首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以果胶为稳定剂的调配型酸乳饮料(AMD)分别贮藏于25℃、35℃、45℃、55℃的恒温箱中,贮藏期为6个月,定期检测其理化指标(离心沉淀率、粘度、pH值、粒径)和感官指标。结果表明酸乳饮料贮藏期离心沉淀率增加、粘度降低、粒径增加,贮藏温度越高,理化指标变化越快。酸乳饮料贮藏期pH值没有发生变化,其他理化指标如离心沉淀率、粘度、粒径和感官质量显著相关。通过动力学和热力学分析,建立了以果胶为稳定剂的酸乳饮料的动力学和热力学稳定性预测模型。  相似文献   

2.
A kinetic study was conducted on the effect of heat pretreatment in the temperature range of 50-85 degrees C at atmospheric pressure and of high hydrostatic pressure pretreatment (100-700 MPa) at four temperatures (10, 25, 40, and 60 degrees C) on the susceptibility of egg white solutions (10% v/v, pH 7.6) to subsequent enzymatic hydrolysis by a mixture of trypsin and alpha-chymotrypsin at 37 degrees C and pH 8.0. Both heat pretreatment at atmospheric pressure and high-pressure pretreatment resulted in an increase in degree of hydrolysis (DH) after 10 min of enzymatic reaction (DH10) of egg white solutions, as measured using the pH-stat method, which could be described by a fractional conversion model (based on an apparent first-order reaction kinetic model). The temperature dependence of the corresponding rate constants could be described by the Arrhenius equation. At elevated pressure, a negative apparent activation energy was obtained, implying an antagonistic effect of pressure and temperature. The pressure dependence of the rate constants could be described by the Eyring equation, and negative activation volumes were observed, which demonstrates the positive effect of pressure on the susceptibility of egg white solutions to subsequent enzymatic hydrolysis.  相似文献   

3.
The reduction of Tempol by ascorbic acid in concentrated sucrose solutions was measured by electron paramagnetic resonance (EPR) at temperatures ranging from 16 to -16 degrees C. This method allowed the determination of the rate constants (k) of this fast reaction, by recording the Tempol reduction as a function of time. The two reactants were initially separated and had to migrate for the reaction to occur. The experimental findings were compared with predicted values according to the equation for diffusion-controlled reaction proposed by Atkins. The experimental reaction rate constants were observed to be lower than the calculated ones. However, the experimental values were found to be controlled by the temperature and viscosity changes of the reaction media, as expected for a diffusion-controlled reaction.  相似文献   

4.
Model systems were used to study the reaction kinetics of vanillin and pentalysine, lysine, glutathione, cysteine, aspartame, or phenylalanine (molar ratio 1:1) in phosphate buffer. The buffer pH was adjusted to the pK(a)(2) of the available alpha-amino group of each amino acid or peptide. Reductions of vanillin followed first-order kinetics at 55, 65, and 75 degrees C in the presence of each of the amino acids or peptides used. The reaction rates were accelerated as the temperature increased. The rate constants were highest for pentalysine followed by lysine, phenylalanine, glutathione/cysteine, and aspartame. The reduction of phenylalanine followed first-order kinetics, whereas the formation of its reaction product followed zero-order kinetics. The activation energy (E(a)) for the reaction ranged from 5.6 to 14.5 kcal/mol.  相似文献   

5.
从常年堆放的腐质豆秆中分离到1组产纤维素酶菌群MO,并在50℃、pH8.0条件下培养,90h时达到最高酶活,活性为1.3611IU。该酶最适反应温度为60℃,pH为7.0,在60℃以下和pH3~8范围内具有良好的热稳定性和pH稳定性。在最适反应条件下,该酶的最高活性可达2.13IU。通过生长动力学研究了菌群内部不同生长阶段pH、酶活和失重率的相互关系,并通过非变性电泳对酶谱进行初步研究,得到7条活性条带,说明MO中具有多种产酶菌株。  相似文献   

