首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
黄瓜病害图像分割是其病害图像识别及后续工作的重要步骤。为此,基于二维最大熵原理,结合差分进化算法生成图像分割阈值,提出了一种黄瓜病害图像自动分割方法。为了避免实验中出现的偶然性误差,采用30次独立运行的差分进化优化结果平均值作为图像分割的阈值。自然条件下摄取的黄瓜炭疽病叶图像、灰霉病叶图像和霜霉病叶图像的实验测试表明,该方法具有良好的性能。  相似文献   

2.
通过颜色空间的转换,将RGB颜色空间转化为HSI颜色空间,在色度H空间对玉米大斑病图像进行分割。应用模糊聚类分析的方法,确定了图像分割的阈值。对186幅玉米大斑病图像进行分割试验,分割的准确率为97.8%。分析表明,准确的病害图像分割可以为病害的特征值提取和病害的模式识别做好准备。  相似文献   

3.
基于改进人工蜂群模糊聚类的葡萄图像快速分割方法   总被引:1,自引:0,他引:1  
为解决基于模糊C-均值聚类(FCM)的图像分割算法需要预先给定初始聚类数目和聚类中心,易使得算法陷入局部最优的问题,提出一种改进的人工蜂群优化模糊聚类的图像分割方法。该方法在传统的人工蜂群的基础上进行优化,以FCM算法中目标函数为基础改进人工蜂群的适应度函数,运用蜂群行为中的采蜜蜂、跟随蜂和侦察蜂的分工合作来快速求解图像中的最优初始聚类中心,将求出的最优聚类中心输入给FCM进行处理,根据最大隶属度原则对果实图像进行分割。以300幅不同光照情况下拍摄的夏黑葡萄果进行分割试验,试验结果表明,改进的图像分割方法能更快地将水果从自然环境中分割识别出来,单幅图像平均分割时间为0.219 3 s,正确分割率达到90.33%,能满足采摘机器人及水果分级系统对目标图像的实时性要求。  相似文献   

4.
基于显著性检测的黄瓜叶部病害图像分割算法   总被引:1,自引:0,他引:1  
针对复杂背景下黄瓜叶部病害分割精度不高的问题,提出了一种基于显著性检测的黄瓜叶部病害图像分割算法。首先利用超像素将黄瓜图像分块,获取黄瓜叶片的边缘,并提出了一种超像素间权重计算方法和显著种子选取方法;然后通过流形排序计算显著图,对得到的显著图进行阈值分割,得到二值图像;再将二值图像与原图像进行掩码运算,得到黄瓜病害叶片;最后利用超绿特征和数学形态学对病害叶片进行分割得到病斑。对常见的黄瓜病害(白粉病、褐斑病、霜霉病、炭疽病)图像进行测试,结果表明该算法与Otsu算法和k-means算法相比,有效解决了冗余分割问题,错分率均在5%以内,算法平均执行时间均小于4 000 ms,分割效果更加精确,为后续构建黄瓜病害自动识别系统奠定了基础。  相似文献   

5.
综合运用图像处理和模糊识别技术,以黄瓜病害为研究对象,进行黄瓜霜霉病自动识别的试验研究。在自然光条件下拍摄黄瓜叶片图像作为实验数据,为减少干扰因素对病害特征的不利影响,对原始图像做预处理,并把病斑分离出来;在农业植保专家的指导下,分析了黄瓜霜霉病病害的典型特征,从病斑形状、纹理和颜色三方面提取了16个特征参数;对黄瓜霜霉病叶片图像进行有监督的样本训练,得到黄瓜霜霉病害的标准特征模式,再对待测样本进行模糊聚类测试,平均识别准确率为95.28%。试验结果表明,该方法对于黄瓜霜霉病的识别效果较好。  相似文献   

6.
为改善草莓采摘机器视觉系统中果实图像的分割效果,对普通均值聚类的分割方法理论进行分析,针对草莓果实图像的特点将模糊-均值聚类算法引入分割算法,大大改善草莓果实图像的分割效果。  相似文献   

7.
利用图像分析技术对农田对象进行分类,识别农田中不同植物和不同湿度土壤,为定点变量作业提供依据。首先,针对农田各类对象包含颜色信息的不同,采用不同因子实现农田图像的灰度化;然后,利用3种灰度图像对绿色植物、蓝色天空和褐色土壤的识别优势,分析比较阈值法和K均值聚类方法并实现了图像分割;最后,利用模糊聚类法对绿色植物和不同湿度的土壤进一步实现分类。实验结果表明,利用K均值聚类法对绿色植物的平均识别率可达92.5%,对不同湿度的3类土壤的平均识别率达95.6%。因此,本研究能够准确分割和识别不同类型的植物与土壤,为农田对象的识别提供了基础。  相似文献   

