首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the context of sustainable soil-quality management and mitigating global warming, the impacts of incorporating raw or field-burned adzuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) and wheat (Triticum aestivum L.) straw residues on carbon dioxide (CO2) and nitrous oxide (N2O) emission rates from soil were assessed in an Andosol field in northern Japan. Losses of carbon (C) and nitrogen (N) in residue biomass during field burning were much greater from adzuki bean residue (98.6% of C and 98.1% of N) than from wheat straw (85.3% and 75.3%, respectively). Although we noted considerable inputs of carbon (499 ± 119 kg C ha–1) and nitrogen (5.97 ± 0.76 kg N ha–1) from burned wheat straw into the soil, neither CO2 nor N2O emission rates from soil (over 210 d) increased significantly after the incorporation of field-burned wheat straw. Thus, the field-burned wheat straw contained organic carbon fractions that were more resistant to decomposition in soil in comparison with the unburned wheat straw. Our results and previously reported rates of CO2, methane (CH4) and N2O emission during wheat straw burning showed that CO2-equivalent greenhouse gas emissions under raw residue incorporation were similar to or slightly higher than those under burned residue incorporation when emission rates were assessed during residue burning and after subsequent soil incorporation.  相似文献   

2.
Experiments were conducted in an attempt to study the impact of using different organic residues as fertilizers on grain yield, magnitude of nitrous oxide (N2O) emissions, and soil characteristics. Five fertilizer treatments including conventional nitrogen (N) fertilizer, cow manure, rice straw, poultry manure, and sugarcane bagasse were applied in the rice field in 2012. The maximum reduction in seasonal N2O emissions (10–27%) was observed under the influence of rice straw application over conventional N fertilizer. The experiment was repeated for a second season in 2013 with the same treatments for further confirmation of the results obtained during the first year of experimentation. The application of rice straw also showed a slight advantage by increasing grain yield (4.38 t ha?1) compared to control. Important soil properties and plant growth parameters were studied and their relationships with N2O emission were worked out. The incorporation of organic residues helped in restoring and improving the soil health and effectively enhancing grain yield with reduced N2O emission from rice fields.  相似文献   

3.
A pot incubation experiment with rice residues (straw and root) was conducted under aerobic condition (60% of WHC, water holding capacity) for a period of 55 days in a greenhouse. The emissions of carbon dioxide (CO2) and nitrous oxide (N2O) were determined by the closed chamber method in a paddy soil. The soil was derived from quaternary red clay, and collected from the Ecological Station of Red Soil, the Chinese Academy of Sciences, located in Jiangxi Province, a subtropical region of China. The emissions of CO2 and N2O were increased by the amendment of rice residues. Significantly positive correlation was found between N2O and CO2 fluxes (R = 0.650*?0.870*, P ≤ 0.05). The cumulative emissions during the early stage of the incubation (<25 days after residue addition) accounted for about 67%–86% and 67%–80% of the total amount of CO2 and N2O emissions, respectively. Cumulative emissions and emission factors of the two gases were higher in the soils amended with rice straw than those with rice root. The two gas fluxes were positively correlated with microbial biomass C and N, as well as soluble organic C. N2O flux was positively correlated with NH4 +–N content at the early stage (<25 days), and negatively with NO3 ?–N content at the later stage of this incubation (25–55 days), implying that both nitrification and denitrification may have contributed to N2O production.  相似文献   

4.
This study evaluated the effects of rice straw and water regimes on CH4 and N2O emissions from paddy fields for two rice growing seasons (summer 2014 and spring 2015). Water regimes included alternating wet–dry irrigation (AWD) maintained at three levels (–5 cm, – 10 cm and –15 cm) in comparison to continuous flooding irrigation (CF). Rice straw (5 t ha–1) was incorporated into the top soil (0 – 15 cm), distributed and burned in situ. Results showed that using burned in situ rice straw was found to reduce seasonal cumulative CH4 emission (24–34% in summer; 18–28% in spring), N2O emission (21–32% in summer; 22–29% in spring) and lower rice yield (8–9%) than rice straw incorporation into top soil. AWD methods reduced the amount of CH4 production (22.6–41.5%) and increased N2O emission (25–26%) without any decrease in rice yield. Rice straw incorporation into the top soil with AWD had higher water productivity (23–37%) than rice straw when burned in situ with CF. The results conclude that AWD and rice straw management can be employed as mitigation strategy for CH4 and N2O emissions from paddy fields in Central Vietnam.  相似文献   