6.
基于多升温速率法的典型生物质热动力学分析   总被引:4,自引:3,他引:1  
为研究典型生物质热动力学,判断反应机理,获得反应的动力学速率参数,该文采用热重分析技术对玉米秸秆、小麦秸秆、棉秆、松树木屑、花生壳、甜高粱渣等生物质原料进行了氮气气氛下不同升温速率的热解特性试验研究,利用Friedman法、Flynn-Wall-Ozawa法计算活化能,用Malek法确定最概然机理函数,建立了生物质热分析动力学模型,并讨论了不同生物质的差异性。结果表明:生物质的热解过程均包括3个主要阶段:干燥预热阶段、挥发分析出阶段、碳化阶段。典型生物质活化能随着转化率的增加而增加,在挥发分析出阶段,热解活化能介于144.61~167.34 k J/mol之间;反应动力学机理均符合Avrami-Erofeev函数,但反应级数有一定的差异;指前因子介于26.66~33.97 s-1之间。这为生物质热化学转化过程工艺条件的优化及工程放大提供理论依据。  相似文献   

7.
The effect of combined heat and pressure on the Maillard reaction between bovine serum albumin (BSA) and glucose was investigated. The effects in the range of 60-132 °C and at 0.1-600 MPa on the lysine availability of BSA were investigated at isothermal/isobaric conditions. The kinetic results showed that the protein-sugar conjugation rate increased with increasing temperature, whereas it decreased with increasing pressure. The reaction followed 1.4th order kinetics at most conditions investigated. A mathematical model describing BSA-glucose conjugation kinetics as a function of pressure and temperature is proposed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were used to verify BSA-glucose conjugation and to identify the glucosylated sites. These indicated that the application of combined high pressure and high temperature resulted in significant differences in the progression of the Maillard reaction as compared to heat treatments at atmospheric pressure.  相似文献   

8.
The gluten proteins gliadin and glutenin are important for wheat flour functionality in bread making, where, during baking, they polymerize through a heat-induced sulfhydryl-disulfide exchange mechanism. A model system was used to study the kinetics of this reaction. Thus, gluten was subjected to hydrothermal treatment with the rapid visco analyzer (RVA) with holding temperatures of 80, 90, and 95 degrees C. At these temperatures, omega-gliadin solubility did not change, but the solubilities of alpha- and gamma-gliadin in 60% ethanol decreased according to first-order reaction kinetics. All reaction rate constants increased with temperature. The activation energies for the heat-induced exchange reaction were 110 and 147 kJ/mol for alpha- and gamma-gliadin, respectively. Starch did not influence the reaction rates of the association of alpha- and gamma-gliadin with glutenin. During gluten-starch model bread baking, glutenin oxidized first, and when the internal crumb temperature reached 100 degrees C, alpha- and gamma-gliadin cross-linked to glutenin, again following first-order reaction kinetics. The experimental findings and similarities in temperature conditions and reaction kinetics suggest that the RVA system can be instrumental in understanding gluten behavior in concentrated food systems, such as bread making.  相似文献   

9.
The effect of pH on acrylamide formation and elimination kinetics was studied in an equimolar (0.1 M) asparagine-glucose model system in phosphate or citrate buffer, heated at temperatures between 120 and 200 degrees C. To describe the experimental data, a simplified kinetic model was proposed and kinetic parameters were estimated by combined nonlinear regression and numerical integration on the data obtained under nonisothermal conditions. The model was subsequently validated in a more realistic potato-based matrix with varying pH. By increasing acidity, the reaction rate constants at T(ref) (160 degrees C) for both acrylamide formation and elimination can significantly be reduced, whereas the temperature dependence of both reaction rate constants increases. The introduction of a lyophilized potato matrix (20%) did not affect the acrylamide formation reaction rate constant at reference temperature (160 degrees C) as compared to the asparagine-glucose model system; the elimination rate constant at T(ref), on the contrary, was almost doubled.  相似文献   

