首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climatic effect on lignin and polysaccharides in particle-size fractions of zonal steppe soils, Russia Zonal soils derived from similar parent materials are suitable for investigating the question, whether and how climate affects soil organic matter properties. For this reason we sampled 10 native surface (0—10 cm) and subsurface (ca. 50—60 cm) soil horizons in the native steppe and forest steppe of Russia. Polysaccharides and the vanillyl, syringyl and cinnamyl structural units of lignin (VSC) were determined in the fine earth (< 2 mm) as well as in clay (< 2 μm) and silt (2—20 μm) fractions. As the ratio of mean annual precipitation to potential evaporation (N/V) decreased, the concentrations of polysaccharides tended to decrease in the subsoil horizons. This was indicated most clearly for the silt fractions (r = 0.98**). In contrast, the VSC contents (in g kg—1 organic C) of the subsoils increased as N/V decreased (r = —0.92*), resulting in increasing VSC/polysaccharide ratios of the subsoil horizons with decreasing N/V ratio (r = —0.94*). It is suggested that production of polysaccharides or their transport into the mineral subsoil or both is favored at sites with wide rather than narrow N/V ratio, whereas lignin might be selectively enriched during intense soil organic matter decay at the Southern sites.  相似文献   

2.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

3.
Decomposition rates were measured across the forest-alpine tundra ecotone on two mountains in the Colorado Front Range. Cotton strips decomposed in the surface soils of forest, krummholz, and tundra plots for one year. We expected decomposition rates to decline with altitude or be most rapid in the krummholz. Surprisingly, decomposition rates increased from forest to tundra on Mt. Evans and remained constant across the ecotone on Niwot Ridge, highlighting differences in biogeochemical processes between two nearby mountains with otherwise similar alpine and subalphine ecosystems. Our results support the concept that decomposition rates exhibit a curvilinear relationship with soil temperature and moisture. However, soil moisture was found to be the primary factor controlling cellulose decomposition rates in soils in the forest-alpine tundra ecotone. Cellulose decomposition rates increased with soil depth indicating greater microbial activity in the mineral soil than in the organic horizon due to greater soil moisture. In addition to microbial activity, decomposition rates in the tundra may be enhanced by physical degradation from freeze-thaw events and vigorous root growth.  相似文献   

4.
Long-term effects of forest disturbance 25 yr ago on lignin and non-cellulosic polysaccharide pools in an unmanaged high-elevation Norway spruce (Picea abies L. [Karst.]) forest were investigated by comparing three dieback sites with three adjacent control sites with non-infested spruce on identical soils. Samples were taken from the forest floor and the mineral soil; one Ah horizon sample per site was physically fractionated into density and particle size fractions. Additionally, changes in the above- and belowground input of lignin and non-cellulosic polysaccharides after forest dieback were quantified. Lignin and its degree of structural alteration in plant and soil samples were assessed by CuO oxidation and subsequent analysis of the lignin phenols. Non-cellulosic polysaccharides were determined after hydrolysis with trifluoroacetic acid (TFA), derivatisation of their neutral sugar monomers by reduction to alditols, and subsequent acetylation. The total plant-derived input of lignin and non-cellulosic polysaccharides to the soil was similar for the dieback and the control sites. The chemical composition of the input has changed considerably after forest dieback, as shown by significantly higher syringyl/vanillyl (S/V) ratios and significantly lower (galactose+mannose)/(arabinose+xylose) (GM/AX) ratios. This indicates a changed plant input and a higher contribution of microbial sugars. Contents of lignin phenols in the forest floor and coarse particle size fractions of the A horizons were significantly smaller at the dieback sites (p<0.01). Moreover, larger acid-to-aldehyde ratios of vanillyl units (Ac/Al)v indicated an increased degree of lignin phenol alteration. Also contents of neutral sugars were significantly (p<0.01) smaller in the forest floor, but not in the A horizons of the dieback sites. The GM/AX mass ratios as well as the (rhamnose+fucose)/(arabinose+xylose) (RF/AX) ratios in the forest floor and coarse particle size fractions of the mineral topsoil were significantly (p<0.01) larger after forest dieback, indicating a larger relative contribution of microbial sugars. In general, the lignin phenol and neutral sugar pools of all three soil types exhibited similar response patterns to the changed site conditions. Our results demonstrate that the lignin and neutral sugar pools of humic topsoil horizons are highly sensitive to forest disturbances. However, the two compounds show different patterns in the mineral soil, with the major neutral sugar pool being stabilized against changes whereas the lignin phenol pool decreases significantly.  相似文献   

