首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field experiments were conducted on a clay soil in entisol to determine the effect of different tillage tools on soil properties, emergence rate index and yield of wheat in Middle Anatolia. There were four different tillage treatments: mouldboard ploughing followed by disc harrowing twice; rotary tillage twice; stubble cultivator followed by a disc harrowing; heavy globe disc twice. The smallest aggregate mean weight diameters and surface roughness were produced by rotary tillage. Decreasing mean weight diameter decreased the surface roughness. There was a significant (P < 0.01) effect of the four different tillage systems on moisture content, bulk density, penetration resistance, aggregate mean weight diameter and surface roughness. Tillage systems had a significant effect on emergence rate and yield of wheat. Emergence rate index and yield of wheat varied from 15.24 to 18.88 and from 3065 kg ha−1 to 4265 kg ha−1, respectively. The greatest emergence rate index and yield were obtained with stubble cultivator followed by disc harrowing treatment.  相似文献   

2.
A field study was performed for two consecutive seasons to evaluate the effect of polyacrylamide (PAM), tillage systems and particle size on soil physical properties and wheat grain yield. The PAM rates were 0, 10 and 20 kg ha?1 while the tillage treatments included no-tillage (NT), moldboard plowing (CT1), and chisel plowing (CT2). Soil fine particles size of two locations were A (25.2 silt + clay) and B (38.5 silt + clay). Location B reported higher organic matter and total porosity while lower in bulk density. The CT1 and NT treatments denoted better soil organic matter percentage. The CT1 presented maximum infiltration rate compared to other tillage systems. No tillage showed better soil water contents while the minimum was in CT1 of location A and CT2 of location B. Increasing the PAM rate increased total porosity, infiltration rate and soil water content while decreased soil bulk density. Possibly, the presence of compacted layer in location A hindered the effect of PAM. At location B, the CT2 with PAM of 20 kg ha?1 had the highest grain yield compared to other tillage systems. The PAM is beneficial for soil and water conservation and can be used in agriculture.  相似文献   

3.
In southern Queensland, crown rot caused by Fusarium graminearum Group 1 and common root rot caused by Bipolaris sorokiniana are common soilborne diseases of wheat and barley. The incidence of these diseases was measured in the susceptible wheat (Triticum aestivum L.) cultivar, Hartog which was grown under no tillage, reduced tillage (two tillage operations plus herbicides) and where stubble was retained or removed by burning (1984–1986) or physically removed (1987–1993). Primary tillage was with blade, disc or chisel implements. The level of crown rot and common root rot was higher where stubble was retained than where it was removed. There was a significant interaction in incidence of crown rot between stubble management and some types of tillage. Where there was no tillage, incidence of crown rot was significantly higher where stubble was retained (32.2%) than where it was removed (4.7%) whereas under disc tillage, there was no significant difference in disease level between stubble treatments (12–17%). Incidence of crown rot was not affected by the type of tillage employed. The incidence of deadheads (heads without grain) caused by crown rot was lowest in the no tillage plots (4.3%) and highest in the reduced (19.3%) and conventional (12.2%) disc tillage stubble retained treatments. Available soil water (depth of 1.2 m) at sowing and anthesis was lowest in the conventional disc stubble retained plots and highest in the no tillage stubble retained plots. It is hypothesised that the high levels of deadheads were due to moderate to high levels of disease and low available soil water at planting and anthesis. Although incidence of crown rot was high under no tillage, incidence of deadheads was lower than in other treatments due to the higher availability of soil water. Severity of common root rot was lower in stubble removed, than in stubble retained, treatments and also lower in no tillage than in any of the other tillage treatments.  相似文献   

