首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carnivores as top predators are commonly found in relatively low densities even in optimal habitats. Despite a lack of empirical studies, it could be suspected that long‐term low density could result in genetic depletion. The genetic structure of European polecat Mustela putorius natural populations was investigated by allozyme electrophoresis in five distinct areas. Density estimates significantly differed among sites from 0.17 to 0.83 individuals/km2 with an average of 0.56 individuals per km2, resulting in a scattered distribution. Genetic structure varied among distinct populations both in number of polymorphic loci and heterozygosity. Polecats from Brittany revealed a very low observed heterozygosity (HO = 0.028) whereas mean heterozygosity reached HO = 0.072 in Brière. That the lowest heterozygosity levels and highest inbreeding coefficient FIS were significantly associated with the lowest densities suggests that low densities may affect populations of carnivores. Both the loss of polymorphic loci and the reduction in heterozygosity rates suggest a density‐dependent effect and population density can be arguably regarded as a factor affecting genetic diversity in top carnivores.  相似文献   

2.
Physiological adaptation of tree shrews (Tupaia belangeri) to changing environmental temperature has been reported in detail. However, the T. belangeri origin (mainland or island), population history, and adaptation to historical climate change remain largely unknown or controversial. Here, for the first time, we sequenced the simplified genome of 134 T. belangeri individuals from 12 populations in China and further resequenced one individual from each population. Using population genomic approaches, we first observed considerable genetic variation in T. belangeri. Moreover, T. belangeri populations formed obvious genetic structure and reflected different demographic histories; they generally exhibited high genetic diversity, although the isolated populations had relatively low genetic diversity. The results presented in this study indicate that T. b. modesta and T. b. tonquinia were separated recently and with a similar population dynamics. Second, physical barriers rather than distance were the driving factors of divergence, and environmental heterogeneity may play an important role in genetic differentiation in T. belangeri. Moreover, our analyses highlight the role of historical global climates in the T. belangeri population dynamics and indicate that the decrease of the T. belangeri population size may be due to the low temperature. Finally, we identified the olfaction-associated adaptive genes between different altitude populations and found that olfactory-related genes of high-altitude populations were selectively eliminated. Our study provides demographic history knowledge of T. belangeri; their adaption history offers new insights into their evolution and adaptation, and provides valuable baseline information for conservation measures.  相似文献   

3.
A pioneering boat-based survey was conducted in 2019, to gather baseline information regarding the presence, composition, relative abundance, and spatial distribution of deep-diving and off-shore cetaceans in the northern South China Sea (SCS). A total of 27 sightings comprising at least 8 cetacean species were recorded during the 13-day survey, including 5 deep-diving species (i.e. Risso's dolphin [Grampus griseus], short-finned pilot whale [Globicephala macrorhynchus], sperm whale [Physeter macrocephalus], Cuvier's beaked whale [Ziphius cavirostris], and an unidentified beaked whale [either the ginkgo-toothed beaked whale, Mesoplodon ginkgodens, or Deraniyagala's beaked whale, Mesoplodon hotaula]), as well as 3 off-shore dolphins (i.e. pantropical spotted dolphin [Stenella attenuate], striped dolphin [Stenella coeruleoalba], and Fraser's dolphin [Lagenodelphis hosei]). With the exception of pantropical spotted dolphins, all other species were sighted and recorded at sea in the northern SCS for the first time. The pantropical spotted dolphin was the most frequently sighted species, comprising 30% of the total sightings. Deep-diving cetaceans were mainly sighted in the northern Xisha Archipelago, whereas off-shore dolphins were distributed across the survey area. The pantropical spotted dolphin was observed in aggregations of more than 100 individuals and nearly all encountered species included calves; these findings suggested that the survey area functions as an important feeding and calving ground for various cetacean species. This pioneering survey provides fundamental information regarding cetacean fauna in the northern SCS and highlights the need to strengthen research and conservation efforts concerning these species.  相似文献   

