首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Future climate change is predicted to influence soil moisture regime, a key factor regulating soil nitrogen (N) cycling. To elucidate how soil moisture affects gross N transformation in a cultivated black soil, a 15N tracing study was conducted at 30%, 50% and 70% water-filled pore space (WFPS). While gross mineralization rate of recalcitrant organic N (Nrec) increased from 0.56 to 2.47 mg N kg−1 d−1, the rate of labile organic N mineralization declined from 4.23 to 2.41 mg N kg−1 d−1 with a WFPS increase from 30% to 70%. Similar to total mineralization, no distinct moisture effect was found on total immobilization of ammonium, which primarily entered the Nrec pool. Nitrate (NO3) was mainly produced via autotrophic nitrification, which was significantly stimulated by increasing WFPS. Unexpectedly, heterotrophic nitrification was observed, with the highest rate of 1.06 mg N kg−1 d−1 at 30% WFPS, contributing 31.8% to total NO3 production, and decreased with WFPS. Dissimilatory nitrate reduction to ammonium (DNRA) increased from near zero (30% WFPS) to 0.26 mg N kg−1 d−1 (70% WFPS), amounting to 16.7–92.9% of NO3 consumption. A literature synthetic analysis from global multiple ecosystems showed that the rates of heterotrophic nitrification and DNRA in test soil were comparative to the forest and grassland ecosystems, and that heterotrophic nitrification was positively correlated with precipitation, soil organic carbon (SOC) and C/N, but negatively with pH and bulk density, while DNRA showed positive relationships with precipitation, clay, SOC, C/NO3 and WFPS. We suggested that low pH and bulk density and high SOC and C/N in test soil might favor heterotrophic nitrification, and that C and NO3 availability together with anaerobic condition were crucial for DNRA. Overall, our study highlights the role of moisture in regulating gross N turnover and the importance of heterotrophic nitrification for NO3 production under low moisture and DNRA for NO3 retention under high moisture in cropland.  相似文献   

2.
To date, occurrence and stimulation of different nitrification pathways in acidic soils remains unclear. Laboratory incubation experiments, using the acetylene inhibition and 15N tracing methods, were conducted to study the relative importance of heterotrophic and autotrophic nitrification in two acid soils (arable (AR) and coniferous forest) in subtropical China, and to verify the reliability of the 15N tracing model. The gross rate of autotrophic nitrification was 2.28 mg?kg?1?day?1, while that of the heterotrophic nitrification (0.01 mg?kg?1?day?1) was negligible in the AR soil. On the contrary, the gross rate of autotrophic nitrification was very low (0.05 mg?kg?1?day?1) and the heterotrophic nitrification (0.98 mg?kg?1?day?1) was the predominant NO3 ? production pathway accounting for more than 95 % of the total nitrification in the coniferous forest soil. Our results showed that the 15N tracing model was reliable when used to study soil N transformation in acid subtropical soils.  相似文献   

3.
Many previous studies have demonstrated that heterotrophic nitrification processes play an important role in the production of NO3 in acidic soils. However, it is not clear whether a low concentration of nitrogenous organic compounds support heterotrophic nitrification processes in natural soils. In this study, we performed an 15N tracer experiment with a glycine concentration gradient (20, 40, 80, and 160 mg N kg−1) to investigate the effect of the organic nitrogen concentration on the heterotrophic nitrification rate and its relative contribution to the total nitrification of the studied acidic forest soil. This experiment demonstrated that 15N–NO3 accumulated over time with all nitrogen treatments in the presence of acetylene, confirming that heterotrophic nitrification occurred even at a low organic nitrogen concentration (20 mg kg−1) in the studied acidic forest soil. In the presence of acetylene, the 15N–NO3 concentration in the 20 and 40 mg kg−1 glycine-N treatments was significantly lower than in the 80 and 160 mg kg−1 glycine-N treatments (p < 0.05), indicating that a high organic nitrogen concentration stimulated the heterotrophic nitrification rate. There was no significant difference in the average contribution of heterotrophic nitrification to total nitrification among the different nitrogen treatments, suggesting that the organic nitrogen concentration did not affect the relative contribution of heterotrophic nitrification to total nitrification in the studied acidic soil. Our results confirmed that a low concentration of organic N (20 mg kg−1) supported heterotrophic nitrification in the studied soil. The organic nitrogen concentration stimulates the heterotrophic nitrification rate, but does not affect the relative contribution of heterotrophic nitrification to total nitrification in the studied acidic soil.  相似文献   