4.
Yield and nitrogen (N)-content in wheat was studied under applied treatments of crop residues (legume vs. cereal), tillage depths (deep vs. shallow) and N-fertilizer rates (0, 40, 80, 120 and 160 kg ha?1) at wheat-maize cropping systems. Experiments were conducted at Agronomy Research farm, the University of Agriculture, Peshawar Pakistan, during winter season 2009–2010 and 2010–2011 crop growth seasons. Well-chopped crop residues (5 t ha?1) on dry matter basis of legume (Vigna unguicuata) and cereal (Zea mays) were applied to soil and subsequently plowed with mold-board plow as deep tillage (DT) and cultivator as shallow tillage (ST) treatment (main plot treatments). A month after residue and tillage application, seedbed was prepared and wheat was planted with drill in rows 25 cm apart in middle of November each year. Phosphorus and potassium were applied uniformly 80 and 40 kg ha?1, respectively during seedbed preparation. N-fertilizer rates were applied in two splits: half 15 days after sowing (DAS) and other half 45 DAS (sub-plot treatment). Uniform cultural practices were applied during crop growth and development. Legumes residues amendments showed better responses than cereal but lower than no-residue treatment for N-content in leaf blade before anthesis (LBA), after anthesis (LAA), straw N-content (SNC), grain N-content (GNC), grain N-uptake (GNU), crop N-removal (CNR), recovery efficiency of added nitrogen (REAN), N-use efficiency (NUE), grain N-uptake (GNU) and grain yield. Likewise, shallow tillage proved better than deep tillage system for LBA, LAA, SNC, GNC, GNU, CNR, REAN, NUE, GNU and grain yield. Increased N-fertilizer from control onwards showed significant (p > 0.05) increments in LBA, LAA, SNC, GNC, GNU, CNR, N-uptake and grain yield. Treatments interaction was also found significant (p > 0.05). Study suggested, regardless of the given treatments, GNU and grain yield were in strong positive linear relationship. Legume residue incorporated shallow out yielded GNU and NUE of spring wheat in wheat-maize cropping system. It is concluded that LR and ST with 120 kg N ha?1 ensures production of good wheat quantity and quality.  相似文献   

5.
Leaf spotting diseases of wheat (Triticum spp.) are widespread in western Canada. Because these diseases are residue-borne, they are expected to be affected by changes in the quality and quantity of crop residues. A field study was conducted to determine the effects of summerfallow and tillage practices on leaf spotting diseases of spring wheat (T. aestivum L.) in the semiarid area of the western Canadian prairies. Leaf spot severity was greater in wheat grown after fallow than in continuous wheat when these systems were managed using either cultivator- or zero-tillage methods. Disease severity in wheat after fallow was similar in all three tillage methods: cultivator-, reduced-, and zero-tillage. Pyrenophora tritici-repentis (Died.) Drechs. (tan spot) was the pathogen most commonly isolated from lesioned leaf tissue. Crop residues collected in the spring of 1995 and 1996 from cultivator- and zero-tillage treatments were examined for the presence and density of fungal infective structures. The density of mature and immature structures, especially of P. tritici-repentis, was greater in residues from two years previous than in those from the previous growing season. Most of the residues in the continuous wheat system were from the previous crop. The apparent lower amount of initial inoculum available in a continuous wheat system than in wheat grown after fallow would explain the higher leaf spotting severity in the latter system. In addition, lower levels of infective structures on residues were found in wheat after fallow in zero- rather than in cultivator-tillage. However, similar disease levels in cultivator- and zero-tillage treatments suggest that the more favourable microclimate for disease development in a zero-tillage system might have compensated for the lower amounts of residue-borne inoculum.  相似文献   

6.
A water crisis that occurs in Sudan during winter due to the competition for water to irrigate cotton (Gossipium barbadense L.) and wheat (Triticum aestivum L.) and to produce hydroelectric power necessitates a search for efficient means and ways of conserving water. Tillage is one of the methods for soil moisture conservation. Experiments were conducted in Gezira, Sudan on a Vertisol to determine if tillage practices and the lengthening of irrigation interval beyond two weeks during the period October–February would conserve irrigation water and maintain cotton yields. The residual effects of cotton tillage systems on the following wheat were also evaluated. The cotton experiment was conducted in split plot design with three replications. Three irrigation treatments of two-, three- and four-week intervals during the period October–February were used as main plots. Six tillage treatments were used as split plots (combinations of disc ploughing, cultivator and ridging). Treatments were compared by measuring cotton plant height and yields. Significant decreases in cotton yield were found between the four-week, and the two- and three-week irrigation intervals. However, no significant differences in cotton yields between the two- and the three-week irrigation intervals were detected. The lengthening of irrigation interval from two to three weeks during the period of irrigation water crisis (October–February) would result in conservation of about 3000 m3 ha−1 of irrigation water. This corresponds to about 600 000 000 m3 of water for the cotton irrigated area in the Sudan. Therefore, the three-week irrigation interval during the period October–February has the potential for water conservation for cotton production in Gezira Vertisols, with the use of economical shallow tillage. The tested deep and shallow cotton tillage treatments did not have residual effects on the following wheat crop.  相似文献   