5.
The degradation of organic macromolecules, including lignin, in plant-derived soil organic matter, is important to the global carbon cycle. In grasslands, saprotrophic (decomposer) fungi are major decomposers of such organic material. The aim of this study was to characterise lignin degradation, particularly with respect to lignin oxidation typical of white-rot basidiomycete fungi. Lignin breakdown products, analysed by gas chromatography–mass spectrometry (GC–MS) with TMAH thermochemolysis, in initial wheat (Triticum aestivum var. Swatham) straw samples were compared with those in samples which had been buried as a “model” resource for 46 months in a sand-dune grassland at Ainsdale National Nature Reserve, Lancashire, UK.Our results showed that lignin oxidation occurred in the straw over the 46 month period, as there were general increases in the [Ac/Al]S and [Ac/Al]G ratios and a clear decrease in the [S/G] ratio. These data provide tentative support for the theory that white-rot basidiomycete fungi are involved in the degradation of lignin in grasslands.  相似文献   

6.
The role of aluminium on humus accumulation in acid forest soils The impact of soil-borne aluminum on humus accumulation was investigated in a forest soil of the chestnut zone (Castanea sativa) in southern Switzerland (Ticino). Soil samples of two soils formed on bedrocks which differ mainly in their aluminum content were extracted with HNO3, NH4Ac.-EDTA, NH4Cl, KCl, and NH4F-HCl and analyzed for the most abundant elements. On gneiss which contains up to about 10% of total aluminum the common soil type in this area is a Cryptopodzol. This soil is similar to the nonallophanic Udands. It is rich in wellhumified organic matter and shows dark-colored Ah-, A(E)- and Bh-horizons. The soil samples of these horizons are extremely rich in nonexchangeable aluminum which is, however, extractable with NH4Ac.-EDTA. It is assumed that this Al is intimately bound to the organic matter. The soil samples of these horizons contain large amounts of HNO3-extractable phosphorus. Up to 90% of this P appears in the organic fraction. The content of NH4F-HCl-extractable P is only 0.7 to 3.4 mg/kg. It is concluded that due to excessive Al in the organic matter the humus mineralization is inhibited compared to the Haplumbrepts of the region.  相似文献   

7.
《Applied soil ecology》1999,11(2-3):127-134
About 30% of the carbon in terrestrial ecosystems is stored in northern wetlands and boreal forest regions. Prevailing cold and wet soil conditions have largely been responsible for this carbon accumulation. It has been suggested that a warmer and drier climate in these regions might increase the decomposition rate and, hence, release more CO2 to the atmosphere than at present. This study reports on the spatial variability and temperature dependence of the potential carbon release after incubating highly organic soils from the European Arctic and Siberia at different temperatures. We found that the decay potential, measured as CO2 production in laboratory experiments, differed strongly within and among sites, particularly at higher soil temperatures. Furthermore, both the decay potential and its temperature response decreased significantly with depth in the soil, presumably because the older soils at deeper layers contained higher proportions of recalcitrant carbon than the younger soil organic matter at the surface. These results have implications for global models of potential feedbacks on climate change inferred from changes in the carbon balance of northern wetlands and tundra. Firstly, because the decay potential of the organic matter varies locally as well as regionally, predictions of how the tundra carbon balance may change will be unreliable if these are based on measurements at a few sites only. Secondly, any increase in CO2 production may be transitional as both the carbon flux and its temperature sensitivity decrease when the most easily degradable organic material near the soil surface has decomposed. Consequently, it is crucial to account for transient responses and regional differences in the models of potential feedbacks on climate change from changed carbon cycling in northern terrestrial ecosystems.  相似文献   

