首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

Agricultural practises impact soil properties and N transformation rate, and have a greater effect on N2O production pathways in agricultural soils compared with natural woodland soils. However, whether agricultural land use affects N2O production pathways in acidic soils in subtropical regions remains unknown.

Materials and methods

In this study, we collected natural woodland soil (WD) and three types of agricultural soils, namely upland agricultural (UA), tea plantation (TP) and bamboo plantation (BP) soils. We performed paired 15N-tracing experiment to investigate the effects of land use types on N2O production pathways in acidic soils in subtropical regions in China.

Results and discussion

The results revealed that heterotrophic nitrification is the dominant pathway of N2O production in WD, accounting for 44.6 % of N2O emissions, whereas heterotrophic nitrification contributed less than 2.7 % in all three agricultural soils, due to a lower organic C content and soil C/N ratio. In contrast, denitrification dominated N2O production in agricultural soils, accounting for 54.5, 72.8 and 77.1 % in UA, TP and BP, respectively. Nitrate (NO3 ?) predominantly affected the contribution from denitrification in soils under different land use types. Autotrophic nitrification increased after the conversion of woodland to agricultural lands, peaking at 42.8 % in UA compared with only 21.5 % in WD, and was positively correlated with soil pH. Our data suggest that pH plays a great role in controlling N2O emissions through autotrophic nitrification following conversion of woodland to agricultural lands.

Conclusions

Our results demonstrate the variability in N2O production pathways in soils of different land use types. Soil pH, the quantity and quality of organic C and NO3 ? content primarily determined N2O emissions. These results will likely assist modelling and mitigation of N2O emissions from different land use types in subtropical acidic soils in China and elsewhere.
  相似文献   

2.

Purpose

Ecosystem restorations can impact carbon dioxide (CO2) and nitrous oxide (N2O) emissions which are important greenhouse gasses. Alpine meadows are degraded worldwide, but restorations are increasing. Because their soils represent large carbon (C) and nitrogen (N) pools, they may produce significant amounts of CO2 and N2O depending on the plant species used in restorations. In addition, warming and N deposition may impact soil CO2 and N2O emissions from restored meadows.

Materials and methods

We collected soils from degraded meadows and plots restored using three different plant species at Wugong Mountain (Jiangxi, China). We measured CO2 and N2O emissions when soils were incubated at different temperatures (15, 25 or 35 °C) and levels of N addition (control vs. 4 g m?2) to understand their responses to warming and N deposition.

Results and discussion

Dissolved organic C was higher in restored plots (especially with Fimbristylis dichotoma) compared to non-restored bare soils, and their soil inorganic N was lower. CO2 emission rates were increased by vegetation restorations, decreased by N deposition, and increased by warming. CO2 emission rates were similar for the three grass species at 15 and 25 °C, but they were lower with Miscanthus floridulus at 35 °C. Soils from F. dichotoma and Carex chinensis plots had higher N2O emissions than degraded or M. floridulus plots, especially at 25 °C.

Conclusions

These results show that the effects of restorations on soil greenhouse gas emissions depended on plant species. In addition, these differences varied with temperature suggesting that future climate should be considered when choosing plant species in restorations to predict soil CO2 and N2O emissions and global warming potential.
  相似文献   

3.

Purpose

Better understanding of N transformations and the regulation of N2O-related N transformation processes in pasture soil contributes significantly to N fertilizer management and development of targeted mitigation strategies.

Materials and methods

15N tracer technique combined with acetylene (C2H2) method was used to measure gross N transformation rates and to distinguish pathways of N2O production in two Australian pasture soils. The soils were collected from Glenormiston (GN) and Terang (TR), Victoria, Australia, and incubated at a soil moisture content of 60% water-filled pore space (WFPS) and at temperature of 20 °C.