7.
Soil compaction caused by random traffic or repetitive tillage has been shown to reduce water use efficiency, and thus crop yield due to reduced porosity, decreased water infiltration and availability of nutrients. Conservation tillage coupled with subsoiling in northern China is widely believed to reduce soil compaction, which was created after many years of no-till. However, limited research has been conducted on the most effective time interval for subsoiling, under conservation tillage. Data from conservation tillage demonstration sites operating for 10 years in northern China were used to conduct a comparative study of subsoiling interval under conservation tillage. Three modes of traditional tillage, subsoiling with soil cover and no-till with soil cover were compared using 10 years of soil bulk density, water content, yield and water use efficiency data. Cost benefit analysis was conducted on subsoiling time interval under conservation tillage. Yield and power consumption were assessed by based on the use of a single pass combine subsoiler and planter. Annual subsoiling was effective in reducing bulk density by only 4.9% compared with no-till treatments on the silty loam soils of the Loess plateau, but provided no extra benefit in terms of soil water loss, yield increase or water utilization. With the exception of bulk density, no-till and subsoiling with cover were vastly superior in increasing water use (+10.5%) efficiency and yield (+12.9%) compared to traditional tillage methods. Four years of no-till followed by one subsoiling reduced mechanical inputs by 62%, providing an economic benefit of 49% for maize and 209% for wheat production compared to traditional tillage. Annual subsoiling reduced inputs by 25% with an increased economic benefit of 23% for maize and 135% for wheat production. Yield and power consumption was improved by 5% and 20%, respectively, by combining subsoiling with the planting operation in one pass compared with multipass operations of subsoiling and planting. A key conclusion from this is that annual subsoiling in dryland areas of northern China is uneconomical and unwarranted. Four years of no-till operations followed by 1 year subsoiling provided some relief from accumulated soil compaction. However, minimum soil disturbance and maximum soil cover are key elements of no-till for saving water and improving yields. Improved yields and reduced farm power consumption could provide a significant base on which to promote combined planter and subsoiling operations throughout northern China. Further research is required to develop a better understanding of the linkages between conservation tillage, soil quality and yield, aimed at designing most appropriate conservation tillage schemes.  相似文献   

8.
出苗率及出苗整齐度在很大程度上决定了作物生长状况和产量丰欠,针对不同耕作措施结合秸秆还田对绿洲灌区小麦出苗及群体动态影响研究薄弱问题,研究不同秸秆还田与耕作方式对小麦出苗与产量的影响,以及二者的相关关系,对于优化耕作措施具有重要指导意义。2014—2015年,在甘肃河西绿洲灌区,通过田间定位试验,研究了不同秸秆还田和耕作措施[少耕25~30 cm高茬收割秸秆立茬还田(NTSS)、少耕25~30 cm高茬收割秸秆覆盖还田(NTS)、翻耕25~30 cm高茬收割秸秆还田(TS)和不留茬翻耕(CT)]对小麦出苗状况及产量、产量构成因素的影响,以期为优化试区小麦栽培技术提供依据。结果显示,与CT相比,NTSS、NTS降低了小麦出苗率以及出苗整齐度,TS则提高了小麦出苗率以及出苗整齐度。NTSS、NTS较CT的分蘖数分别高7.4%~10.5%、14.6%~19.1%,分蘖成穗率分别高13.5%~20.1%、33.0%~34.7%,有效穗数分别高7.5%~9.3%、10.3%~11.2%,穗粒数分别高15.7%~16.1%、18.5%~22.6%,千粒重分别高7.2%~8.9%、13.9%~14.2%,但TS与CT在以上指标间没有显著差异。NTSS、NTS与CT相比较,分别增产16.6%~17.4%、18.6%~21.4%,以NTS增产幅度较大,比TS高10.3%~11.0%。穗数和穗粒数的增加是少耕秸秆还田获得高产的主要原因,出苗率及整齐度对产量影响不显著。同时NTSS和NTS均获得较高的收获指数,提高比例分别为9.4%~10.7%与10.5%~11.1%,说明少耕秸秆还田提高籽粒产量的另一原因是提高了光合产物向籽粒中的转化。本研究表明,少耕秸秆还田是适用于试区小麦高产的理想耕作措施。  相似文献   