10.
为优化水酶法提取山核桃油脂工艺,以山核桃为原料,采用水酶法提取油脂,在单因素试验基础上,采用响应面法研究木瓜蛋白酶用量、酶解时间、pH值、酶解温度和料液比对山核桃油提取率的影响;采用气相色谱-质谱联用技术分析提取油脂的脂肪酸组成,并对比了压榨法、溶剂法和水酶法3种方式对油脂理化性质的影响。结果表明,水酶法提取山核桃油脂工艺的最佳条件为:木瓜蛋白酶量0.17%,酶解时间150 min,pH值6.34,酶解温度54.43℃、料液比1∶5,在此条件下山核桃中油脂提取率为81.32%。采用气相色谱-质谱联用技术对提取油脂的脂肪酸组成进行分析,共测出12种脂肪酸,棕榈酸、油酸、亚油酸、亚麻酸是4种主要脂肪酸,其中饱和脂肪酸(SFA)占7.61%,单不饱和脂肪酸(MUFA)占69.10%,多不饱和脂肪酸(PUFA)占23.29%。对比3种提油方式发现,水酶法是一种较为理想的油脂提取方法。本研究结果为水酶法提取山核桃油脂生产提供了理论依据。  相似文献   

11.
The crude extract of the polyphenol oxidase (PPO) enzyme from the Manzanilla cultivar (Olea europaea pomiformis) was obtained, and its properties were characterized. The browning reaction followed a zero-order kinetic model. Its maximum activity was at pH 6.0. This activity was completely inhibited at a pH below 3.0 regardless of temperature; however, in alkaline conditions, pH inhibition depended on temperature and was observed at values above 9.0 and 11.0 at 8 and 25 degrees C, respectively. The thermodynamic parameters of substrate oxidation depended on pH within the range in which activity was observed. The reaction occurred according to an isokinetic system because pH affected the enzymatic reaction rate but not the energy required to carry out the reaction. In the alkaline pH region, browning was due to a combination of enzymatic and nonenzymatic reactions that occurred in parallel. These results correlated well with the browning behavior observed in intentionally bruised fruits at different temperatures and in different storage solutions. The use of a low temperature ( approximately 8 degrees C) was very effective for preventing browning regardless of the cover solution used.  相似文献   

12.
The kinetics and thermodynamics of the thermal inactivation of polyphenol oxidase (PPO) in an aqueous extract from mushroom Agaricus bisporus (J.E. Lange) Imbach was studied, using pyrocatechol as a substrate. Optimal conditions for enzymatic studies were determined to be pH 7.0 and 35-40 °C. The kinetics of PPO-catalyzed oxidation of pyrocatechol followed the Haldane model with an optimum substrate concentration of 20 mM. Thermal inactivation of PPO was examined in more detail between 50 and 73 °C and in relation to exposure time. Obtained monophasic kinetics were adequately described by a first-order model, with significant inactivation occurring with increasing temperature (less than 10% preserved activity after 6 min at 65 °C). Arrhenius plot determination and calculated thermodynamic parameters suggest that the PPO in aqueous extract from Agaricus bisporus mushroom is a structurally robust yet temperature-sensitive biocatalyst whose inactivation process is mainly entropy-driven.  相似文献   

13.
The stability of catechins in green tea powders is important for product shelf life and delivering health benefits. Most published kinetic studies of catechin degradation have been conducted with dilute solutions and, therefore, are limited in applicability to powder systems. In this study, spray-dried green tea extract powders were stored under various relative humidity (RH) (43-97%) and temperature (25-60 °C) conditions for up to 16 weeks. High-performance liquid chromatography (HPLC) was used to determine catechin contents. Catechin degradation kinetics were affected by RH and temperature, but temperature was the dominant factor. Kinetic models as functions of RH and temperature for the individual 2,3-cis-configured catechins (EGCG, EGC, ECG, and EC) were established. The reaction rate constants of catechin degradation also followed the Williams-Landel-Ferry (WLF) relationship. This study provides a powerful prediction approach for the shelf life of green tea powder and highlights the importance of glass transition in solid state kinetics studies.  相似文献   