4.
Soil nitrogen (N) transformation is vital in determining farmland N availability. Although many studies have investigated the effect of biochar on N retention and loss via leaching and gaseous emissions, few have determined the dynamics of gross N transformation during crop growth in long-term biochar-amended soils and compared the effect of the biochar with that of its feedstock. In this study, we conducted a five-time field measurement of soil gross N turnover rates via 15N isotope pool dilution during maize growth in 2021. Three treatments were employed, including no amendment, biochar and straw applied annually at rates of 2.63 and 7.50 t ha−1, respectively, since 2013. The results showed that biochar did not change the rate of gross N mineralisation when compared with no amendment, but straw increased it by 139% in August, resulting in significantly higher cumulative gross N mineralisation than biochar and no amendment (701 vs 489 and 499 mg kg−1 in 200 d). The inconsistent influence was attributed to the fact that inherent biochar-N was recalcitrant and could not be mineralized like the straw. The gross nitrification rate was decreased by 72.9% and 77.4% by biochar and straw application, respectively, in June relative to no amendment, but then it increased from July to August in the straw treatment as a result of the elevated gross N mineralisation rate. The decreased nitrification in the biochar treatment was an outcome of the synergetic effect of a low ammonium pool (−59.4%) and a high gross ammonium immobilisation rate (+263%), which was likely due to excessive fertilizer N loss and abiotic adsorption to biochar. Meanwhile, biochar amendment inhibited bacterial 16S and fungal ITS genes, as well as ureC and bacterial and archaea-amoA gene copies. In conclusion, straw is more effective than biochar at improving soil N transformation and availability in the long term.  相似文献   

5.
Forest floors in the temperate climate zone are frequently subjected to strong changes in soil moisture, but the consequences for the soil N cycle are poorly known. In a field experiment we tested the hypotheses that soil drying leads to a decrease of gross N turnover and that natural rewetting causes a pulse of gross N turnover and an increase of N leaching from the forest floor. A further hypothesis was that optimal water availability induced by irrigation causes maximum N turnover and N leaching. Replicated control, throughfall exclusion and irrigation plots were established in a Norway spruce forest to simulate different precipitation patterns during a growing season. Gross N turnover rates were determined in undisturbed soil cores from Oi + Oe and Oa + EA horizons by the 15N pool dilution technique. Forest floor percolates were periodically collected by suction plates. After 142 mm throughfall was excluded, the median soil water potential at the throughfall exclusion plots increased from pF 1.9 to 4.5 in the Oi + Oe horizon and from pF 1.8 to 3.8 in the Oa + EA horizon. Gross ammonification ranged from 14 to 45 mg N kg−1 soil day−1 in the Oi + Oe horizon and from 4.6 to 11.4 mg N kg−1 soil day−1 in the Oa + EA horizon. Gross ammonification of both horizons was smallest in the throughfall exclusion plots during the manipulation, but the differences between all treatments were not statistically significant. Gross nitrification in both horizons was very small, ranging from 1.6 to 11.1 mg N kg−1 soil day−1. No effects of decreasing water potential and rewetting on gross nitrification rates were observed because of the small rates and huge spatial variations. Irrigation had no effect as the differences from the control in soil water potential remained small. N leaching from the forest floor was not affected by the treatments. Our findings suggest that ammonification in forest floors continues at considerable rates even at small water potentials. The hypotheses of increased N turnover and N leaching following rewetting of dry forest floor or irrigation were not confirmed.  相似文献   