9.
The long-term effects of two different tillage systems, conventional (CT) and no tillage (NT), were studied in an olive orchard in Santaella (Southern Spain) for 15 years. In both tillage systems, two distinct zones developed in the orchard in relation to soil physical properties; one underneath the tree canopy, and the other in the rows between trees. Surface soil organic matter content, bulk density, cone index, macroscopic capillary length and hydraulic conductivity showed significant differences between tillage systems and positions. After 15 years, the NT treatment achieved greater bulk density and cone index values than CT. This compaction reduced the infiltration rate of NT soil with respect to CT, particularly in the rows between trees. Despite that reduction, the NT soil retained a moderate infiltration potential. That may be explained by the high infiltration rates and macroporosity of the zone beneath the tree, the temporary effects of tillage on infiltration and probably by the self-repair of soil structure in the Vertisol studied. Yield was not affected by tillage except in one year with very low precipitation, where NT significantly yielded more than CT. The reduction in infiltration in NT must have been compensated by unknown factors that improve the tree water supply in drought years.  相似文献   

10.
Information on N cycling in dryland crops and soils as influenced by long-term tillage and cropping sequence is needed to quantify soil N sequestration, mineralization, and N balance to reduce N fertilization rate and N losses through soil processes. The 21-yr effects of the combinations of tillage and cropping sequences was evaluated on dryland crop grain and biomass (stems + leaves) N, soil surface residue N, soil N fractions, and N balance at the 0–20 cm depth in Dooley sandy loam (fine-loamy, mixed, frigid, Typic Argiboroll) in eastern Montana, USA. Treatments were no-tilled continuous spring wheat (Triticum aestivum L.) (NTCW), spring-tilled continuous spring wheat (STCW), fall- and spring-tilled continuous spring wheat (FSTCW), fall- and spring-tilled spring wheat–barley (Hordeum vulgare L.) (1984–1999) followed by spring wheat–pea (Pisum sativum L.) (2000–2004) (FSTW-B/P), and spring-tilled spring wheat–fallow (STW-F). Nitrogen fractions were soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), potential N mineralization (PNM), NH4-N, and NO3-N. Annualized crop grain and biomass N varied with treatments and years and mean grain and biomass N from 1984 to 2004 were 14.3–21.2 kg N ha−1 greater in NTCW, STCW, FSTCW, and FSTW-B/P than in STW-F. Soil surface residue N was 9.1–15.2 kg N ha−1 greater in other treatments than in STW-F in 2004. The STN at 0–20 cm was 0.39–0.96 Mg N ha−1, PON 0.10–0.30 Mg N ha−1, and PNM 4.6–9.4 kg N ha−1 greater in other treatments than in STW-F. At 0–5 cm, STN, PON, and MBN were greater in STCW than in FSTW-B/P and STW-F. At 5–20 cm, STN and PON were greater in NTCW and STCW than in STW-F, PNM and MBN were greater in STCW than in NTCW and STW-F, and NO3-N was greater in FSTW-B/P than in NTCW and FSTCW. Estimated N loss through leaching, volatilization, or denitrification at 0–20 cm depth increased with increasing tillage frequency or greater with fallow than with continuous cropping and ranged from 9 kg N ha−1 yr−1 in NTCW to 46 kg N ha−1 yr−1 in STW-F. Long-term no-till or spring till with continuous cropping increased dryland crop grain and biomass N, soil surface residue N, N storage, and potential N mineralization, and reduced N loss compared with the conventional system, such as STW-F, at the surface 20 cm layer. Greater tillage frequency, followed by pea inclusion in the last 5 out of 21 yr in FSTW-B/P, however, increased N availability at the subsurface layer in 2004.  相似文献   