8.
Extensive research has focused on the temperature sensitivity of microbial respiration in tundra and alpine meadows. However, the response of microbial respiration to thermal stress in alpine steppe soils, which have less organic matter and greater aeration, has received less attention. We investigated spatial and temporal variations in microbial respiration using an incubation experiment under different temperature (0, 15 and 30°C) and different percentages of water‐holding capacity (WHC) (50 and 100%) conditions in the alpine steppe, and using a subsequent cooling experiment determined the ‘thermal stress' of soil microorganisms in response to increased temperature in the alpine steppe ecosystem. Microbial respiration rates decreased with increasing temperature at both 50 and 100% WHC for three sampling locations. Thermal stress of soil microorganisms under increased temperatures was found in the alpine steppe because subsequent cooling led to an increase in microbial respiration rates. Soil moisture did not affect microbial respiration, but the temperature sensitivity (Q10) of microbial respiration varied with the interactive effect between soil moisture and sampling location. Our findings suggest that the response of microbial respiration to high temperature may not be always positive as bacteria may experience thermal stress in the alpine steppe. Therefore, it is necessary to include thermal stress responses in alpine steppe models, as they may represent an important negative feedback effect on microbial respiration.  相似文献   

9.
The selective inhibition technique by specific antibiotics (streptomycin, cycloheximide) applied to substrate-induced respiration (SIR) measurement was used to test the relative contribution of fungi to bacteria (F/B ratio) to the overall microflora-induced activity in soils of European Russia. Investigated soils covered a wide climatic transect and different ecosystem types including managed vs. natural ecosystems. Before direct comparison among sites, the antibiotic inhibition technique was optimized for soil characteristics. Once the optimal concentration was set, the combined effect of the two antibiotics resulted in average 60% inhibition of SIR. The analyzed sites (in total 47) including various biomes (tundra, middle taiga, southern taiga, subtaiga, dark coniferous forests outside the boreal region, steppe, mountain forests and arable sites), were characterized by a wide range of soil pHw (3.95–7.95), soil organic carbon (0.69–24.08%), soil microbial biomass carbon (149–5028 µg C g?1 soil) and soil basal respiration (0.24–8.28 µg CO2-C g?1 soil h?1). In all the analyzed sites, a predominance of fungal over bacteria activity was observed with F/B ratios always higher than one (4.9 on average). Natural sites were characterized by higher F/B ratios (on average 5.6) compared to agricultural ones (on average 3.5).  相似文献   

10.
《CATENA》2008,72(3):456-466
Morpho-analytical features of the paleocatena (a complexly organized heterochronous sequence), which contains 2 pedostratigraphical units: formed on the Holocene mantle loams Umbric Albeluvisol and the underlain Middle Valday (Wűrmian) paleopedocomplex developed on Moscowian (Riss II) moraine deposits, are described. The buried pedocomplex consisted of: 1) the paleohumus and paleogley (2Atgb–2Gtb–3Atgb) and 2) paleohumus (3Atgb–3AtGb) horizons. Thus, these pedostratigraphic units reflect two studies of pedogenesis marked by two paleohumus horizons. The horizons of the paleopedocomplex are separate parts of the profile classified as the Umbric Gley soil formed during OIS3. The 14C age of the three paleosol horizons varied between 24,350–30,900 yr BP. The studied paleopedocomplex is the only one known containing the Middle-Valday paleosol formed on moraine deposits, which is a clear sign of the northernmost occurrence of the Bryansk fossil soil in Europe. A detailed hierarchical morphological study of the paleopedocomplex, including meso- and submicromorphological and magnetic susceptibility analyses, allowed us to identify the Late Quaternary pedogenic processes under severe extra-continental climate, including gleyzation, aggregation, cracking and humus formation. Good preservation of these individual pedogenic processes is shown to be a soil memory under the overlapping press of Holocene pedogenesis. It was shown that the clay coating in the Middle Valday of the pedocomplex is a part of the Holocene soil formation. Based on the palynological data, it is possible to subdivide the development of paleovegetation of the area into four stages during which the paleosol horizons had being formed. At the beginning and the final stage of the Middle Valday, the forest–tundra landscapes with inclusions of tundra–steppe associations predominated. During the optimum of Bryansk Interstade, the periglacial pine-birch formations were widespread.  相似文献   