14.
低温萃取法提取杏仁油的研究   总被引:4,自引:2,他引:4  
杏仁是油脂和蛋白质含量均高的原料,该研究旨在采用低温法萃取杏仁油,达到既萃取油又减少蛋白质变性程度的目的。首先经过一系列水酶法萃取试验后发现,不同萃取条件对于出油率的影响很大,从中筛选出水酶法萃取的最佳条件为:选取进口(日本Yakult公司)纤维素酶与木瓜蛋白酶的复合酶(1∶1),加酶量3%,作用时间3 h,料液比1∶2,反应温度40℃。初步油质检验表明, 水酶法比浸出法制得的毛油更清亮,酸价略低,磷脂少,油质稳定。然后进行CO2为溶媒的超临界流体萃取试验,通过7因素2水平正交试验并对其结果进行单指标直观分析发现:浸泡时间短的仁用杏出油率较高;粒度越小,出油率越高;以1∶1搀和二氧化硅粉与仁用杏的出油率较1.5∶1的为高;20 MPa压力的出油率较8 MPa的略高等,在此基础上筛选出了最适工艺路线。对上述结果进行了6因素无交互作用方差分析,结果表明仅有浸泡时间对出油率的影响是显著的,浸泡的时间越短出油率越高,其余条件对出油率的影响并不显著,按其影响程度从大到小依次为粒度、二氧化硅与杏仁比例、压力、杏仁种类、流速,这与直观分析极差所示结果一致。最后液相色谱法测定显示萃取出的仁用杏油中90%以上的脂肪酸为不饱和脂肪酸。  相似文献   

15.
A kinetic study was conducted on the effect of heating in the temperature range of 50-92 degrees C, on the susceptibility of ovalbumin and albumen solutions to enzymatic hydrolysis by a mixture of trypsin and alpha-chymotrypsin at 37 degrees C and pH 8.0. Heat treatment resulted in an increase in degree of hydrolysis after 10 min of enzymatic reaction of both ovalbumin and albumen, as measured using the pH-stat method. The time-dependent change in the susceptibility to enzymatic hydrolysis after heat treatment was described by a fractional conversion model (based on an apparent first-order reaction kinetic model). Different end levels of degree of hydrolysis were obtained after heating for a long time at different temperatures, which suggests that the final degree of unfolding of the protein is temperature dependent.  相似文献   

16.
The modification of starch, which is the major component of the polysaccharide fraction of chestnuts (Castanea sativa), has been studied from the point of view of structure and digestibility to understand the modifications induced by cooking and, specifically, by the Maillard reaction. The study was carried out by enzymatic degradation kinetics, monitoring the glucose released upon time, and by solid state (13)C CP MAS NMR, which has the potential of monitoring the solid state phase changes occurring upon chemical modification due to the cooking process. Results obtained reveal that large changes are induced in the macromolecular structure of starchy materials and that these changes are correlated with changes of digestibility in terms of enzymatic degradation resistance. In the system studied, the extension of the Maillard reaction is not such as to exert a significant influence on structure and/or digestibility of chestnut starch.  相似文献   

17.
There continues to be interest in developing solvent‐resistant articles from biobased renewable materials to successfully compete with petrochemical products. It was previously shown that reaction of zein with polyethylenemaleic anhydride (PEMA) provides articles that are solvent resistant. The gelation kinetics for the reaction of PEMA with zein was investigated rheologically to better understand this chemistry. The reaction of the nucleophilic groups on zein with the anhydrides on PEMA is the main cause for the gelation reaction. The gelation time was defined as being the point when the elastic modulus (G′) and viscous modulus (G″) cross. In this work, the rate of reaction, in terms of time to gelation, was studied in N,N‐dimethylformamide solution for which the amount of PEMA, the reaction temperature, and the overall reaction concentration were varied. Exponential relationships were found between the gelation time and % PEMA, temperature, and % solids, as well as between elastic modulus with either % PEMA or % solids. The concentration of PEMA had the largest impact on gelation time, for which going from 2.5% PEMA to 6% PEMA reduced the gelation time from 63,114 to 1,576 s. The temperature dependence of this gelation reaction was well described by an Arrhenius plot with an apparent activation energy of 50.5 kJ/mol.  相似文献   