11.
In Central Aragon, winter cereal is sown in the autumn (November–December), commonly after a 16–18 months fallow period aimed at conserving soil water. This paper uses the Simple Soil–Plant–Atmosphere Transfer (SiSPAT) model, in conjunction with field data, to study the effect of long fallowing on the soil water balance under three tillage management systems (conventional tillage, CT; reduced tillage, RT; and no-tillage, NT). This was on the assumption that soil properties would remain unchanged during the entire fallow season. Once the model was validated with data obtained before primary tillage implementation, the differences between simulated and observed soil water losses for the CT and RT treatments could be interpreted as the direct effect of the soil tillage system. The model was calibrated and validated in a long-term tillage experiment using data from three contrasting long-fallow seasons over the period 1999–2002, where special attention was paid to predicting soil hydraulic properties in the pre-tillage conditions. The capacity of the model to simulate the soil water balance and its components over long fallowing was demonstrated. Both the fallow rainfall pattern and the tillage management system affected the soil water budget and components predicted by the model. The model predicted that about 81% of fallow seasonal rainfall is lost by evaporation in long-fallow periods with both a dry autumn in the first year of fallow and a rainfall above normal in spring. Whereas, when the fallow season is characterised by a wet autumn during the first year of fallow the model predicted a decrease in soil water evaporation and an increase in water storage and deep drainage components. In this case, the predicted water lost by evaporation was higher under NT (64%) than under RT (56%) and CT (44%). The comparison between measured and simulated soil water loss showed that the practice of tillage decreased soil water conservation in the short term. The long-term analysis of the soil water balance showed that, in fallow periods with a wet autumn during the first year of fallow, the soil water loss measured under CT and RT was moderately greater than that predicted by the model.  相似文献   

12.
Resource use in crop production is analysed with reference to the concept of potential yield, based on the relationships between the balances of energy and mass in plant growth. Three models of the production process are proposed: a bio-physical model which looks at the conversion of energy and mass into a potential yield of biomass, a business model which assesses the economics of the conversion process and a feed-back model which points the way towards on-line optimisation. The impacts of environmental, nutritional and physiological constraints on potential yield are discussed. The business model emphasises the importance of scale of operation in reducing the costs of crop production by spreading the fixed costs of machinery. The contributions of additional energy inputs in the form of fertilisers, agrichemicals and machinery in improving the overall efficiency with which solar energy is converted into biomass, together with the pivotal role of nitrogenous fertiliser in increasing yields, are examined. Nitrogenous fertilisers underpin high yields and account for about half the energy supplied by the farmer to a cereal crop. Tillage helps in ameliorating the environmental constraints on crop growth. The implications of sustainability, and climate change, for resource use in crop production are discussed briefly.  相似文献   

13.
Tillage translocation and tillage erosion were measured throughout the topographically complex landscapes of two fields in the upland region of southwestern Ontario. Translocation of soil by tillage was measured by labelling plots of soil with chloride and measuring the tracer's forward displacement in response to single passes by four tillage implements (mouldboard plough, chisel plough, tandem disc and field cultivator). The change in translocation within the landscape was used to measure tillage erosion. All four implements were erosive. A relationship between tillage translocation and slope gradient was observed; however, the variability in translocation could not be explained by slope gradient alone. Slope curvature was responsible for some translocation through the planning action of tillage implements. Tillage depth and speed were subject to considerable discontinuous and inconsistent manipulation by the operator in response to changing topographic and soil conditions. Tillage speed decreased by as much as 60% during upslope tillage and increased by as much as 30% during downslope tillage, relative to that on level ground. Tillage depth decreased by as much as 20% and increased by as much as 30%, relative to that on level ground. This manipulation is typical for tillage in complex landscapes and was presumed largely responsible for the variability in the results. The manipulation of tillage depth and speed are affected by the tractor-implement match and the responsiveness of the tillage operator.  相似文献   