11.
ABSTRACT

The neutral monosaccharide composition of forest soils differs from that of non-forest soils suggesting there is an accumulation of microbial saccharides. Ectomycorrhizal (ECM) fungi can be responsible as the fungi are typical in forest soils. We investigated neutral saccharides of ECM fungal sclerotia to determine what part it might play in the origin of forest soil polysaccarides. Sclerotial grain (SG) was collected from the O, A1 and A2 horizons of a soil of subalpine forest of Mt. Ontake, central Japan. Neutral saccharides in soil and SG were analyzed by two step hydrolysis with sulfuric acid and gas-chromatography of alditol acetate derivatives. Saccharides accounted for 6.0?16% of the SG by carbon content. The SG contained predominantly easily hydrolysable (EH)-glucose, which accounted for 75–85% of the composition depending on grain size and the soil horizon, followed by mannose (7.7?15%), galactose (2.2?4.8%) and non-easily hydrolysable (NEH)-glucose (1.7?6.1%). The SG contained all of these sugars irrespective of its size. The SG collected from the A1 and A2 horizons contained all sugar components found in that from the O horizon, except for fucose in that from A2 horizon. The monosaccharide composition of SG indicates that accumulation of ECM fungal sclerotial polysaccharides might have been responsible for enlarging the molar ratios of (galactose + mannose) /(arabinose + xylose) and EH-glucose/NEH-glucose of forest soils. The proportions of SG saccharides relative to soil saccharides were 3.6, 1.2, and 0.83% for the O, A1 and A2 horizons, respectively. These levels of the proportion are considerable as ECM fugal sclerotia are the products of a limited species among hundreds and thousands of microbial species inhabiting forest soils. The sclerotia forming ECM fungal species such as Cenococcum geophilum may be key sources of forest soil polysaccharides.  相似文献   

12.
Changes in the carbon (C) balance of boreal forest ecosystems may impact the global C cycle and climate. The degree to which antecedent temperature regime and mineral protection of soil organic matter (OM) influence the temperature response of boreal soil C pools remains unknown, however. To investigate these phenomena on time scales relevant to anthropogenic climate change, we quantified the temperature response of four soil C pools (L, F and H organic horizons and B mineral horizon) within soil profiles collected from replicated sites representing two regions along a climate transect (“regional warming”) during a 480-day incubation at 5 and 15 °C (“experimental warming”). We hypothesized that 1) warmer region soils would exhibit reduced bioreactivity, a measure of C lability assessed via cumulative soil C mineralization, relative to colder region soils, paralleling a decrease in bioreactivity with depth in both regions, and 2) temperature sensitivity of C mineralization (denoted as Q10) would increase with decreasing bioreactivity congruent with the “C quality-temperature” (CQT) hypothesis, with a smaller effect in mineral soil where physico-chemical protection likely occurs. Cumulative C mineralization decreased from surface L to deeper horizons and from the cold to warm region for organic F and H horizons only. This decrease in soil bioreactivity with depth was paralleled by an increase in Q10 with depth as expected, except in mineral soil where Q10 was similar to or lower relative to the overlying organic layer. The lower bioreactivity in F and H horizons of the warm relative to the cold region was not, however, associated with a greater Q10. A warmer regional climate in these otherwise similar forests thus resulted in reduced bioreactivity of isolated soil C pools without increasing the temperature sensitivity of soil C mineralization. This suggests that assumptions about temperature sensitivity of C mineralization based on the propensity for isolated organic C pools to undergo mineralization may not be valid in some organic-rich, boreal forest soils.  相似文献   