6.
Mineralization and nitrification are the key processes of the global N cycle and are primarily driven by microorganisms. However, it remains largely unknown about the consequence of intensified agricultural activity on microbial N transformation in agricultural soils. In this study, the 15N‐dilution technique was carried out to investigate the gross mineralization and nitrification in soils from a long‐term field fertilization experiment starting from 1988. Phospholipid fatty acids (PLFA) analysis was used to determine soil microbial communities, e.g., biomasses of anaerobic bacterial, bacterial, fungi, and actinobacteria. The abundance of ammonia‐oxidizing bacteria (AOB) and archaea (AOA) were measured using real‐time quantitative polymerase chain reaction. The results have demonstrated significant stimulation of gross mineralization in the chemical‐fertilizers treatment (NPK) ([6.53 ± 1.29] mg N kg–1 d–1) and chemical fertilizers–plus–straw treatment (NPK+S1) soils ([8.13 ± 1.68] mg N kg–1 d–1) but not in chemical fertilizers–plus–two times straw treatment (NPK+S2) soil when compared to the control‐treatment (CK) soil ([3.62 ± 0.86] mg N kg–1 d–1). The increase of anaerobic bacterial biomass is up to 6‐fold in the NPK+S2 compared to that in the CK soil ([0.7 ± 0.5] nmol g–1), implying that exceptionally high abundance of anaerobic bacteria may inhibit gross mineralization to some extent. The gross nitrification shows upward trends in the NPK+S1 and NPK+S2 soils. However, it is only significantly higher in the NPK soil ([5.56 ± 0.51] mg N kg–1 d–1) compared to that in the CK soil ([3.70 ± 0.47] mg N kg–1 d–1) (p < 0.05). The AOB abundance increased from (0.28 ± 0.07) × 106 copies (g soil)–1 for the CK treatment to (4.79 ± 1.23) × 106 copies (g soil)–1 for the NPK treatment after the 22‐year fertilization. In contrast, the AOA abundance was not significantly different among all treatment soils. The changes of AOB were well paralleled by gross nitrification activity (gross nitrification rate = 0.263 AOB + 0.047 NH ‐N + 2.434, R2 = 0.73, p < 0.05), suggesting the predominance of bacterial ammonia oxidation in the fertilized fields.  相似文献   

7.
The impact of land-use change on soil nitrogen (N) transformations was investigated in adjacent native forest (NF), 53 y-old first rotation (1R) and 5 y-old second rotation (2R) hoop pine (Araucaia cunninghamii) plantations. The 15N isotope dilution method was used to quantify gross rates of N transformations in aerobic and anaerobic laboratory incubations. Results showed that the land-use change had a significant impact on the soil N transformations. Gross ammonification rates in the aerobic incubation ranged between 0.62 and 1.78 mg N kg−1 d−1, while gross nitrification rates ranged between 2.1 and 6.6 mg N kg−1 d−1. Gross ammonification rates were significantly lower in the NF and the 1R soils than in the 2R soils, however gross nitrification rates were significantly higher in the NF soils than in the plantation soils. The greater rates of gross nitrification found in the NF soil compared to the plantation soils, were related to lower soil C:N ratios (i.e. more labile soil N under NF). Nitrification was found to be the dominant soil N transformation process in the contrasting forest ecosystems. This might be attributed to certain site conditions which may favour the nitrifying community, such as the dry climate and tree species. There was some evidence to suggest that heterotrophic nitrifiers may undertake a significant portion of nitrification.  相似文献   

8.

Purpose

Better understanding of N transformations and the regulation of N2O-related N transformation processes in pasture soil contributes significantly to N fertilizer management and development of targeted mitigation strategies.