4.
The adaptive evolution of visual systems has been observed in many cavefish. However, little is known about the molecular mechanisms underlying these adaptations, which include regressive changes such as eye degeneration. Here, we analyzed phylogenetic and expression patterns of 6 eye-related genes (crx, foxg1b, opn1sw2, otx2, rho and sox2) in 12 Sinocyclocheilus species from China, including 8 stygobionts and 4 stygophiles, and examined photoreceptor cell morphology of these species. Those eye-degenerated species of Sinocyclocheilus were polyphyletic and showed different degrees of photoreceptor defects in responses to cave environments. The eye loss and degeneration are the result of convergent evolution. Although S. anophthalmus grouped with the eye-normal species, it displayed not only a high degree of eye degeneration but also significant expression differences in eye-related genes compared with the eye-normal species. The gene foxg1b, which was determined to be under positive selection, might play an important role in the process of eye degeneration in S. anophthalmus based on differential expression. Eye-related gene expression and selection may have contributed to the polyphyly of the cave species. We examined gene expression and duplication in 6 eye-related genes and revealed that these genes displayed considerable diversity in relative expression in Sinocyclocheilus fishes. Otx2 and sox2 were significantly up-regulated in individual cave species, while the other 4 genes (crx, foxg1b, opn1sw2 and rho) were significantly down-regulated. These findings provide a valuable resource for elucidating molecular mechanisms associated with visual system evolution in cavefish.  相似文献   

5.
Threatened species typically have a small or declining population size, which make them highly susceptible to loss of genetic diversity through genetic drift and inbreeding. Genetic diversity determines the evolutionary potential of a species; therefore, maintaining the genetic diversity of threatened species is essential for their conservation. In this study, we assessed the genetic diversity of the adaptive major histocompatibility complex (MHC) genes in an endangered and narrowly distributed amphibian species, Leptobrachium leishanense in Southwest China. We compared the genetic variation of MHC class I genes with that observed in neutral markers (5 microsatellite loci and cytochrome b gene) to elucidate the relative roles of genetic drift and natural selection in shaping the current MHC polymorphism in this species. We found a high level of genetic diversity in this population at both MHC and neutral markers compared with other threatened amphibian species. Historical positive selection was evident in the MHC class I genes. The higher allelic richness in MHC markers compared with that of microsatellite loci suggests that selection rather than genetic drift plays a prominent role in shaping the MHC variation pattern, as drift can affect all the genome in a similar way but selection directly targets MHC genes. Although demographic analysis revealed no recent bottleneck events in L. leishanense, additional population decline will accelerate the dangerous status for this species. We suggest that the conservation management of L. leishanense should concentrate on maximizing the retention of genetic diversity through preventing their continuous population decline. Protecting their living habitats and forbidding illegal hunting are the most important measures for conservation of L. leishanense.  相似文献   

6.
Two recent studies have suggested that divergent mitochondrial lineages may be present within spirostreptid genera such as Bicoxidens Attems, 1928. Bicoxidens, similar to many other endemic soil invertebrates, exhibits low dispersal capabilities and strict microclimate habitat preferences, attributes that often lead to geographic isolation. Given that prolonged geographic isolation often lays the foundation for population genetic differentiation, genetic divergence and possibly speciation, there was good reason to suspect that Bicoxidens may consist of several distinct lineages. On this basis, the mitochondrial cytochrome c oxidase subunit 1 (COI) was used to reconstruct the phylogeny of Bicoxidens and reveal divergent lineages within the genus. Maximum likelihood and Bayesian inference analyses recovered a paraphyletic Bicoxidens phylogram with divergent lineages present in three species – B. friendi, B. flavicollis and B. brincki – suggesting high genetic diversity within the genus. Bayesian genetic cluster analyses suggested the presence of multiple distinct mitochondrial lineages within the genus with four identified in B. flavicollis alone. It was therefore concluded that the divergent lineages observed among Bicoxidens populations may suggest the presence of hidden species.  相似文献   