5.
The incorporation of straw with a microbial inoculant (a mixture of bacteria and fungi, designed to accelerate straw decomposition) is being increasingly adopted within the agricultural sector in China. However, its effects on N and C trace gas emissions remain unclear. We conducted a field experiment to investigate the effects of different straw incorporation methods (with and without microbial inoculant) in the wheat season on nitrous oxide (N2O) and methane (CH4) emissions from a wheat-rice rotation system in China. The treatments comprised N, P, and K fertilizers only (NPK), NPK plus rice straw (NPKS), NPKS plus Ruilaite microbial inoculant (NPKSR), and NPKS plus Jinkuizi microbial inoculant (NPKSJ). Rice straw incorporation before wheat sowing significantly decreased N2O emissions during the wheat season and stimulated N2O and CH4 emissions during the subsequent rice season. Compared with the NPKS treatment, the NPKSR and NPKSJ treatments decreased N2O emissions during the wheat season, but had no effect on N2O or CH4 emissions during the subsequent rice season. Annually, the two treatments were comparable regarding N2O emissions. Although the global warming potentials of the NPKSR and NPKSJ treatments were lower than that of the NPKS treatment during the wheat season, no significant differences were observed during the subsequent rice season, or over the entire rotation cycle. The annual greenhouse gas intensity was slightly lower in the NPKSR and NPKSJ treatments than in the NPKS treatment. Overall, these results suggest that the incorporation of rice straw with a microbial inoculant in the wheat season was the best strategy tested for managing straw resources within the wheat-rice rotation system.  相似文献   

6.
Groundnut as a pre‐rice crop is usually harvested 1–2 months before rice transplanting, during which much of legume residue N released could be lost. Our objectives were to investigate the effect of mixing groundnut residues (GN, 5 Mg ha?1) with rice straw (RS) in different proportions on: (i) regulating N dynamics, (ii) potential microbial interactions during decomposition, and (iii) associated nitrous oxide and methane emissions at weekly intervals during the lag phase until rice transplanting (i, ii) or harvest (iii). Decomposition was fastest in groundnut residues (64% N lost) with a negative interaction for N loss when mixed 1:1 with rice straw. Adding groundnut residues increased mineral N initially, while added rice straw led to initial microbial N immobilization. Mineral N in mixed residue treatments was significantly greatest at the beginning of rice transplanting. Soil microbial N and apparent efficiency were higher, while absolute and relative microbial C were often lowest in groundnut and mixed treatments. Microbial C:N ratio increased with increasing proportion of added rice straw. N2O losses were largest in the groundnut treatment (12.2 mg N2O‐N m?2 day?1) in the first week after residue incorporation and reduced by adding rice straw. N2O‐N emissions till rice harvest amounted to 0.73 g N2O‐N m?2 in the groundnut treatment. CH4 emissions were largest in mixed treatments (e.g. 155.9 g CH4 m?2, 1:1 treatment). Mixing residues resulted in a significant interaction in that observed gaseous losses were greater than predicted from a purely additive effect. It appears possible to regulate N dynamics by mixing rice straw with groundnut residues; however, at a trade‐off of increased CH4 emissions.  相似文献   

7.
A field experiment involving rice–wheat rotation was performed to investigate the effect of mushroom residue (MR) in comparison with chemical fertilizer (CF) and crop straw return on methane (CH4) and nitrous oxide (N2O) emissions in 2012–2013. Five treatments in quadruplicate were included in this study: (1) CF only, (2) CFS (straw + CF), (3) MR-1 (50% amount of N in CF was replaced with MR), (4) MR-2 (100% amount of N in CF was replaced with MR) and (5) MR-3 (150% amount of N in CF was replaced with MR). Results showed that the effects of CFS and MR-1 treatments on CH4 and N2O emissions did not significantly differ. By contrast, CH4 emissions decreased as the amount of applied MR increased. Crop straw and MR stimulated CH4 emissions (from 48.8% to 119%) in rice season in 2012. In 2013, the applied crop straw and MR decreased CH4 emissions (from 21.3% to 37.3%). This contrasting effect might be explained by the difference in soil moisture content between the two seasons. N2O emission in wheat season could be efficiently decreased (from 25.2% to 29.7%) by applying MR. Our results suggesting that MR could be used as a soil organic amendment under the premise of proper water management.  相似文献   