Results and discussion

Two tested pasture soils were characterized by high mineralization and immobilization turnover. The average gross N nitrification rate (ntot) was 7.28 mg N kg?1 day?1 in TR soil () and 5.79 mg N kg?1 day?1 in GN soil. Heterotrophic nitrification rates (nh), which accounting for 50.8 and 41.9% of ntot, and 23.4 and 30.1% of N2O emissions in GN and TR soils, respectively, played a role similar with autotrophic nitrification in total nitrification and N2O emission. Denitrification rates in two pasture soils were as low as 0.003–0.004 mg N kg?1 day?1 under selected conditions but contributed more than 30% of N2O emissions.

Conclusions

Results demonstrated that two tested pasture soils were characterized by fast N transformation rates of mineralization, immobilization, and nitrification. Heterotrophic nitrification could be an important NO3?–N production transformation process in studied pasture soils. Except for autotrophic nitrification, roles of heterotrophic nitrification and denitrification in N2O emission in two pasture soils should be considered when developing mitigation strategies.
  相似文献   

4.
Impacts of biochar addition on nitrous oxide (N2O) and carbon dioxide (CO2) emissions from paddy soils are not well documented. Here, we have hypothesized that N2O emissions from paddy soils could be depressed by biochar incorporation during the upland crop season without any effect on CO2 emissions. Therefore, we have carried out the 60-day aerobic incubation experiment to investigate the influences of rice husk biochar incorporation (50 t ha−1) into two typical paddy soils with or without nitrogen (N) fertilizer on N2O and CO2 evolution from soil. Biochar addition significantly decreased N2O emissions during the 60-day period by 73.1% as an average value while the inhibition ranged from 51.4% to 93.5% (P < 0.05–0.01) in terms of cumulative emissions. Significant interactions were observed between biochar, N fertilizer, and soil type indicating that the effect of biochar addition on N2O emissions was influenced by soil type. Moreover, biochar addition did not increase CO2 emissions from both paddy soils (P > 0.05) in terms of cumulative emissions. Therefore, biochar can be added to paddy fields during the upland crop growing season to mitigate N2O evolution and thus global warming.  相似文献   

5.

Purpose  

Nitrous oxide (N2O) is a potent greenhouse gas and, in grazed grassland systems where animals graze outdoor pastures, most of the N2O is emitted from animal urine nitrogen (N) deposited during grazing. Recently, ammonia-oxidizing archaea (AOA) were found to be present in large numbers in soils as well in the ocean, suggesting a potentially important role for AOA, in addition to ammonia-oxidizing bacteria (AOB), in the nitrogen cycle. The relationship between N2O emissions and AOB and AOA populations is unknown. The objective of this study was to determine the quantitative relationship between N2O emissions and AOB and AOA populations in nitrogen-rich grassland soils.  相似文献   

6.
In this study, we investigated N2O emissions from two fields under minimum tillage, cropped with maize (MT maize) and summer oats (MT oats), and a conventionally tilled field cropped with maize (CT maize). Nitrous oxide losses from the MT maize and MT oats fields (5.27 and 3.64 kg N2O-N ha−1, respectively) were significantly higher than those from the CT maize field (0.27 kg N2O-N ha−1) over a period of 1 year. The lower moisture content in CT maize (43% water-filled pore space [WFPS] compared to 60–65%) probably caused the difference in total N2O emissions. Denitrification was found to be the major source of N2O loss. Emission factors calculated from the MT field data were high (0.04) compared to the CT field (0.001). All data were simulated with the denitrification decomposition model (DNDC). For the CT field, N2O and N2O + N2 emissions were largely overestimated. For the MT fields, there was a better agreement with the total N2O and N2O + N2 emissions, although the N2O emissions from the MT maize field were underestimated. The simulated N2O emissions were particularly influenced by fertilization, but several other measured N2O emission peaks associated with other management practices at higher WFPS were not captured by the model. Several mismatches between simulated and measured \textNH4+ {\text{NH}}_4^ + , \textNO3- {\text{NO}}_3^ - and WFPS for all fields were observed. These mismatches together with the insensitivity of the DNDC model for increased N2O emissions at the management practices different from fertilizer application explain the limited similarity between the simulated and measured N2O emissions pattern from the MT fields.  相似文献   