Materials and methods

15N tracer technique combined with acetylene (C2H2) method was used to measure gross N transformation rates and to distinguish pathways of N2O production in two Australian pasture soils. The soils were collected from Glenormiston (GN) and Terang (TR), Victoria, Australia, and incubated at a soil moisture content of 60% water-filled pore space (WFPS) and at temperature of 20 °C.

Results and discussion

Two tested pasture soils were characterized by high mineralization and immobilization turnover. The average gross N nitrification rate (ntot) was 7.28 mg N kg?1 day?1 in TR soil () and 5.79 mg N kg?1 day?1 in GN soil. Heterotrophic nitrification rates (nh), which accounting for 50.8 and 41.9% of ntot, and 23.4 and 30.1% of N2O emissions in GN and TR soils, respectively, played a role similar with autotrophic nitrification in total nitrification and N2O emission. Denitrification rates in two pasture soils were as low as 0.003–0.004 mg N kg?1 day?1 under selected conditions but contributed more than 30% of N2O emissions.

Conclusions

Results demonstrated that two tested pasture soils were characterized by fast N transformation rates of mineralization, immobilization, and nitrification. Heterotrophic nitrification could be an important NO3?–N production transformation process in studied pasture soils. Except for autotrophic nitrification, roles of heterotrophic nitrification and denitrification in N2O emission in two pasture soils should be considered when developing mitigation strategies.
  相似文献   

9.
The occurrence of nitrification in some acidic forest soils is still a subject of debate. Identification of main nitrification pathways in acidic forest soils is still largely unknown. Acidic yellow soil (Oxisol) samples were selected to test whether nitrification can occur or not in acidic subtropical pine forest ecosystems. Relative contributions of autotrophs and heterotrophs to nitrification were studied by adding selective nitrification inhibitor nitrapyrin. Soil NH4+-N concentrations decreased, but NO3--N concentrations increased significantly for the no-nitrapyrin control during the first week of incubation, indicating that nitrification did occur in the acidic subtropical soil. The calculated net nitrification rate was 0.49 mg N kg-1 d-1 for the no-nitrapyrin control during the first week of incubation. Nitrapyrin amendment resulted in a significant reduction of NO3--N concentration. Autotrophic nitrification rate averaged 0.28 mg N kg-1 d-1 and the heterotrophic nitrification rate was 0.21 mg N kg-1 d-1 in the first week. Ammonia-oxidizing bacteria (AOB) abundance increased slightly during incubation, but nitrapyrin amendment significantly decreased AOB amoA gene copy numbers by about 80%. However, the ammonia-oxidizing archaea (AOA) abundance showed significant increases only in the last 2 weeks of incubation and it was also decreased by nitrapyrin amendment. Our results indicated that nitrification did occur in the present acidic subtropical pine forest soil, and autotrophic nitrification was the main nitrification pathway. Both AOA and AOB were the active biotic agents responsible for autotrophic nitrification in the acidic subtropical pine forest soil.  相似文献   

10.
Principles of isotope dilution, modeling, and nonlinear parameter estimation were used to simultaneously determine N cycle rates. Analysis of the sensitivity coefficients for the models used in this study demonstrated that the four parameters of interest—the rates or rate constants of mineralization, immobilization, nitrification, and denitrification—were estimable. This analysis also illustrated which sampling design would be best for the experiments performed.We found that both zero- and first-order models could describe N cycling, with the first-order model being more generally appropriate. The estimates obtained for mineralization, immobilization, and nitrification had relatively small standard errors; however, denitrification parameters were poorly estimated. This is due in part to the much lower rate of denitrification (~1000 times smaller) when compared to the rates of the other processes and also to the insensitivity of the measured responses to changes in the denitrification parameter.The rates or rate constants for the four processes compared favorably with those reported by others. Highest nitrification rates were found in agricultural soils [1–5 and 1–34 mg N kg−1 day−1) compared with a forest soil (< 1 mg N kg−1 day−1). Rates of mineralization (0.6–1.5 mg N kg−1 day−1) and immobilization (0.1–4 mg N kg−1day−1) were similar in all soils, although immobilization was favored in the agricultural sandy loam. Denitrification was considerably higher in the agricultural clay loam (> 500 μg N kg−1day−1) than in the coarser textured soils (~10 μg N kg−1day−1).Some experimental data could not be fit with zero- or first-order kinetics, however this was most likely because the model did not account for all of the processes occurring in these soils, rather than limitations to the parameter estimation procedure itself. Even with the relatively high degree of experimental variability inherent in measuring N pool sizes and 15N ratios, reasonably good parameter estimates were obtained in these laboratory incubations, demonstrating the feasibility of simultaneously estimating the rates of several N cycle processes. The trends in N cycle rates among the soils investigated were consistent with those normally associated with forest and agricultural soils, further corroborating the utility of this method.  相似文献   