14.
华北典型区域土壤耕作方式对土壤特性和作物产量的影响   总被引:5,自引:0,他引:5  
华北平原是我国重要的小麦玉米种植区,长期土壤旋耕免耕和秸秆全量还田带来耕层变浅、犁底层变厚和上移、土壤养分表聚等现象,通过耕作方式改变,解决上述问题对维持区域粮食生产有重要意义。试验以冬小麦-夏玉米轮作系统为研究对象,分别在代表华北平原高产区的栾城试验区和代表中低产区的南皮试验区进行,设置冬小麦播种前进行土壤深耕、深松、窄深松3种处理,以生产上常用的旋耕为对照。所有处理夏玉米季均采用土壤免耕播种,测定项目包括土壤容重、作物根系、作物产量和水分利用效率。结果表明,不同耕作方式对土壤特性和作物产量的影响具有区域差异。南皮试验区土壤深耕(松)显著地(P0.05)提高了作物产量,深耕、深松和窄深松处理的冬小麦产量比旋耕分别增加16.5%、19.3%和13.1%,夏玉米产量分别增加17.3%、16.2%和21.9%,周年产量分别增加16.9%、17.6%和17.8%;深耕、深松和窄深松处理间作物产量差异不显著。栾城试验区冬小麦、夏玉米产量和周年产量各处理之间差异不显著。土壤深耕、深松、窄深松和旋耕均能降低0~20 cm土层土壤紧实度和土壤容重。冬小麦播种后,与土壤耕作前比较,土壤深耕、深松和旋耕处理土壤紧实度南皮试验区分别平均降低71.6%和68.2%,栾城试验区分别降低88.8%和?7.7%,常用的旋耕模式在栾城试区没有降低土壤紧实度。小麦收获时不同耕作方式0~40cm土层的土壤容重均低于土壤耕作前的土壤容重,至夏玉米收获时不同耕作处理的土壤容重与耕作前基本一致,不同耕作处理对土壤容重的影响差异不显著。在南皮试验区, 3种耕作方式与旋耕相比,均显著提高了冬小麦和夏玉米水分利用效率;在栾城试验区,各处理冬小麦和夏玉米水分利用效率差异不显著。本研究结果显示在华北平原高产区连续实施土壤旋耕模式没有影响作物产量,而在中低产区实施土壤深耕或者深松模式更利于作物产量提高。  相似文献   

15.
不同耕作方式对旱作区冬小麦生产和产量的影响   总被引:19,自引:10,他引:19  
为了筛选出适宜旱作区推广的耕作技术,在旱作大田条件下,设置一次深翻、免耕覆盖、深松覆盖、传统耕作四种耕作方式,研究了不同耕作方式下花后土壤水分和养分状况、小麦旗叶叶绿素含量、小麦旗叶净光合速率和小麦籽粒灌浆速率及产量。结果表明,免耕覆盖、深松覆盖开花期和灌浆期0~40 cm土层土壤水分含量分别比传统耕作提高了4.13%、6.23%和5.50%、9.27%,0~40 cm土层土壤碱解氮、速效磷和速效钾含量均显著高于传统耕作,为小麦开花后生长发育提供了良好的环境,从而提高了小麦灌浆中后期旗叶叶绿素含量和净光合速率,促进花后干物质积累及干物质向籽粒转运,进而提高了籽粒灌浆速率,使得籽粒产量显著提高。  相似文献   