7.
The objective of this work was to evaluate the effect of the chemical nature and application frequency of N fertilizers at different moisture contents on soil N2O emissions and N2O/(N2O+N2) ratio. The research was based on five fertilization treatments: unfertilized control, a single application of 80 kg ha−1 N-urea, five split applications of 16 kg ha−1 N-urea, a single application of 80 kg ha−1 N–KNO3, five split applications of 16 kg ha−1 N–KNO3. Cumulative N2O emissions for 22 days were unaffected by fertilization treatments at 32% water-filled pore space (WFPS). At 100% and 120% WFPS, cumulative N2O emissions were highest from soil fertilized with KNO3. The split application of N fertilizers decreased N2O emissions compared to a single initial application only when KNO3 was applied to a saturated soil, at 100% WFPS. Emissions of N2O were very low after the application of urea, similar to those found at unfertilized soil. Average N2O/(N2O+N2) ratio values were significantly affected by moisture levels (p = 0.015), being the lowest at 120% WFPS. The N2O/(N2O+N2) ratio averaged 0.2 in unfertilized soil and 0.5 in fertilized soil, although these differences were not statistically significant.  相似文献   

8.
Agricultural management significantly affects methane (CH4) and nitrous oxide (N2O) emissions from paddy fields. However, little is known about the underlying microbiological mechanism. Field experiment was conducted to investigate the effect of the water regime and straw incorporation on CH4 and N2O emissions and soil properties. Quantitative PCR was applied to measure the abundance of soil methanogens, methane-oxidising bacteria, nitrifiers, and denitrifiers according to DNA and mRNA expression levels of microbial genes, including mcrA, pmoA, amoA, and nirK/nirS/nosZ. Field trials showed that the CH4 and N2O flux rates were negatively correlated with each other, and N2O emissions were far lower than CH4 emissions. Drainage and straw incorporation affected functional gene abundance through altered soil environment. The present (DNA-level) gene abundances of amoA, nosZ, and mcrA were higher with straw incorporation than those without straw incorporation, and they were positively correlated with high concentrations of soil exchangeable NH4+ and dissolved organic carbon. The active (mRNA-level) gene abundance of mcrA was lower in the drainage treatment than in continuous flooding, which was negatively correlated with soil redox potential (Eh). The CH4 flux rate was significantly and positively correlated with active mcrA abundance but negatively correlated with Eh. The N2O flux rate was significantly and positively correlated with present and active nirS abundance and positively correlated with soil Eh. Thus, we demonstrated that active gene abundance, such as of mcrA for CH4 and nirS for N2O, reflects the contradictory relationship between CH4 and N2O emissions regulated by soil Eh in acidic paddy soils.  相似文献   

9.
Agricultural soils emit significant amounts of N2O to the atmosphere, and annual emissions are in some proportion to the input of reactive nitrogen to the system. Hence the ongoing intensification of cropping systems in South Asia will result in increased emissions of N2O. The prospects are potentially worse than those predicted by the increasing doses of N-fertilizers, however. The reason for this is that intensive cropping systems may acidify the soils, which could increase the N2O/(N2 + N2O) product ratio of denitrification due to interference with the expression of the different enzymatic steps in this process (Liu et al., 2010 FEMS Microbiol Ecol 72 407–417). We investigated this phenomenon for agricultural soils in the central mid-hills of Nepal. We sampled soils from fields that had been under intensified cultivation for ≥20 years, and adjacent fields with more traditional cultivation, in areas with permanently drained soils as well as areas with frequent flooding. The characteristic kinetics of NO, N2O and N2 production by denitrification in these soils was measured by anoxic incubations after flooding and drainage of the soils with 2 mM NO3, to secure similar NO3-concentrations for all soils. The results demonstrate that intensification invariably lowered the soil pH and increased the N2O/(N2 + N2O) product ratios of denitrification. This effect of intensification was observed both for incubations with and without C-substrates (glutamic acid) added. The transient accumulation of NO varied grossly between sites, but was not affected by intensification. The results demonstrate convincingly that the intensification has resulted in higher intrinsic propensity of the soils to emit N2O to the atmosphere, and the correlation with pH suggests that acidification is responsible. This causal relationship is underpinned by emerging evidence that low pH interferes with the assembly of the enzyme N2O-reductase. We conclude that the ongoing intensification of agriculture in South Asia may result in severely increasing N2O emissions unless acidification of the soil is counteracted.  相似文献   