11.
LAN Ting  HAN Yong  CAI Zu-Cong 《土壤圈》2017,27(1):112-120
Although to date individual gross N transformations could be quantified by ~(15)N tracing method and models,studies are still limited in paddy soil.An incubation experiment was conducted using topsoil(0-20 cm) and subsoil(20-60 cm) of two paddy soils,alkaline and clay(AC) soil and neutral and silt loam(NSL) soil,to investigate gross N transformation rates.Soil samples were labeled with either ~(15)NH4_NO_3 or NH_4~(15)NO_3,and then incubated at 25 °C for 168 h at 60%water-holding capacity.The gross N mineralization(recalcitrant and labile organic N mineralization) rates in AC soil were 1.6 to 3.3 times higher than that in NSL soil,and the gross N nitrification(autotrophic and heterotrophic nitrification) rates in AC soil were 2.4 to 4.4 times higher than those in NSL soil.Although gross NO_3~- consumption(i.e.,NO_3~- immobilization and dissimilatory NO_3~- reduction to NH_4~+ rates increased with increasing gross nitrification rates,the measured net nitrification rate in AC soil was approximately 2.0 to 5.1 times higher than that in NSL soil.These showed that high NO_3~- production capacity of alkaline paddy soil should be a cause for concern because an accumulation of NO_3~- can increase the risk of NO_3~- loss through leaching and denitrification.  相似文献   

12.
In the tropics,frequent nitrogen(N)fertilization of grazing areas can potentially increase nitrous oxide(N2O)emissions.The application of nitrification inhibitors has been reported as an effective management practice for potentially reducing N loss from the soil-plant system and improving N use efficiency(NUE).The aim of this study was to determine the effect of the co-application of nitrapyrin(a nitrification inhibitor,NI)and urea in a tropical Andosol on the behavior of N and the emissions of N2O from autotrophic and heterotrophic nitrification.A greenhouse experiment was performed using a soil(pH 5.9,organic matter content 78 g kg-1,and N 5.6 g kg-1)sown with Cynodon nlemfuensis at 60%water-filled pore space to quantify total N2O emissions,N2O derived from fertilizer,soil ammonium(NH4+)and nitrate(NO3-),and NUE.The study included treatments that received deionized water only(control,NI).No significant differences were observed in soil NH4+content between the UR and UR+NI treatments,probably because of soil mineralization and NO3-produced by heterotrophic nitrification,which is not effectively inhibited by nitrapyrin.After 56 d,N2O emissions in UR(0.51±0.12 mg N2O-N concluded that the soil organic N mineralization and heterotrophic nitrification are the main processes of NH4+and NO3-production.Additionally,it was found that N2O emissions were partially a consequence of the direct oxidation of the soil's organic N via heterotrophic nitrification coupled to denitrification.Finally,the results suggest that nitrapyrin would likely exert significant mitigation on N2O emissions only if a substantial N surplus exists in soils with high organic matter content.  相似文献   