16.
Soil tillage practices affect the soil microbial community in various ways, with possible consequences for nitrogen (N) losses, plant growth and soil organic carbon (C) sequestration. As microbes affect soil organic matter (SOM) dynamics largely through their activity, their impact may not be deduced from biomass measurements alone. Moreover, residual microbial tissue is thought to facilitate SOM stabilization, and to provide a long term integrated measure of effects on the microorganisms. In this study, we therefore compared the effect of reduced (RT) and conventional tillage (CT) on the biomass, growth rate and residues of the major microbial decomposer groups fungi and bacteria. Soil samples were collected at two depths (0-5 cm and 5-20 cm) from plots in an Irish winter wheat field that were exposed to either conventional or shallow non-inversion tillage for 7 growing seasons. Total soil fungal and bacterial biomasses were estimated using epifluorescence microscopy. To separate between biomass of saprophytic fungi and arbuscular mycorrhizae, samples were analyzed for ergosterol and phospholipid fatty acid (PLFA) biomarkers. Growth rates of saprophytic fungi were determined by [14C]acetate-in-ergosterol incorporation, whereas bacterial growth rates were determined by the incorporation of 3H-leucine in bacterial proteins. Finally, soil contents of fungal and bacterial residues were estimated by quantifying microbial derived amino sugars. Reduced tillage increased the total biomass of both bacteria and fungi in the 0-5 cm soil layer to a similar extent. Both ergosterol and PLFA analyses indicated that RT increased biomass of saprophytic fungi in the 0-5 cm soil layer. In contrast, RT increased the biomass of arbuscular mycorrhizae as well as its contribution to the total fungal biomass across the whole plough layer. Growth rates of both saprotrophic fungi and bacteria on the other hand were not affected by soil tillage, possibly indicating a decreased turnover rate of soil microbial biomass under RT. Moreover, RT did not affect the proportion of microbial residues that were derived from fungi. In summary, our results suggest that RT can promote soil C storage without increasing the role of saprophytic fungi in SOM dynamics relative to that of bacteria.  相似文献   

17.
To date, tillage erosion experiments in Canada have only been conducted on conventionally tilled corn-based production systems in Ontario and conventionally tilled cereal-based production in Manitoba. Estimates and assumptions have been made for all other production systems. Therefore, the objective of this study was to evaluate the erosivity of primary and secondary tillage operations within conventional and conservation potato production systems used in Atlantic Canada. Regression analysis determined that a direct relationship exists between slope gradient and both the mean displacement distance of the tilled layer (TL) and the mass of translocated soil (TM) for the chisel plough (CP), mouldboard plough (MP) and offset disc (OD), but not for the vibrashank (VS). Overall, the potential for tillage erosion of the MP, CP, and OD was similar (1.8–1.9 kg m−1 %−1 pass−1) and larger than that of the VS (0.3 kg m−1 %−1 pass−1). The regression coefficients for each implement were improved after including slope curvature, and we recommend that curvature be included in any future tillage erosion modelling. Our results show that both residue management to control wind and water erosion and soil movement to control tillage erosion must be considered when choosing implements and developing best management practices with regards to reducing the negative impacts of total soil erosion on potato production systems in Atlantic Canada.  相似文献   

18.
In Canada, the negative impacts of tillage erosion is a growing concern, especially in regions where highly erosive cropping and tillage systems are practiced on highly erodible, topographically complex landscapes. To date, tillage erosion studies have focused primarily on the movement of soil by primary and secondary tillage operations. However, in potato (Solanum tuberosum L.) production there is often considerable soil disturbance that occurs during “tertiary” field operations conducted during the growing season. Therefore, the objective of this project was to generate tillage translocation and erosivity values for implements common to planting, hilling and harvesting operations within intensive potato production systems in Atlantic Canada. Our results show that tertiary tillage operations result in significant soil displacement and can be equally as erosive as primary and secondary tillage operations. Both the planting, cultivating and hilling (PCH) sequence and the harvester moved soil extremely large distances (up to 23.6 and 6.0 m, respectively). In fact, the mean translocated distance of the tilled layer (TL) and the mass of translocated soil (TM) of the PCH sequence (0.42 m and 115.9 kg m−1, respectively) and the harvester (0.55 m and 71.7 kg m−1, respectively) are larger than those reported previously for primary and secondary tillage operations in New Brunswick. In addition, the net downslope movement of soil for the PCH sequence and the harvester was approximately 36 and 26 kg m−1, respectively, suggesting that both tertiary tillage operations have the potential to be erosive. A direct relationship was observed between both TL and TM and slope gradient for the PCH sequence, but similar relationships were not found for the harvester, even though the harvester moved approximately 30 % more soil downslope than upslope. Linear regression functions were generally improved after including slope curvature in the model, but these results were not always significant. Soil movement by the PCH sequence and harvester were also largely influenced by tillage speed and tillage depth, and future research is needed under controlled conditions to determine whether it is changing topography or the variability in tillage speed and depth across the landscape in response to changing topography that is driving tillage erosion within mechanized agricultural systems. It is clear that tertiary tillage operations must be considered when developing best management practices to improve soil conservation strategies for potato production systems in Canada and worldwide.  相似文献   