18.
To test whether the extent of physical aging affected the reaction rate, Maillard reaction kinetics were studied in glassy model preservation systems subjected to two different thermal histories. The glass transition temperature and physical aging of the matrix were determined using differential scanning calorimetry, and the normalized heat capacities were modeled using the Tool-Narayanaswamy-Moynihan approach. Samples prepared using the different thermal histories initially had different degrees of aging, but these were practically indistinguishable after 10 h under the reaction conditions (65 degrees C); the samples underwent rapid structural relaxation at that temperature. The reaction of glucose and lysine in an amorphous trehalose/sucrose matrix was followed using spectrophotometric and chromatographic analysis. A difference in reaction rate could only be distinguished in the rate of consumption of glucose, which was approximately 20% faster in the minimally aged matrix; no significant differences were seen in any other indicator of reaction.  相似文献   

19.
Structured triacylglycerols (ST) from canola oil were produced by enzymatic acidolysis in a packed bed bioreactor. A commercially immobilized 1,3-specific lipase, Lipozyme IM, from Rhizomucormiehei, was the biocatalyst and caprylic acid the acyl donor. Parameters such as substrate flow rate, substrate molar ratio, reaction temperature, and substrate water content were examined. High-performance liquid chromatography was used to monitor the reaction and product yields. The study showed that all of the parameters had effects on the yields of the expected di-incorporated (dicaprylic) ST products. Flow rates below 1 mL/min led to reaction equilibrium, and lower flow rates did not raise the incorporation of caprylic acid and the product yield. Incorporation of caprylic acid and the targeted di-incorporated ST was increased by approximately 20% with temperature increase from 40 to 70 degrees C. Increasing the substrate molar ratio from 1:1 to 7:1 increased the incorporation of caprylic acid and the product yield slightly. Water content in the substrate also had a mild influence on the reaction. Water content at 0.08% added to the substrate gave the lowest incorporation and product yield. The use of solvent in the medium was also studied, and results demonstrated that it did not increase the reaction rate at 55 degrees C when 33% hexane (v/v) was added. The main fatty acids at the sn-2 position of the ST were C(18:1), 54. 7 mol %; C(18:2), 30.7 mol %; and C(18:3), 11.0 mol %.  相似文献   

20.
The effects of heat-induced denaturation and subsequent aggregation of whey protein isolate (WPI) solutions on the rate of enzymatic hydrolysis was investigated. Both heated (60 °C, 15 min; 65 °C, 5 and 15 min; 70 °C, 5 and 15 min, 75 °C, 5 and 15 min; 80 °C, 10 min) and unheated WPI solutions (100 g L(-1) protein) were incubated with a commercial proteolytic enzyme preparation, Corolase PP, until they reached a target degree of hydrolysis (DH) of 5%. WPI solutions on heating were characterized by large aggregate formation, higher viscosity, and surface hydrophobicity and hydrolyzed more rapidly (P < 0.001) than the unheated. The whey proteins exhibited differences in their susceptibility to hydrolysis. Both viscosity and surface hydrophobicity along with insolubility declined as hydrolysis progressed. However, microstructural changes observed by light and confocal laser scanning microscopy (CLSM) provided insights to suggest that aggregate size and porosity may be complementary to denaturation in promoting faster enzymatic hydrolysis. This could be clearly observed in the course of aggregate disintegration, gel network breakdown, and improved solution clarification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号