13.
Biochar has the potential to decrease salinity and nutrient loss of saline soil. We investigated the effects of biochar amendment (0–10 g kg−1) on salinity of saline soil (2.8‰ salt) in NaCl leaching and nutrient retention by conducting column leaching experiments. The biochar was produced in situ from Salix fragilis L. via a fire-water coupled process. The soil columns irrigated with 15 cm of water showed that biochar amendment (4 g kg−1) decreased the concentration Na+ by 25.55% in the first irrigation and to 60.30% for the second irrigation in sandy loam layer over the corresponding control (CK). Meanwhile, the sodium adsorption ratio (SAR) of soil after the first and second irrigation was 1.62 and 0.54, respectively, which were 15.2% and 49.5% lower than CK. The marked increase in saturated hydraulic conductivity (Ks) from 0.15 × 10–5 cm s−1 for CK to 0.39 × 10–5 cm s−1, following 4 g kg−1 of biochar addition, was conducive to salt leaching. Besides, biochar use (4 g kg−1) increased NH4+-N and Olsen-P by 63.63% and 62.50% over the CK, but accelerated NO3-N leaching. Since 15 cm hydrostatic pressure would result in salt accumulation of root zone, we would recommend using 4 g kg−1 of biochar, 30 cm of water to ease the problem of salt leaching from the surface horizon to the subsoil. This study would provide a guidance to remediate the saline soil in the Yellow River Delta by judicious application of biochar and irrigation.  相似文献   

14.
The intensive conversion from woodland to tea plantation in subtropical China might significantly change the potential supply processes and cycling of inorganic Nitrogen (N). However, few studies have been conducted to investigate the internal N transformations involved in the production and consumption of inorganic N and N2O emissions in subtropical soils under tea plantations. In a 15N tracing experiment, nine tea fields with different plantation ages (1-y, 5-y and 30-y) and three adjacent woodlands were sampled to investigate changes in soil gross N transformation rates in humid subtropical China. Conversion of woodland to tea plantation significantly altered soil gross N transformation rates. The mineralization rate (MNorg) was much lower in soils under tea plantation (0.53–0.75 mg N kg−1 d−1) than in soil sampled from woodland (1.71 mg N kg−1 d−1), while the biological inorganic N supply (INS), defined as the sum of organic N mineralized into NH4+ (MNorg) and heterotrophic nitrification (ONrec), was not significantly different between soils under woodland and tea plantation, apart from soil under 30-y tea plantation which had the largest INS. Interestingly, the contribution of ONrec to INS increased from 19.6% in soil under woodland to 65.0–82.4% in tea-planted soils, suggesting ONrec is the dominant process producing inorganic N in tea-planted soils. Meanwhile, the conversion from woodland to tea plantation destroyed soil NO3 retention by increasing ONrec, autotrophic nitrification (ONH4) and abiotic release of stored NO3 while decreasing microbial NO3 immobilization (INO3), resulting in greater NO3 production in soil. In addition, long-term tea plantation significantly enhanced the potential release of N2O. Soil C/N was positively correlated with MNorg and INO3, suggesting that an increase in soil C/N from added organic materials (e.g. rice hull) is likely to reduce the increased production of NO3 in the soils under tea plantation.  相似文献   