10.
The only known sink for nitrous oxide (N2O) is biochemical reduction to dinitrogen (N2) by N2O reductase (N2OR). We hypothesized that the application of N2O-reducing denitrifier-inoculated organic fertilizer could enhance soil N2O consumption while the disruption of nosZ genes could result in inactivation of N2O consumption. To test such hypotheses, a denitrifier-inoculated granular organic fertilizer was applied to both soil microcosms and fields. Of 41 denitrifier strains, 38 generated 30N2 in the end products of denitrification (30N2 and 46N2O) after the addition of Na15NO3 in culture condition, indicating their high N2O reductase activities. Of these 41 strains, 18 were screened in soil microcosms after their inoculation into the organic fertilizer, most of which were affiliated with Azospirillum and Herbaspirillum. These 18 strains were nutritionally starved to improve their survival in soil, and 14 starved and/or non-starved strains significantly decreased N2O emissions in soil microcosms. However, the N2O emission had not been decreased in soil microcosms after inoculating with a nosZ gene-disruptive strain, suggesting that N2O reductase activity might be essential for N2O consumption. Although the decrease of N2O was not significant at field scales, the application of organic fertilizer inoculated with Azospirillum sp. TSH100 and Herbaspirillum sp. UKPF54 had decreased the N2O emissions by 36.7% in Fluvisol and 23.4% in Andosol in 2014, but by 21.6% in Andosol in 2015 (H. sp. UKPF54 only). These results suggest that the application of N2O-reducing denitrifier-inoculated organic fertilizer may enhance N2O consumption or decrease N2O emissions in agricultural soils.  相似文献   

11.
Drainage and cultivation of organic soils often result in large nitrous oxide (N2O) emissions. The objective of this study was to assess the impacts of nitrogen (N) fertilizer on N2O emissions from a cultivated organic soil located south of Montréal, QC, Canada, drained in 1930 and used since then for vegetable production. Fluxes of N2O were measured weekly from May 2004 to November 2005 when snow cover was absent in irrigated and non‐irrigated plots receiving 0, 100 or 150 kg N ha−1 as NH4NO3. Soil mineral N content, gas concentrations, temperature, water table height and water content were also measured to help explain variations in N2O emissions. Annual emissions during the experiment were large, ranging from 3.6 to 40.2 kg N2O‐N ha−1 year−1. The N2O emissions were decreased by N fertilizer addition in the non‐irrigated site but not in the irrigated site. The absence of a positive influence of soil mineral N content on N2O emissions was probably in part because up to 571 kg N ha−1 were mineralized during the snow‐free season. Emissions of N2O were positively correlated to soil CO2 emissions and to variables associated with the extent of soil aeration such as soil oxygen concentration, precipitation and soil water table height, thereby indicating that soil moisture/aeration and carbon bioavailability were the main controls of N2O emission. The large N2O emissions observed in this study indicate that drained cultivated organic soils in eastern Canada have a potential for N2O‐N losses similar to, or greater than, organic soils located in northern Europe.  相似文献   

12.

