOLOv4基础上缩减模型大小。结果表明,本研究算法的准确率和召回率分别为96.85%和91.75%,检测速度为62帧/s,相比于原模型,本研究算法在不损失精度的情况下,将模型大小压缩了80%,检测速度提高了11帧/s。本研究算法具有轻量化,稳健性强,实时性好的优点,能够更好地实现实际猪舍环境下生猪目标的检测,并有利于嵌入移动端设备中。 相似文献
4.
将基于深度学习的图像目标检测技术引入到养殖个体图像目标检测,可以提高养殖视频图像智能分析技术,提高科学养殖能力。试验将深度学习的YOLO V3算法应用到生猪图像目标检测,结合畜牧养殖实际情况,进行了类别选择、遮挡物处理和图像增强等设计,实现了基于深度学习技术的生猪图像目标检测算法。利用该算法对采集的生猪个体图像数据进行训练、验证和测试,对测试图像目标检测漏检率约6%,错检率约1%,精度较高;同时也与其他深度学习目标检测算法进行了对比和分析,测试结果反馈检测精度良好,检测速度较快,对比Fast R-CNN深度学习目标检测算法,mAP-50提高了7%~8%,检测速度提高了约5倍。与SSD算法比较,mAP-50指标和检测速度相当,但是由于YOLO V3算法网络模型比SSD算法简洁,算法移植兼容性更高。研究与试验结果表明,YOLO V3算法检测速度快,适合畜牧养殖图像智能识别工程化目标检测的要求。 相似文献
5.
【目的】实现猪舍场景下非接触、低成本的生猪轮廓高效提取。【方法】以真实养殖环境下的生猪个体为研究对象,提出一种基于VGG16与UNET相结合的全卷积神经网络模型(VGG-UNET模型)。该模型采用批处理方法,迁移学习VGG16模型参数,通过在模型中构建复制通道深度融合图像深层抽象特征与浅层特征,实现对图像语义级别分割。在30头长白生猪的1 815张数据集上进行模型验证,通过设置不同批大小对比试验,并选取其中具有最佳效果的3组探讨批大小与评价指标值变化趋势间的关系。【结果】测试集上的对比试验结果表明,VGGUNET模型在像素精度与均交并比方面分别达到94.32%和86.60%,比单独采用UNET模型分别高出0.89%和1.67%。不同指标值变化情况与批大小间的关系不尽相同。在本文试验环境下,批大小对模型收敛速度的影响不明显。不同批大小条件下PA及MIoU指标值变化综合分析得出,VGG-UNET模型具有较强稳定性和较高鲁棒性;批大小为8的情况下VGG-UNET模型效果最佳。【结论】本文提出的生猪轮廓提取方法 (VGG-UNET模型)是有效的,能实现精确、稳定的生猪轮廓提取,且分割结果较为完整,同时模型具有较高鲁棒性,可为后续生猪个体识别研究提供参考。 相似文献
6.
本文研究了视频图像中目标边缘提取算法。首先在图像中确定出目标物体,并分析目标物体灰度与背景灰度的对比,对图像灰度的分布及对目标物体在图像的位置都要有充分了解,然后对灰度图像设定合适的阈值进行二值化图像的处理,使其满足图像测量的要求,再应用图像测量算法把目标物体的轮廓边缘提取出来,同时使用一些补偿算法,使图像的边缘更加平滑和清晰,使处理后的图像具有良好视觉的效果。实验表明,算法是有效的。 相似文献
7.
8.
利用YUV色彩空间模型,以完全查表法对水稻秧苗列图像进行灰度化,通过基于傅里叶变换指导生成图像形态学运算的结构元素,提出一种结合傅里叶变换进行膨胀和腐蚀的方法,提取秧苗列轮廓,采用改良的逆投影变换对苗列图像进行垂直俯视投影,得到实际田间苗列位置,进而利用苗列实际走向信息,实现机器视觉导航系统跟踪苗列行进。对摄像机不同角度获取的苗列图像的处理结果表明,在容许识别定位误差小于50像素点、角度偏差小于6°的前提下,对苗列中心线识别与提取导航基准线的准确率为95.2%,可较好地实现田间自然环境下秧苗图像背景分割和苗列中心线提取。 相似文献
9.
设计了一种基于模式匹配的目标点识别算法.算法通过对图像中的目标进行模式匹配处理,自动识别目标,实现目标的计数功能.该算法避免了傅立叶变换滤波等计算量较大算法的使用,适用于利用图像处理进行目标实时计数的领域. 相似文献
10.
易门县加大农业产业结构调整力度,确立了“十五”期间实现年出栏肉猪20万头,生产销售仔猪40万头的生猪产业化建设目标。为实现这一目标,易门县…… 相似文献
11.
12.
如何对采集到的草莓图像进行分割和如何选取评定草莓等级的特征参数是草莓自动分拣系统的2个重要环节.该研究利用草莓R、G、B通道明显的像素差值来分割目标和背景,并且选取草莓的形状特征和成熟度作为草莓评级的特征参数,综合运用机器视觉、神经网络等理论方法,通过实验数据统计,建立极坐标下草莓外形轮廓特征参数及颜色空间下成熟度特征参数的提取方法,以人工神经网络为识别模型,实现对草莓的自动分类.实验结果表明,该方法对草莓的自动分级结果与人工分级结果相比较,准确率达到90%,具有实际的可行性. 相似文献
13.
14.
15.
16.
17.
18.
温室植物病害图像处理技术中图像分割方法的研究 总被引:1,自引:0,他引:1
为了准确地得到植物受害病因及病种受害程度,提高温室病害防治的智能化,深入研究了植物病害图像处理中图像分割的方法。通过对温室黄瓜霜霉病和炭疽病的处理研究,探索出了新的多区域双峰法去除背景的方法,并利用边缘检测技术和阈值分割技术在正常部位和病害部位实现了图像的有效分割。 相似文献
19.