13.
Because carbon dioxide (CO2) concentration is rising, increases in plant biomass and productivity of terrestrial ecosystems are expected. However, phosphorus (P) unavailability may disable any potential enhanced growth of plants in forest ecosystems. In response to P scarcity under elevated CO2, trees may mine deeper the soil to take up more nutrients. In this scope, the ability of deep horizons of forest soils to supply available P to the trees has to be evaluated. The main objective of the present study was to quantify the relative contribution of topsoil horizons and deep horizons to P availability through processes governed by the activity of soil micro-organisms. Since soil properties vary with soil depth, one can therefore assume that the role of microbial processes governing P availability differs between soil layers. More specifically, our initial hypothesis was that deeper soil horizons could substantially contribute to total plant available P in forested ecosystems and that such contribution of deep horizons differs among sites (due to contrasting soil properties). To test this hypothesis, we quantified microbial P and mineralization of P in ‘dead’ soil organic matter to a depth of 120 cm in forest soils contrasting in soil organic matter, soil moisture and aluminum (Al) and iron (Fe) oxides. We also quantified microbiological activity and acid phosphomonoesterase activity. Results showed that the role of microbial processes generally decreases with increasing soil depth. However, the relative contribution of surface (litter and 0–30 cm) and deep (30–120 cm) soil layers to the stocks of available P through microbial processes (51–62 kg P ha?1) are affected by several soil properties, and the contribution of deep soil layers to these stocks vary between sites (from 29 to 59%). This shows that subsoils should be taken into account when studying the microbial processes governing P availability in forest ecosystems. For the studied soils, microbial P and mineralization of P in ‘dead’ soil organic matter particularly depended on soil organic matter content, soil moisture and, to a minor extent, Al oxides. High Al oxide contents in some sites or in deep soil layers probably result in the stabilization of soil organic compounds thus reducing microbiological activity and mineralization rates. The mineralization process in the litter also appeared to be P-limited and depended on the C:P ratio of soil organic matter. Thus, this study highlighted the effects of soil depth and soil properties on the microbial processes governing P availability in the forest spodosols.  相似文献   

14.
In the future, climate models predict an increase in global surface temperature and during winter a changing of precipitation from less snowfall to more raining. Without protective snow cover, freezing can be more intensive and can enter noticeably deeper into the soil with effects on C cycling and soil organic matter (SOM) dynamics. We removed the natural snow cover in a Norway spruce forest in the Fichtelgebirge Mts. during winter from late December 2005 until middle of February 2006 on three replicate plots. Hence, we induced soil frost to 15 cm depth (at a depth of 5 cm below surface up to –5°C) from January to April 2006, while the snow‐covered control plots never reached temperatures < 0°C. Quantity and quality of SOM was followed by total organic C and biomarker analysis. While soil frost did not influence total organic‐C and lignin concentrations, the decomposition of vanillyl monomers (Ac/Ad)V and the microbial‐sugar concentrations decreased at the end of the frost period, these results confirm reduced SOM mineralization under frost. Soil microbial biomass was not affected by the frost event or recovered more quickly than the accumulation of microbial residues such as microbial sugars directly after the experiment. However, in the subsequent autumn, soil microbial biomass was significantly higher at the snow‐removal (SR) treatments compared to the control despite lower CO2 respiration. In addition, the water‐stress indicator (PLFA [cy17:0 + cy19:0] / [16:1ω7c + 18:1ω7c]) increased. These results suggest that soil microbial respiration and therefore the activity was not closely related to soil microbial biomass but more strongly controlled by substrate availability and quality. The PLFA pattern indicates that fungi are more susceptible to soil frost than bacteria.  相似文献   

15.
Knowledge is scarce on mineralization of soil organic carbon (SOC) in and N2O emissions from tundra soils in periods of alternate freezing and thawing. Our objectives were to study the CO2 and N2O emissions from two silty gleyic soils formed in different climate zones (a gleyic Cryosol located in the Russian tundra, and a stagnic Gleysol located in an oak stand in central Germany) during freeze-thaw events. Soils were adjusted to a matric potential of −0.2 kPa and emissions were measured in 3-h intervals during an incubation period of 50 days including three freeze-thaw cycles. CO2 emissions from the German oak forest soil were twofold higher than those of the tundra soil. The ratios of the mean CO2 production rate before the freezing to the mean CO2 production rate after thawing ranged from 0.63 to 0.73 for the forest soil and from 0.85 to 0.89 for the tundra soil. The specific CO2-C production rate (CO2-C/SOC) was 0.16 for the tundra soil and 0.57 for the forest soil. The results indicate that bioavailability of SOC was markedly smaller in the tundra soil than in the forest soil. Large N2O emissions were found for the German forest soil, but no N2O emissions were observed for the tundra soil. The main reason for the absence of N2O emissions was most likely the negligible availability of nitrate for denitrification. There was some indication that the initial increase in mineralization of SOC induced by freezing and thawing differs between soils from various climatic regions, probably mainly due to a differing bioavailability of the SOC and differing releases of nutrients after thawing.  相似文献   