Purpose  

Nitrous oxide emissions from pasture soils account for one third of total agricultural greenhouse gas emissions in New Zealand. The aim of this study was to determine nitrous oxide (N2O) emissions from animal urine patches under summer (with irrigation) and winter conditions as affected by dicyandiamide (DCD) in grazed grassland in New Zealand.  相似文献   

13.
A high soil nitrogen (N) content in irrigated areas quite often results in environmental problems. Improving the management practices of intensive agriculture can mitigate greenhouse gas (GHG) emissions. This study compared the effect of maize stover incorporation or removal together with different mineral N fertilizer rates (0, 200 and 300 kg N ha?1) on the emission of nitrous oxide (N2O) and carbon dioxide (CO2) on a sprinkler-irrigated maize (Zea mays L.). The trail was conducted in the Ebro Valley (NE Spain) in a high nitrate-N soil (i.e. 200 g NO3–N kg?1). Nitrous oxide and CO2 emissions were sampled weekly using a semi-static closed chamber and quantified using the photoacoustic technique in 2011 and 2012. Applying sidedress N fertilizer tended to increase N2O emissions whereas stover incorporation did not have any clear effect. Nitrification was probably the main process leading to N2O. Denitrification was limited by the low soil moisture content (WFPS <?54%), due to an adequate irrigation management. Emissions ranged from ??0.11 to 0.36% of the N applied, below the IPCC (2007) values. Nitrogen fertilization tended to reduce CO2 emission, but only in 2011. Stover incorporation increased CO2 emission. Nitrogen use efficiency decreased with increasing mineral fertilizer supply. The application of N in high N soils of the Ebro Valley is not necessary until the soil restores a normal mineral N content, regardless of stover management. This will combine productivity with keeping N2O and CO2 emissions under control provided irrigation is adequately managed. Testing soil NO3 ?–N contents before fertilizing would improve N fertilizer recommendations.  相似文献   

14.
Nitrous oxide (N2O) emissions, soil microbial community structure, bulk density, total pore volume, total C and N, aggregate mean weight diameter and stability index were determined in arable soils under three different types of tillage: reduced tillage (RT), no tillage (NT) and conventional tillage (CT). Thirty intact soil cores, each in a 25 × 25-m2 grid, were collected to a depth of 10 cm at the seedling stage of winter wheat in February 2008 from Maulde (50°3′ N, 3°43′ W), Belgium. Two additional soil samples adjacent to each soil core were taken to measure the spatial variance in biotic and physicochemical conditions. The microbial community structure was evaluated by means of phospholipid fatty acids analysis. Soil cores were amended with 15 kg NO3-N ha−1, 15 kg NH4+-N ha−1 and 30 kg ha−1 urea-N ha−1 and then brought to 65% water-filled pore space and incubated for 21 days at 15°C, with regular monitoring of N2O emissions. The N2O fluxes showed a log-normal distribution with mean coefficients of variance (CV) of 122%, 78% and 90% in RT, NT and CT, respectively, indicating a high spatial variation. However, this variability of N2O emissions did not show plot scale spatial dependence. The N2O emissions from RT were higher (p < 0.01) than from CT and NT. Multivariate analysis of soil properties showed that PC1 of principal component analysis had highest loadings for aggregate mean weight diameter, total C and fungi/bacteria ratio. Stepwise multiple regression based on soil properties explained 72% (p < 0.01) of the variance of N2O emissions. Spatial distributions of soil properties controlling N2O emissions were different in three different tillages with CV ranked as RT > CT > NT.  相似文献   

15.

Purpose

Nitrous oxide (N2O) is a potent greenhouse gas which is mainly produced from agricultural soils through the processes of nitrification and denitrification. Although denitrification is usually the major process responsible for N2O emissions, N2O production from nitrification can increase under some soil conditions. Soil pH can affect N2O emissions by altering N transformations and microbial communities. Bacterial (AOB) and archaeal (AOA) ammonia oxidisers are important for N2O production as they carry out the rate-limiting step of the nitrification process.