19.
This study was conducted to determine a tilth index from tillage induced soil physical properties and grain yield to optimize tillage in rice–wheat system. The experiment was conducted in a silty clay loam (Aquic hapludoll) associated with a shallow water table fluctuating between 0.02 and 0.96 m from the surface. Tillage treatments for rice were puddling by four passes of rotary puddler (PR), reduced puddling (ReP), conventional puddling (CP) and direct seeding without puddling (DSWP) in four replications. Tillage treatments for wheat were zero tillage (ZT) and conventional tillage (CT) superimposed over the plots of rice tillage treatments. Measurements were made of puddling index and specific volume (only in the rice season), bulk density, saturated hydraulic conductivity, infiltration rate, plasticity index, porosity and organic carbon in the rice and wheat seasons. Rice yield in the PR plots was highest and statistically equal to that in the ReP plots but wheat yield was highest in the DSWP plots under ZT condition and was statistically equal to that in the ReP plots.Tilth index (TI) was determined in two ways: one by the model suggested by Singh et al. [Trans. ASAE 35 (6) (1992) 1777] and the second by a proposed regression model. The proposed regression model utilizes soil physical properties having significant influence on crop yield. As per the Singh et al. model, wheat yield increased linearly with increasing TI from 0.75 to 0.89 but rice yield decreased with increasing TI from 0.67 to 0.81. Both TI and its relation with rice yield were contrary to their observations. The proposed regression model showed a value of TI in the range of 0.74–0.87 for rice soils and 0.86–1.0 for wheat soils as indicators of TI for optimum yields of rice and wheat. A high TI corresponds to low tillage both for rice and wheat. The optimum yield with minimum tillage operations coincided with TI obtained in ReP plots of rice and in ZT plots of wheat under ReP conditions. Results thus show that the quality of soil puddle obtained by half the efforts in PR and CP was sufficient for optimum yields of rice. Similarly, wheat sowing by zero-till drill in such a reduced puddling plots of rice was sufficient for optimum yields of wheat in Tarai soils associated with shallow water tables. The proposed regression model is simple and compatible to use in the existing crop growth models, such as in DSSAT 3.5, with suitable alterations.  相似文献   

20.
Most of the tillage erosion studies have focused on the effect of tractor-plough tillage on soil translocation and soil loss. Only recently, have a few studies contributed to the understanding of tillage erosion by manual tillage. Furthermore, little is known about the impact of tillage erosion in hilly areas of the humid sub-tropics. This study on tillage erosion by hoeing was conducted on a purple soil (Regosols) of the steep land, in Jianyang County, Sichuan Province, southwestern China (30°24′N and 104°35′E) using the physical tracer method.

The effects of hoeing tillage on soil translocation on hillslopes are quite evident. The tillage transport coefficients were 26–38 kg m−1 per tillage pass and 121–175 kg m−1 per tillage pass respectively for k3- and k4-values. Given that there was a typical downslope parcel length of 15 m and two times of tillage per year in this area, the tillage erosion rates on the 4–43% hillslopes reached 48–151 Mg ha−1 per year. The downslope soil translocation is closely related to slope gradient. Lateral soil translocation by such tillage is also obvious though it is lower than downslope soil translocation. Strong downslope translocation accounts for thin soil layers and the exposure of parent materials/rocks at the ridge tops and on convexities in the hilly areas. Deterioration in soil quality and therefore reduction in plant productivity due to tillage-induced erosion would be evident at the ridge tops and convex shoulders.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号