8.
为适应农业采摘机器人对葡萄对象快速准确识别的需要,提出了基于HSI色彩空间与以直方图信息为特征的快速模糊C-均值聚类(FFCM)算法相结合的葡萄图像分割方法。该方法以H分量作为葡萄图像聚类分割的处理数据,根据FFCM算法对灰度图像聚类分割。试验对夏黑葡萄果实在自然光、顺光、背光照射环境下拍摄的图像进行分割。结果表明:葡萄图像分割方法能够快速且较好地从复杂自然环境中将葡萄目标分割出来,为葡萄采摘机器人的研制提供了重要参考。  相似文献   

9.
图像分割是图像进行分析处理的首要步骤。为此,针对彩色农作物图像的特征,首先将RGB彩色图像转换到HIS色彩空间,运用均值一方差与粗糙集理论选取适当的初值聚类中心和聚类个数,再进行聚类计算,实现了色彩分量的快速自动化分割,较准确地从背景中提取出了目标物体,为农作物图像的识别与分析、后续计算和处理提供了可靠的基础。实验结果表明,改进的k-均值算法减少了运算量,提高了分类精度和准确性。  相似文献   

10.
为探讨作物病害图像分割评价方法,以简单背景的2种黄瓜病害(靶斑病和白粉病)图片为例,对常用的4种评价方法进行了研究。结果表明:4种评价方法中,前两种方法比较适合用于作物病害图像分割结果的评价。该研究为衡量作物病害病斑分割方法的性能提供一定依据。  相似文献   

11.
基于CUDA的并行K-means聚类图像分割算法优化   总被引:2,自引:0,他引:2  
为提高K-means聚类算法的运算速度,基于CUDA架构提出一种分块、并行的K-means算法,并采用合并访问、多级规约求和、负载均衡和指令优化等策略优化并行算法。实验结果表明,并行K-means算法的分割效果与串行K-means算法相同,但运行速度得到了极大的提高,加速比最高达到560,很好地解决了农业工程实际中由于分割算法带来的瓶颈问题,能够极大地提高农业劳动生产率。  相似文献   

12.
针对黄瓜表型测量中图像识别问题,为解决黄瓜种子腔与果肉图像灰度差别不大情况下的分割难题,提出了基于随机森林算法(Random Forest,RF)的黄瓜种子腔图像分割方法。首先,通过颜色空间变换,提取样本在RGB、HSV、YCb Cr模型下的9个颜色分量;接着,基于灰度共生矩阵提取样本的能量、熵、对比度、相关性的均值与标准差等8个纹理特征。结合纹理与颜色特征,运用随机森林算法构建像素分类器,实现了种子腔的粗分割。为了提高分割质量,对粗分割的图像进行形态学处理得到最终分割图像。最后,与K-均值聚类(Kmeans)算法、支持向量机(Support Vector Machine,SVM)算法做对比。实验表明:随机森林分割算法正确识别率高达95%,错误识别率在10%之内,处理时间1.6 s左右,分割质量上优于其它两种算法。  相似文献   

13.
基于K均值聚类的成熟草莓图像分割算法   总被引:1,自引:0,他引:1  
成熟草莓图像分割是草莓收获机器人识别和定位系统的关键技术.考虑到成熟草莓和其所处环境的颜色特性,在Lab彩色模式下将K均值聚类用于成熟草莓图像的分割.首先把输入的草莓图像从RGB空间转换到Lab空间下,然后初始化三个聚类中心进行K均值聚类的迭代算法,最后为消除成熟草莓花托表面细小瘦果对分割产生的影响,利用数学形态学的闭运算对分割的图像进行了修正加工.研究表明,K均值聚类分割算法在Lab模式下能够较好地分割出成熟草莓图像,并且Lab模式比其他彩色模式更适用于K均值聚类的图像分割算法.  相似文献   

14.
植物图像的自动分割是植物表型研究的热点问题,也是作物生长过程监测、病虫害识别等应用的核心技术之一.以黄瓜为对象,通过对图像中作物与背景特点的分析,选取EXG超绿分割和GrabCut算法进行试验研究;基于EXG超绿分割和GrabCut算法在黄瓜群体图像上的分割结果及这两种算法的优缺点,提出具有更高分割精度的改进算法.用室...  相似文献   