16.
Surface waters in northern forest ecosystems receive a substantial amount of drainage water from superficial soil horizons enriched in organic matter (SOM). Chemical reactions in the interface between the soil solution andf organic colloides will therefore affect the surface water chemistry. The mobilization of total organic carbon (TOC) and pH was studied as a function of amounts of organically adsorbed Na, Ca and Al in two O and one A horizon, which differed in the likelihood of contributing to the chemistry in runoff, in a forested watershed in northern Sweden. The samples were hydrogen ion saturated, washed and titrated with NaOH, Ca(OH)2 and Al(OH)3 in a constant ionic medium of 0.01 M NaCl in order to give rise to a population of manipulated samples differing in the composition of adsorbed cations. The highly humified SOM accumulated in the Oh and Ah horizons of a Gleysol close to the draining stream was stabilized by flocculating Al (95% of adsorbed metal cations), which resulted in a low release of TOC. These horizons showed a high potential of organic carbon solubility when Al was changed for di- or monovalent cations. Calculations suggested that the release of TOC would increase more than ten times if Al was exchanged for Ca upon liming to pH 6.0. The pH values of all horizons were shown to be determined mainly by the composition of adsorbed mono-,di- and trivalent cations.  相似文献   

17.
Analytical pyrolysis of a soil profile under Scots pine   总被引:1,自引:0,他引:1  
The chemical properties of pine needle litter cause slow decomposition, which results in an accumulation of highly lignocellulosic material on the forest floor. Decomposition of organic matter is important for the nutrient turnover in pine forests on nutrient-poor soils. We studied the biodegradation of needles in an organic layer focusing on the various stages of lignin degradation by fungi. Samples were obtained from pine needle litter and a stratified organic layer over nutrient-poor sand under a 60-year-old Scots pine (Pinus sylvestris forest stand. Pyrolysis mass spectrometry (PyMS) and pyrolysis gas chromatography mass spectrometry (PyGCMS) were used to characterize the chemical composition of the needles and the soil. The pyrolysis data show that diterpenoid acids are a main component in fresh needles, but rapidly decrease in the organic layer of the soil, as a result of decomposition. The chemical composition of the soil profile is dominated by guaiacyl lignin and polysaccharides from needle litter. The hexose/pentose ratio increases with depth in the soil profile. The partial preservation of hexose polymers is the result of the preferential decomposition of pentose polymers by white-rot fungi, and points to the input of microbially synthesized polysaccharides. Indications for the degradation of guaiacyl lignin are also found in the soil profile. Oxidative reactions by soil fungi result in a shortening of the side chain of the guaiacyl lignin derivatives and an increase of carbonyl and carboxyl groups. These degradational patterns of lignin in the soil profile under Scots pine are similar to those observed in lignin model compounds and wood lignin degraded by fungi under controlled laboratory conditions.  相似文献   

18.
张哲  焦峰    梁宁霞  王宗仁 《水土保持研究》2014,21(4):74-77,81
以延河流域不同植被带上的三个小流域为研究对象,引用土壤湿度综合指数作为土壤水分评价指标,结合不同植被带土地利用分布特征与相应土壤含水量对延河流域土壤水分进行评价分析,为该区域不同植被带水土资源的合理利用提供科学依据。结果表明:三个植被带均处于极干旱状态,土壤湿度森林草原带 > 森林带 > 草原带;其中森林带以林地为主,森林草原带以林地和草地共同起主导作用,草原带以草地为主;不同植被带土壤含水量差异显著,森林带最高,其次为森林草原带,草原带最低;对不同植被带土壤水分的剖面变化分析表明,0—200 cm土层中土壤含水量随着深度增加呈现增长趋势。4种土地利用方式中,耕地的土壤含水量显著高于其他三种土地利用方式,这主要是与耕地坡度较小和修建梯田有关,同时还与农作物的耗水量相对较小有关。林地和草地土壤含水量无显著差异,灌木地土壤含水量最小。  相似文献   