15.
Improved understanding of the seasonal dynamics of C and N cycling in soils, and the main controls on these fluctuations, is needed to improve management strategies and to better match soil N supply to crop N demand. Although the C and N cycles in soil are usually considered to be closely linked, few data exist where both C and N pools and gross N fluxes have been measured seasonally. Here we present measurements of inorganic N, extracted soluble organic N, microbial biomass C and N, gross N fluxes and CO2 production from soil collected under wheat in a ley‐arable and continuous arable rotation within a long‐term experiment. The amounts of inorganic N and extracted soluble organic N were similar (range 5–35 kg N ha−1; 0–23 cm) but had different seasonal patterns: whilst inorganic N declined during wheat growth, extracted soluble organic N peaked after cultivation and also during maximal stem elongation. The microbial biomass was significantly larger in the ley‐arable (964 kg C ha−1; 0–23 cm) than the continuous arable rotation (518 kg C ha−1; 0–23 cm) but with no clear seasonal pattern. In contrast, CO2 produced from soil and gross N mineralization showed strong seasonality linked to soil temperature and moisture content. Normalization of soil CO2 production and gross N mineralization with respect to these environmental regulators enabled us to study the underlying influence of the incorporation of fresh plant material into soil on these processes. The average normalized gross rates of N mineralized during the growing season were 1.74 and 2.55 kg N ha−1 nday−1 in continuous arable and ley‐arable rotations respectively. Production rates (gross N mineralization, gross nitrification) were similar in both land uses and matched rates of NH4+ and NO3 consumption, resulting in periods of net N mineralization and immobilization. There was no simple relationship between soil CO2 production and gross N mineralization, which we attributed to changes in the C : N ratio of the mineralizing pool(s).  相似文献   

16.
Studies about nitrogen (N) mineralization and nitrification in deep soil layers are rare because N processes are considered to occur mainly in topsoil that hosts active and diverse microbial communities. This study aimed to measure the soil potential net N mineralization (PNM) and nitrification (PNN) down to 4 m depth and to discuss factors controlling their variability. Twenty-one soil cores were collected at the Restinclières agroforestry experimental site, where 14-year-old hybrid walnut trees were intercropped with durum wheat. Soil cores were incubated in the dark in the laboratory at both 6 and 25°C. The soil was a deep calcic fluvisol with a fluctuating water table. It featured a black layer that was very rich in organic matter and permanently water saturated at depths between 3.0 and 4.0 m. The mean soil mineral N content was 3 mg N kg−1 soil in the upper 0.0–0.2 m layer, decreasing until a depth of 2 m and increasing to the maximum value of 25.8 mg N kg−1 soil in the black layer. While nitrate (NO3) was the dominant form of mineral N (89%) in the upper 0.0–0.2 m layer, its proportion progressively decreased with depth until ammonium (NH4+) became almost the only form of mineral N (97%) in the saturated black layer. Laboratory soil incubation revealed that PNM and PNN occurred at all depths, although the latter remained low at 6°C. The soil nitrate content in the black layer was multiplied by 48 times after 51 days of incubation at 25°C, whereas it was almost inexistent at the sampling date. While the soil total N, the pH and the incubation temperature explained 84% of the variation in PNM, only 29% of the percent nitrification variance was explained by the incubation temperature (Tinc) and the soil C-to-N ratio. These results point out the necessity to consider soil potential net N mineralization and nitrification of deep soil layers to improve model predictions.  相似文献   

17.
The microbial biomass C, N and P of soils all over China were determined in this study to study their affecting factors. The results, about 100-417 mg C kg-1 soil, 18-51 mg N kg-1 soil and 4.4-27.3 mg P kg-1 soil, showed the biomass C, N and P in linear relationship with the soil total organic C, toal N and soil organic P. The ratios of C: N and C:P, ranging from 5.6 to 9.6 and from 11.2 to 48.4 respectively, were affected by soil pH, texture, crop rotation, macroclimate, etc. The ratio of C:N in soil biomass increases gradually from the north to the south in China.  相似文献   