7.
The African Penguin (Spheniscus demersus) has suffered population declines and is listed in the IUCN Red List as Endangered. The species is endemic to the coast of southern Africa, and breeding colonies are distributed on the south-western coast of Africa. Currently, African Penguins are being kept in zoo and aquarium facilities throughout South Africa. In this study, molecular genetic data based on 12 microsatellite markers from 1 119 African Penguin samples from four facilities were generated in order to determine the level of genetic variation, population structure and differentiation, and effective population size to assist in the development of an effective captive management plan. Expected heterozygosity ranged from 0.57 to 0.62, and allelic richness from 4.2 to 5.1. However, based on differences between first- and second-generation captive birds, we conclude that the ex situ population is at risk of losing genetic variability in the future and management programmes should include exchange of birds between captive facilities in order to induce gene flow and increase effective population size. Adding individuals from in situ populations should also be considered in the future in cases where these birds cannot be rehabilitated. Molecular genetic analyses of wild penguin populations should be carried out for comparison, and to ascertain to what degree ‘in situ genetic diversity’ is represented among ex situ populations. With regular resampling and analyses, the extent of the effect of processes such as genetic drift on diversity in the ex situ penguin populations will become evident.  相似文献   

8.
Genetic variability of the dog breed Hanoverian Hound was analysed using a set of 16 microsatellites. The sample of 92 dogs was representative for the total current population [n = 334, inbreeding coefficient 9.2%, relationship coefficient 11.2%] with respect to the level and distribution of the inbreeding and relationship coefficients. All microsatellites used were in Hardy–Weinberg equilibrium. The average number of alleles was 6.4. The average observed heterozygosity (HO) was slightly higher than the expected heterozygosity (HE). Dinucleotide microsatellites exhibited lower polymorphism information content (PIC) than tetranucleotide microsatellites (0.52 versus 0.66). The average PIC was 0.61. The individual inbreeding coefficient was negatively related to the average HO of all microsatellites, whereas the proportion of genes from introducing of Hanoverian Hounds from abroad showed no relationships to HO. We found that the genetic variability in the Hanoverian Hounds analysed here was unexpectedly higher than that previously published for dog breeds of similar population size. Even in dog breeds of larger population size heterogyzosity was seldom higher than that observed here. The rather high genetic variability as quantified by polymorphic microsatellites in Hanoverian Hounds may be due to a large genetic variation in the founder animals of this breed and to the fact that this genetic diversity could be maintained despite genetic bottlenecks experienced by this breed in the 1920s and 1950s and despite the presence of high inbreeding and relationship coefficients for more than 50 years.  相似文献   

9.
South American camelids (SACs) have a major role in the maintenance and potential future of rural Andean human populations. More than 60% of the 3.7 million llamas living worldwide are found in Bolivia. Due to the lack of studies focusing on genetic diversity in Bolivian llamas, this analysis investigates both the genetic diversity and structure of 12 regional groups of llamas that span the greater part of the range of distribution for this species in Bolivia. The analysis of 42 microsatellite markers in the considered regional groups showed that, in general, there were high levels of polymorphism (a total of 506 detected alleles; average PIC across per marker: 0.66), which are comparable with those reported for other populations of domestic SACs. The estimated diversity parameters indicated that there was high intrapopulational genetic variation (average number of alleles and average expected heterozygosity per marker: 12.04 and 0.68, respectively) and weak genetic differentiation among populations (FST range: 0.003–0.052). In agreement with these estimates, Bolivian llamas showed a weak genetic structure and an intense gene flow between all the studied regional groups, which is due to the exchange of reproductive males between the different flocks. Interestingly, the groups for which the largest pairwise FST estimates were observed, Sud Lípez and Nor Lípez, showed a certain level of genetic differentiation that is probably due to the pattern of geographic isolation and limited communication infrastructures of these southern localities. Overall, the population parameters reported here may serve as a reference when establishing conservation policies that address Bolivian llama populations.  相似文献   