19.
Bacterial communities living in forest soils contribute to the decomposition of organic matter and the recycling of nutrients in these ecosystems and form one of the most diverse habitats on Earth. Unfortunately, due to difficulty in culturing soil bacteria, the understanding of their ecology is still limited. In the case of temperate deciduous forests, soil microbial communities face large seasonal variations in environmental conditions, such as temperature or moisture. Moreover, the supply of nutrients also differs due to seasonal processes, such as the allocation of photosynthates into soil by the roots of primary producers or the seasonal input of fresh litter. The aim of this study was to reveal how the bacterial community responds to these seasonal processes in the litter and soil of a Quercus petraea forest. Bacterial communities from litter and from the organic and mineral horizons of soil were analyzed during the four seasons of the year by 16S rRNA gene pyrosequencing. The results revealed that the composition of the bacterial community is horizon specific. The litter horizon had a higher relative abundance of Proteobacteria and Bacteroidetes than soil, while the organic and mineral horizons had a higher abundance of Acidobacteria, Firmicutes and Actinobacteria than litter. Moreover, the bacterial community was significantly affected by seasonality in all horizons. Bacterial communities in the litter showed significant differences between the vegetation season (May and July) and the autumn and winter seasons (October, February). In mineral soil, bacterial community composition was specific in the summer, when it was significantly different from all other seasons, with a larger number of taxa described as rhizosphere and mycorrhizosphere inhabitants. The results indicate that litter decomposition is the main driver of bacterial community composition in litter horizon. In contrast to reports on fungal communities, bacterial community composition in mineral soil responds to the seasonal peaks of rhizodeposition in the summer.  相似文献   

20.
The mountainous region of the Himalayas is covered with forest, grassland, and arable land, but the variation in ecosystem functions has not been fully explored because of the lack of available data. This study appraises the changes in soil properties over the course of a year (spring, summer, autumn, winter) for forest, grassland, and arable soils in a typical hilly and mountainous region of Azad Jammu and Kashmir, Pakistan. Soil samples were collected from major land-cover types in the mountain region: natural forest, grassland, and cultivated land (arable). The natural forest served as a control against which changes in soil properties resulting from removal of natural vegetation and cultivation of soil were assessed. Soil samples were collected from depths of 0–15 and 15–30 cm six times during the year and examined for changes in temperature, moisture, electrical conductivity (EC), micronutrients [iron, manganese, copper, and zinc (Fe, Mn, Cu, Zn, respectively)], and microbial population. Significant differences were found in soil temperature, soil moisture, Fe, Mn, Cu, Zn, and number of bacteria, actinomycetes, and fungi among the three land-cover types. Soil under cultivation had 4–5 °C higher temperature and 3–6% lower moisture than the adjacent soils under grassland and forest. Electrical conductivity (EC) values of forest, grassland, and arable soil were 0.36, 0.30, and 0.31 dS m?1, indicating that soil collected from the forest had 18–20% more EC than the adjacent arable and grassland soils. On average, amounts of Fe, Mn, Cu, and Zn in the soil collected from the arable site were 6.6, 5.7, 1.7, and 0.8 mg kg?1, compared with 24.0, 12.1, 3.5, and 1.2 mg kg?1 soil in the forest soil, showing that arable had two to four times less micronutrients than grassland and forest. Populations of bacteria, actinomycetes, and fungi in the forest were 22.3 (105), 8.2 (105), and 2.5 (103), respectively, while arable land exhibited 8.2 (105), 3.2 (105), and 0.87 (103). Season (temperature) and depth showed significant effects on microbial activity and nutrient concentration, and both decreased significantly in winter and in the subsurface layer of 15?30 cm. Different contents of the parameters among arable, grassland, and forest soils indicated an extractive effect of cultivation and agricultural practices on soil. Natural vegetation appeared to be a main contributor to soil quality as it maintained the moisture content and increased the nutrient status and microbial growth of soil. Therefore, it is important to sustain high-altitude ecosystems and reinstate the degraded lands in the mountain region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号