15.
复杂背景黄瓜叶部病害图像分割方法   总被引:6,自引:0,他引:6  
袁媛  李淼  陈晟  江海洋  董俊 《农业机械学报》2013,44(10):233-237
针对具有复杂背景的黄瓜病害图像,设计了一种图像分割方法。该方法首先结合超G和OTSU方法去除彩色图像中的大部分背景,尽可能保留图像中的绿色部分信息;然后根据病害图像RGB模型中红色分量自动建立数据项,并且设定相邻像素间红色分量差值的函数作为平滑项,以上述数据项和平滑项构建基于阈值预处理的图切割算法。利用该方法对4种黄瓜病害(霜霉病、白粉病、靶斑病和炭疽病)彩色图像进行分割。结果表明,该方法能够较为准确地将病斑区域从彩色图像中提取出来,算法的平均正确识别率达到90%以上;平均运行速度为2.12 s,能够满足实时图像分割的要求。  相似文献   

16.
基于颜色与形状特征的甘蔗病害图像分割方法   总被引:10,自引:0,他引:10  
根据甘蔗苗期赤腐病和环斑病图像的特点,提出了一种甘蔗病害图像分割方法.首先利用颜色特征2G-R-B和2R-G-B提取出病斑和土壤等非绿色植物类.然后采用面积阈值分割法排除部分土壤等非绿色植物类连通区域.最后利用链码计算剩下的病斑和土壤等非绿色植物类连通区域的形状特征,根据区域的宽度、矩形度和圆度分离出病害病斑.实验结果表明,该算法能有效提取出赤腐病和环斑病病斑,对环斑病图像分割正确率达93%,对赤腐病图像分割正确率达95%.  相似文献   

17.
基于多阈值图像分割算法的秸秆覆盖率检测   总被引:4,自引:0,他引:4  
针对目前秸秆覆盖率人工检测费时费力、准确率低、信息难以存储的问题,提出了一种基于图像分割的秸秆覆盖率检测方法。考虑到传统图像分割方法精度不高,且多阈值分割时计算量过大,将灰狼算法中的搜索机制与差分进化算法相融合,提出一种基于图像多阈值的自动分割方法(DE-GWO),用于田间秸秆覆盖率检测。首先,对现场采集的秸秆覆盖图像进行预处理,采用自适应Tsallis熵作为目标函数,评估图像分割效率;其次,根据图像的复杂程度选取分割阈值的数量,利用DE-GWO算法对其进行多阈值图像分割;然后,分别按照灰度级别计算分割后图像比例;最后,根据拍摄高度、fov视角等参数,将图像中秸秆覆盖率与实际地理面积进行转换。实验结果表明,本文算法田间秸秆覆盖率与实际测量误差在8%以内,且相比于改进粒子群算法(PSO)和灰狼算法(GWO),DE-GWO算法精确度更高,平均耗时为人工测量的1/1500。开发了一套依据DE-GWO算法的秸秆覆盖率检测软件系统,为后续监控系统的实时检测提供了算法基础和软件支持。  相似文献   

18.
基于Lab空间和K-Means聚类的叶片分割算法研究   总被引:4,自引:0,他引:4  
对植物叶片进行分类,在植物种类鉴别研究中有着重要的意义,而在植物叶片分类中,对叶片的准确分割是进行分类的必要前提。为此,对比分析了传统阈值分割中的最大类间方差法和K-Means聚类两种分割算法,实现对叶片的分割,并将RGB空间转换到Lab空间,再利用两种算法分别进行分割。结果表明:传统的阈值分割和K-Means聚类分割无法将目标图像准确地分割出来;在Lab空间对a分量进行阈值分割可以去除阴影部分,但是分割结果为二值图像;而在Lab空间进行K-Means聚类分割,不仅能够有效地消除在拍摄图像过程中产生的阴影部分,而且分割后的图像为彩色图像,对纹理和颜色特征的提取更加方便,提高了分类识别的准确率。  相似文献   

19.
在对变速箱齿轮振动信号提取特征参数向量的基础上建立运行状态样本 ,通过模糊聚类的方法对特征参数向量进行分析 ,进而将待诊断信号的特征参数向量根据运行状态样本分类而达到诊断的目的。该方法能有效识别正常运行状态与故障状态  相似文献   

20.
为解决青菜包装生产线在加工过程中的杂质在线检测问题,提出一种基于SSA-Kmeans的青菜杂质图像分割算法。首先利用直方图均衡化进行彩色图像增强以降低光照影响;其次基于麻雀搜索算法对初始聚类中心寻优,根据得到的最佳聚类中心,选取包含颜色信息的ab二维数据进行Kmeans聚类;然后对聚类后的图像二值化处理并用形态学滤波方法校正,最终完成图像分割。利用该算法对落叶、枯叶和黄叶等杂质进行图像分割试验,杂质平均匹配率为93.22%,平均误分率为0.70%,平均准确率为92.52%。与FCM算法、Kmeans算法、PSO-Kmeans算法的对比试验表明:本文算法分割精度更优,对不同杂质的分割均表现出良好的鲁棒性,为实现青菜杂质在线检测提供一种新方法支撑,对提高青菜机械化生产水平具有一定的实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号