10.
Intestinal microbiota are characterized by host‐specific microorganisms, which have been selected through host‐microbe interactions under phylogenetic evolution and transition of feeding behavior by the host. Although many studies have focused on disease‐related intestinal microbiota, the origin and evolution of host‐specific intestinal microbiota have not been well elucidated. Pig is the ideal mammal model to reveal the origin and evolution of host‐specific intestinal microbiota because their direct wild ancestor and close phylogenetic neighbors are available for comparison. The pig has been recognized as a Lactobacillus‐type animal. We analyzed the intestinal microbiota of various animals in Suidae: domestic pigs, wild boars and Red river hogs to survey the origin and evolution of Lactobacillus‐dominated intestinal microbiota by metagenomic approach and following quantitative PCR confirmation. The metagenomic datasets were separated in two clusters; the wild animal cluster being characterized by a high abundance of Bifidobacterium, whereas the domesticated (or captured) animal cluster by Lactobacillus. In addition, Enterobacteriaceae were harbored as the major family only in domestic Sus scrofa. We conclude that domestication may have induced a larger Enterobacteriaceae population in pigs, and the introduction of modern feeding system further caused the development of Lactobacillus‐dominated intestinal microbiota, with genetic and geographical factors possibly having a minor impact.  相似文献   

11.
The comparative growth habits and nutritive value of native grass species of South Africa are largely unknown despite the utility of this information in rangeland restoration efforts. This article presents a comparative characterisation of the morphology, chemical composition and in vitro ruminal fermentation of Urochloa mosambicensis, Cymbopogon pospischilii, Eragrostis superba, Fingerhuthia africana and Eragrostis bicolor when grown under controlled conditions. Species were analysed for height, number of leaves, number of tillers, stem diameter and leaf width at different growth stages, whereas chemical composition and in vitro ruminal dry matter degradability (DMD) were assessed at maturity stage. Grass species and growth stages significantly influenced morphological characteristics. Eragrostis superba and U. mosambicensis had the highest number of leaves at the reproductive stage. Urochloa mosambicensis ranked highest in terms of rangeland restoration potential when all morphological parameters were considered, followed by E. superba and C. pospischilii. With the highest crude protein, low acid-detergent lignin and higher DMD at 48 h, F. africana and C. pospischilii have the highest potential feed value. Across the three most suitable native grass species, U. mosambicensis, E. superba and C. pospischilii, there is sufficient genetic diversity that suggests that these plants may play different and complementary ecological roles in the communal rangeland ecosystem.  相似文献   

12.
The Heaviside's (or Benguela) dolphin (Cephalorhynchus heavisidii) is endemic to the west coast of southern Africa. The present study investigated the population genetic structure across a large portion of the species distribution using mitochondrial control region and nuclear (microsatellite) markers. A total of 395 biopsy skin samples were analyzed; they were collected from free‐ranging Heaviside's dolphins in 7 locations along 1650 km of coast between Table Bay, South Africa and Walvis Bay, Namibia. Both genetic markers rejected the hypothesis of 1 homogenous population but revealed contrasting results in the genetic structuring of putative populations. Mitochondrial DNA suggested either 2 populations or a fine‐scale division with 6 (sub) populations, while microsatellite markers were indicative of 2 widespread populations with measurable gene flow between them. Neutrality tests and mismatch distribution of the mitochondrial sequences indicated a departure from mutation–drift equilibrium due to a population expansion at the 2 extremes of the geographic range, but not towards the middle of the distribution. These results highlight the importance of evaluating multiple genetic markers to gain reliable insights into population processes and structure.  相似文献   

13.
The effective number of breedable individuals is a crucial determinant for maintaining genetic variability within a population. The population of Bargur, the hill cattle of South India, has gone down drastically by more than 93 % in the past three decades, and only a few thousand animals are available at present. The present study was undertaken to evaluate Bargur cattle for mutation drift equilibrium and to detect the occurrence of recent genetic bottleneck event, if any, in this population. About 50 unrelated animals, true to the type, were sampled and genotyped at 25 microsatellite loci. The mean observed heterozygosity (0.808?±?0.023) was higher than the mean expected heterozygosity (0.762?±?0.008) with 15 out of 25 microsatellite loci exhibiting heterozygosity excess when assumed under Hardy–Weinberg equilibrium. To evaluate Bargur cattle for mutation drift equilibrium, three tests were performed under three different mutation models, viz., infinite allele model (IAM), stepwise mutation model (SMM) and two-phase model (TPM). The observed gene diversity (H e) and expected equilibrium gene diversity (H eq) were estimated under different models of microsatellite evolution. All the 25 loci were found to exhibit gene diversity excess under IAM and TPM, while 22 loci were having gene diversity excess under SMM. All the three statistical tests, viz., sign test, standardized differences test, and Wilcoxon sign rank test, revealed significant (P?<?0.01) deviation of Bargur cattle population from mutation-drift equilibrium under all the three models of mutation. Furthermore, the qualitative test of allele frequency distribution in Bargur cattle population revealed a strong mode shift from the normal L-shaped form suggesting that the population had experienced genetic bottleneck in the recent past. The occurrence of genetic bottleneck might have led to the loss of several rare alleles in the population, which point towards the need for efforts to conserve this important cattle germplasm. The present study is the first report in demonstrating the genetic basis of demographic bottleneck in an Indian cattle population.  相似文献   