Material and methods

A field study was conducted to investigate the effect of soil pH changes on N2O emissions, AOB and AOA community abundance, and the efficacy of a nitrification inhibitor, dicyandiamide (DCD), at reducing N2O emissions from animal urine applied to soil. The effect of three pH treatments, namely alkaline treatment (CaO/NaOH), acid treatment (HCl) and native (water) and four urine and DCD treatments as control (no urine or DCD), urine-only, DCD-only and urine + DCD were assessed in terms of their effect on N2O emissions and ammonia oxidiser community growth.

Results and discussion

Results showed that total N2O emissions were increased when the soil was acidified by the acid treatment. This was probably due to incomplete denitrification caused by the inhibition of the assembly of the N2O reductase enzyme under acidic conditions. AOB population abundance increased when the pH was increased in the alkaline treatment, particularly when animal urine was applied. In contrast, AOA grew in the acid treatment, once the initial inhibitory effect of the urine had subsided. The addition of DCD decreased total N2O emissions significantly in the acid treatment and decreased peak N2O emissions in all pH treatments. DCD also inhibited AOB growth in both the alkaline and native pH treatments and inhibited AOA growth in the acid treatment.

Conclusions

These results show that N2O emissions increase when soil pH decreases. AOB and AOA prefer different soil pH environments to grow: AOB growth is favoured in an alkaline pH and AOA growth favoured in more acidic soils. DCD was effective in inhibiting AOB and AOA when they were actively growing under the different soil pH conditions.  相似文献   

16.
Using a soilless culture system mimicking tropical acidic peat soils, which contained 3 mg of gellan gum and 0.5 mg NO3?-N per gram of medium, a greenhouse gas, N2O emitting capability of microorganisms in acidic peat soil in the area of Palangkaraya, Central Kalimantan, Indonesia, was investigated. The soil sampling sites included a native swamp forest (NF), a burnt forest covered by ferns and shrubs (BF), three arable lands (A-1, A-2 and A-3) and a reclaimed grassland (GL) next to the arable lands. An acid-tolerant Janthinobacterium sp. strain A1-13 (Oxalobacteriaceae, β-proteobacteria) isolated from A-1 soil was characterized as one of the most prominent N2O-emitting bacteria in this region. Physiological characteristics of the N2O emitter in the soilless culture system, including responses to soil environments, substrate concentration, C-source concentration, pH, and temperature, suggest that the N2O emitting Janthinobacterium sp. strain A1-13 is highly adapted to reclaimed open peatland and primarily responsible for massive N2O emissions from the acidic peat soils. Regulation of N2O emitters in the reclaimed peatland for agricultural use is therefore one of the most important issues in preventing the greenhouse gas emission from acidic peat soil farmlands.  相似文献   

17.
We conducted laboratory incubation experiments to elucidate the influence of forest type and topographic position on emission and/or consumption potentials of nitrous oxide (N2O) and methane (CH4) from soils of three forest types in Eastern Canada. Soil samples collected from deciduous, black spruce and white pine forests were incubated under a control, an NH4NO3 amendment and an elevated headspace CH4 concentration at 70% water-filled pore space (WFPS), except the poorly drained wetland soils which were incubated at 100% WFPS. Deciduous and boreal forest soils exhibited greater potential of N2O and CH4 fluxes than did white pine forest soils. Mineral N addition resulted in significant increases in N2O emissions from wetland forest soils compared to the unamended soils, whereas well-drained soils exhibited no significant increase in N2O emissions in-response to mineral N additions. Soils in deciduous, boreal and white pine forests consumed CH4 when incubated under an elevated headspace CH4 concentration, except the poorly drained soils in the deciduous forest, which emitted CH4. CH4 consumption rates in deciduous and boreal forest soils were twice the amount consumed by the white pine forest soils. The results suggest that an episodic increase in reactive N input in these forests is not likely to increase N2O emissions, except from the poorly drained wetland soils; however, long-term in situ N fertilization studies are required to validate the observed results. Moreover, wetland soils in the deciduous forest are net sources of CH4 unlike the well-drained soils, which are net sinks of atmospheric CH4. Because wetland soils can produce a substantial amount of CH4 and N2O, the contribution of these wetlands to the total trace gas fluxes need to be accounted for when modeling fluxes from forest soils in Eastern Canada.  相似文献   