18.
Abstract. Gross N mineralization and nitrification rates were measured in soils treated with dairy shed effluent (DSE) (i.e. effluent from the dairy milking shed, comprising dung, urine and water) or ammonium fertilizer (NH4Cl) under field conditions, by injecting 15N-solution into intact soil cores. The relationships between gross mineralization rate, microbial biomass C and N and extracellular enzyme activities (protease, deaminase and urease) as affected by the application of DSE and NH4Cl were also determined. During the first 16 days, gross mineralization rate in the DSE treated soil (4.3–6.1 μg N g?1 soil day?1) were significantly (P 14;< 14;0.05) higher than those in the NH4Cl treated soil (2.6–3.4 μg N g?1 soil day?1). The higher mineralization rate was probably due to the presence of readily mineralizable organic substrates in the DSE, accompanied by stimulated microbial and extracellular enzyme activities. The stable organic N compounds in the DSE were slow to mineralize and contributed little to the mineral N pool during the period of the experiment. Nitrification rates during the first 16 days were higher in the NH4Cl treated soil (1.7–1.2 μg N g?1 soil day?1) compared to the DSE treated soil (0.97–1.5 μg N g?1 soil day?1). Soil microbial biomass C and N and extracellular enzyme activities (protease, deaminase and urease) increased after the application of the DSE due to the organic substrates and nutrients applied, but declined with time, probably because of the exhaustion of the readily available substrates. The NH4Cl application did not result in any significant increases in microbial biomass C, protease or urease activities due to the lack of carbonaceous materials in the ammonium fertilizer. However, it did increase microbial biomass N and deaminase activity. Significant positive correlations were found between gross N mineralization rate and soil microbial biomass, protease, deaminase and urease activities. Nitrification rate was significantly correlated to biomass N but not to the microbial biomass C or the enzyme activities. Stepwise regression analysis showed that the variations of gross N mineralization rate was best described by the microbial biomass C and N.  相似文献   

19.
Sludge derived from cow manure anaerobically digested to produce biogas (methane; CH4) was applied to maize (Zea mays L.) cultivated in a nutrient-low, alkaline, saline soil with electrolytic conductivity 9.4 dS m?1 and pH 9.3. Carbon dioxide (CO2) emission increased 3.1 times when sludge was applied to soil, 1.6 times when cultivated with maize and 3.5 times in sludge-amended maize cultivated soil compared to the unamended uncultivated soil (1.51 mg C kg?1 soil day?1). Nitrous oxide (N2O) emission from unamended soil was -0.0004 μg nitrogen (N) kg?1 soil day?1 and similar from soil cultivated with maize (0.27 μg N kg?1 soil day?1). Application of sludge increased the N2O emission to 4.59 μg N kg?1 soil day?1, but cultivating this soil reduced it to 2.42 μg N kg?1 soil day?1. It was found that application of anaerobic digested cow manure stimulated maize development in an alkaline saline soil and increased emissions of CO2 and N2O.  相似文献   

20.
Agricultural activities emit greenhouse gases (GHGs) and contribute to global warming. Intensive plough tillage (PT), use of agricultural chemicals and the burning of crop residues are major farm activities emitting GHGs. Intensive PT also degrades soil properties by reducing soil organic carbon (SOC) pool. In this scenario, adoption of no‐till (NT) systems offers a pragmatic option to improve soil properties and reduce GHG emission. We evaluated the impacts of tillage systems (NT and PT) and wheat residue mulch on soil properties and GHG emission. This experiment was started in 1989 on a Crosby silt loam soil at Waterman Farm, The Ohio State University, Columbus, Ohio, USA. Mulching reduced soil bulk density and improved total soil porosity. More total carbon (16.16 g kg−1), SOC (8.36 mg L−1) and soil microbial biomass carbon (152 µg g−1) were recorded in soil under NT than PT. Mulch application also decreased soil temperature (0–5 cm) and penetration resistance (0–60 cm). Adoption of long‐term NT reduced the GHG emission. Average fluxes of GHGs under NT were 1.84 g CO2‐C m−2 day−1 for carbon dioxide, 0.07 mg CH4‐C m−2 day−1 for methane and 0.73 mg N2O‐N m−2 day−1 for nitrous oxide compared with 2.05 g CO2‐C m−2 day−1, 0.74 mg CH4‐C m−2 day−1 and 1.41 mg N2O‐N m−2 day−1, respectively, for PT. Emission of nitrous oxide was substantially increased by mulch application. In conclusion, long‐term NT reduced the GHG emission by improving the soil properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号