14.
Massive actions have been and are being taken into protecting the world's primates from extinction, while the study of the properties of genetic diversity, demographic history, and ecological relationships will benefit the understanding of the long-term survival of a species. The Taihangshan macaque (Macaca mulatta tcheliensis), a subspecies of rhesus macaque (Macaca mulatta), is endemic to China and currently restricted to southern Mt. Taihangshan area. Herein, we evaluated the genetic diversity, population structure, and demographic history of this subspecies using mitochondrial (Cytb and high variable region I: HVR I) and nuclear markers (microsatellite loci) of 131 individuals collected from 9 localities covering the distribution range of this subspecies. Both phylogenetic analyses and genetic assignment revealed that the wild populations of Taihangshan macaques could be divided into 2 major highly divergent clades, THS-east and THS-west. Low genetic diversity (π: 0.00266 ± 0.00016) but high haplotype diversity (Hd: 0.80352 ± 0.015) were detected in the Taihangshan macaques, particularly in THS-east. Analyses of demographic history suggested that the Taihangshan macaques experienced first a stable historical population size from Holocene to early 19th century but a subtle decline and then slight growth in the recent 200 years. We suggest that bridging the neighbor populations (i.e. setting corridors) would facilitate the male-mediated gene flow and subsequently increase the genetic diversity of the Taihangshan macaque populations.  相似文献   

15.
The adaptation and diversity of animals to the extreme environments of the Qinghai–Tibet Plateau (QTP) are typical materials to study adaptive evolution. The recently discovered Jinchuan yak population has many individuals with multiple ribs. However, little is known about this yak's origin, evolution, and the genetic mechanisms that formed its unique multirib trait. Here, we report a valuable population genome resource of the Jinchuan yak by resequencing the whole genome of 150 individuals. Population genetic polymorphism and structure analysis reveal that Jinchuan yak can be differentiated as a unique and original yak population among the domestic yak. Combined with geological change, the Jinchuan yak's evolutionary origin is speculated to be about 6290 years ago, which may be related to the unique geographical environment of the eastern edge of the QTP during this period. Compared with other domestic yaks, this new population has 280 positively selected genes. The genes related to skeletal function hold a considerable and remarkable proportion, suggesting that the specific skeletal characteristics have been enhanced in the adaptive evolution of Jinchuan yak in the extreme plateau environment. The genome-wide association study has revealed that TUBA8 and TUBA4A, the genes that regulate the cytoskeleton, are potential genes associated with the multirib trait. Our findings provide a basis to further understand the generation mechanism of the adaptive evolution of this new population in high-altitude extreme environments and the multivertebrate trait of domestic animals.  相似文献   