18.
Agricultural headwater ditches are an important source of indirect agricultural nitrous oxide (N2O) emissions, but their contribution is difficult to quantify. In the present study, the static chamber-gas chromatography technique was used for measurement of N2O emissions from vegetated (V, the whole ditch ecosystem) and non-vegetated (NV, the sediment-water interface only) zones in an agricultural headwater ditch in the Central Sichuan Basin in Southwestern China during 2014–2015. Annual N2O emissions from the agricultural headwater ditch were similar to direct N2O emissions from an adjacent N-fertilized purple soil cropland, suggesting nitrogen (N)-enriched ditches are important anthropogenic N2O sources. Mean cumulative N2O emissions during summer and autumn were higher than those in spring and winter. Overlying water nitrate (NO3 ?-N) concentration and sediment-water interface temperature were primary factors affecting seasonal N2O emissions. Heavy precipitation transported NO3 ?-N from cropland and increase NO3 ?-N in the agricultural headwater ditch water, and subsequently stimulate N2O emissions. A literature review of EF5r (the indirect N2O emission factor for rivers) revealed a mean value of 0.23%, similar to our values (0.27%), and also the default value (0.25%) proposed by the Intergovernmental Panel on Climate Change. The number of studies on indirect N2O emissions remains limited, and more in situ measurements are needed to have more accurate values of EF5r.  相似文献   

19.
The annual carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) dynamics were measured with static chambers on two organic agricultural soils with different soil characteristics. Site 1 had a peat layer of 30 cm, with an organic matter (OM) content of 74% in the top 20 cm. Site 2 had a peat layer of 70 cm but an OM content of only 40% in the top 20 cm. On both sites there were plots under barley and grass and also plots where the vegetation was removed. All soils were net sources of CO2 and N2O, but they consumed atmospheric CH4. Soils under barley had higher net CO2 emissions (830 g CO2-C m−2 yr−1) and N2O emissions (848 mg N2O-N m−2 yr−1) than those under grass (395 g CO2-C m−3 yr−1 and 275 mg N2O-N m−2 yr−1). Bare soils had the highest N2O emissions, mean 2350 mg N2O-N m−2 yr−1. The mean CH4 uptake rate from vegetated soils was 100 mg CH4-C m−3 yr−1 and from bare soils 55 mg CH4-C m−2 yr−1. The net CO2 emissions were higher from Site 2, which had a high peat bulk density and a low OM content derived from the addition of mineral soil to the peat during the cultivation history of that site. Despite the differences in soil characteristics, the mean N2O emissions were similar from vegetated peat soils from both sites. However, bare soils from Site 2 with mineral soil addition had N2O emissions of 2-9 times greater than those from Site 1. Site 1 consumed atmospheric CH4 at a higher rate than Site 2 with additional mineral soil. N2O emissions during winter were an important component of the N2O budget even though they varied greatly, ranging from 2 to 99% (mean 26%) of the annual emission.  相似文献   

20.

Purpose  

Land use type is an important factor influencing greenhouse gas emissions from soils, but the mechanisms involved in affecting potential greenhouse gas (GHG) emissions in different land use systems are poorly understood. Since the northern regions of Canada and China are characterized by cool growing seasons, GHG emissions under low temperatures are important for our understanding of how soil temperature affects soil C and N turnover processes and associated greenhouse gas emissions in cool temperate regions. Therefore, we investigated the effects of temperature on the emission of N2O, CO2, and CH4 from typical forest and grassland soils from China and Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号