16.
Conservation decisions based on neutral genetic diversity have been observed to promote retention of useful quantitative variation in biological populations. An experiment was undertaken to determine the association between microsatellite marker polymorphisms and phenotypic variation in semen production and cryosurvival traits in bulls. Thirty-five ejaculates were collected from ten bulls of two breeds and evaluated before and after cryopreservation for several semen traits. The bulls were also genotyped using a set of sixteen bovine-specific microsatellite marker loci. Fixation indices (FST), heterozygosity and Nei's genetic distance measures were computed from allele frequency data for each of the bulls. Molecular and phenotypic data were used to compute tri-distance matrices for the ten bulls and correlated using Mantel's test in GenAIEx 6.5. The study revealed extensive heterogeneity in semen traits, heterozygosity and FST values among the bulls. Large pairwise phenotypic and genetic distances were also observed. Correlation between pairwise genetic distances and phenotypic distances was significant and highly positive for sperm viability (r = .61, p < .001) and moderately positive for sperm motility (r = .40–42, p < .05) variables. For sperm morphology, ejaculate volume and sperm concentration, correlation with genetic distances was positive, low and not significantly different from zero (p > .05). A tendency for a triangular-shaped relationship between genetic and phenotypic distances for post-thaw motility and viability traits was also observed. Accordingly, association with neutral genetic diversity was absent for semen production traits and moderate to highly positive for sperm cryosurvival traits. Given these findings, conservation decisions based on neutral genetic diversity may capture variation in some adaptive traits, but not others.  相似文献   

17.
18.
The light‐vented bulbul Pycnonotus sinensis is a small resident passerine that is found widely in central and south China, North Vietnam, and some East Asian islands, including Hainan, Taiwan and the Ryukyu Islands. Its subspecies status has been under considerable debate. A total of 10 subspecies have been proposed, but only 4 are widely recognized, including 1 continental taxon, P. s. sinensis, and 3 insular subspecies: P. s. hainanus, P. s. formosae and P. s. orii. Two mitochondrial DNA genes and 9 microsatellite loci were used to investigate the genetic divergence of this species, to identify the evolutionary status of 2 insular subspecies (P. s. hainanus and P. s. formosae) and to uncover probable historical causes that shaped them. The results reveal that P. s. formosae has diverged significantly from the other 2 subspecies because of a substantial time of isolation for populations on Taiwan Island. There was no significant genetic differentiation between P. s. sinensis and P. s. hainanus. The notable morphological difference in P. s. hainanus might be attributed to a rapid, recent adaptation to the tropical environment of Hainan Island. The low genetic divergence between P. s. sinensis and P. s. hainanus might result from a recent divergence or gene flow between them. Two insular subspecies of light‐vented bulbul populations might have diverged recently from their continental relatives through a complex evolution history owing to island isolation, ecological isolation, and possibly even hybridization. Both P. s. hainanus and P. s. formosae should be considered important conservation units because of their morphological and genetic distinctiveness.  相似文献   

19.
Magnetic resonance imaging (MRI) and computed tomography (CT) scans were used to analyse, respectively, the soft tissues and the bones of the heads of four common dolphins and three harbour porpoises. This imaging study was completed by an examination of anatomical sections performed on two odontocete heads (a subadult common dolphin and a subadult harbour porpoise). The three complementary approaches allowed to illustrate anatomical differences in the echolocation systems of the common dolphin and the harbour porpoise. We captured images confirming strong differences of symmetry of the melon and of its connexions to the MLDB (Monkeys Lips/Dorsal Bursae) between the common dolphin and the harbour porpoise. The melon of the common dolphin is asymmetrically directly connected to the right bursae cantantes at its right side, whereas the melon of the harbour porpoise is symmetrical, and separated from the two bursae cantantes by a set of connective tissues. Another striking difference comes from the bursae cantantes themselves, less deeply located in the head of the common dolphin than in the harbour porpoise.  相似文献   

20.
Morphological information on the reproductive system allows the understanding of ecological and behavioural aspects of different species as well as supports the development of conservational strategies. Unfortunately, for many species, not enough relevant and precise information is available. In the present study, we describe for the first time the macroscopic and histological aspects of female genital organs and external female genitalia of Saimiri macrodon, Saimiri cassiquiarensis and Saimiri vanzolinii. We perform a comparison between these three peripatric species and investigate the possibility of their reproductive morphology to act as a factor of reproductive isolation. We have found that these species share many similarities in most of the analysed organs. Although some important differences were identified that may play an important role in the evolution of the components of the reproductive system of these species, those differences are not enough to compose a mechanism of reproductive isolation for these three species of Saimiri. The results of this study may be used to support the development of biotechnological approaches of reproduction and strategies for conservation programmes and management of threatened species of this genus, particularly S. vanzolinii, considered to be a vulnerable species to extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号