8.
以杂交籼稻‘F优498’为试验材料,研究不同灌溉方式[淹水灌溉(CK)、干湿交替灌溉、旱作]下氮肥运筹与秸秆覆盖优化管理模式(麦秆覆盖优化施氮模式、油菜秆覆盖优化施氮模式以及无秸秆覆盖优化施氮模式)对水稻根系生长、各时期氮素积累以及产量的影响,探讨各灌溉方式下秸秆腐熟及氮素释放规律,明确秸秆腐熟与氮素释放规律对水稻生长的影响及其相关关系。结果表明,淹水灌溉和干湿交替灌溉均较旱作有效地协调各时期水稻地上部、地下部生长,促进各时期氮素吸收利用,提高稻谷产量;而水分生产效率则以旱作为最优,干湿交替灌溉次之,但差异不显著。麦秆、油菜秆的腐熟与氮素释放效率最高峰均出现在移栽后30 d,但腐熟量与氮素释放量受灌溉方式与秸秆种类的影响;油菜秆腐熟量显著高于麦秆,旱作明显高于干湿交替与淹水灌溉;氮素释放量则以麦秆为最优。秸秆覆盖优化管理模式也对水稻各生长指标具有显著影响;淹水及干湿交替灌溉下,麦秆覆盖氮肥运筹优化管理模式有效协调水稻植株各时期的生长,促进氮素吸收利用,最终实现产量的增加;油菜秆覆盖氮肥运筹优化管理模式则在整个生育期均对水稻生长表现轻微抑制效应;而旱作模式下麦秆、油菜秆优化施氮模式覆盖均呈现显著的促进作用,其中油菜秆覆盖优势明显,可作为生产中水资源不足的情况下参考。秸秆腐熟量及氮素释放量与水稻根干重、氮素吸收利用以及产量的相关性分析表明,移栽后30 d秸秆腐熟量与稻谷产量、氮素吸收均呈显著的负相关关系(r=?0.27*~?0.29*),而齐穗期、成熟期氮素释放量与产量及氮素吸收均呈显著的正相关关系(r=0.31*~0.59**);同时,秸秆的腐熟量与氮素释放对水稻根冠比影响较大,其中以齐穗期最为显著(r=?0.27*~0.42**)。协调水稻各时期秸秆腐熟量及氮素释放,特别是移栽后30 d氮素释放量是保证实现水稻高产、高效的重要措施之一。  相似文献   

9.
Abstract

Burial of wheat straw in ditches and incorporation of wheat straw are the two main ways of returning wheat straw prior to rice cultivation in China. To examine the effect of burying wheat straw in ditches on CH4 emissions from rice cultivation, a field experiment was conducted at Yixing, Jiangsu, China in 2004. CH4 flux was measured using a closed-chamber technique in three treatments (CK, no wheat straw application; WI, evenly incorporating 3.75 t ha?1 wheat straw into the 0.1 m topsoil; WD, burying 3.75 t ha?1 wheat straw in 0.14-m deep by 0.25-m wide ditches). Seasonal CH4 emissions ranged from 49.7 to 218.4 kg CH4 ha?1. The application of wheat straw in these two ways significantly increased CH4 emissions by 4.0-fold and 4.4-fold, respectively (P < 0.05). Although CH4 flux from the non-ditch area in the WD treatment was as low as that in the CK treatment, it was counter-balanced by extremely high CH4 flux from the ditch, which was approximately 6.0-fold as much as that from WI, leading to comparability between treatments WI and WD in total CH4 emissions (P > 0.05). No significant difference was observed between the three treatments in grain yield (P > 0.05). The results indicated that burial of wheat straw in ditches is not a way to reduce CH4 emission from rice cultivation.  相似文献   

10.
Soil, crop, and fertilizer management practices may affect quality of organic carbon (C) and nitrogen (N) in soil. A long-term field experiment (growing barley, wheat, or canola)was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 years (1980 to 1998) of tillage [zero tillage (ZT) and conventional tillage (CT)], straw management [straw removed (SRem) and straw retained (SRet)], and N fertilizer rate (0, 50, and 100 kg N ha?1 in SRet and 0 kg N ha?1 in SRem plots) on macro-organic matter C (MOM-C) and N (MOM-N), microbial biomass C (MB-C), and mineralizable C (Cmin) and N (Nmin) in the 0- to 7.5-cm and 7.5- to 15-cm soil layers. Treatments with N fertilizer and SRet generally had a greater mass of MOM-C (by 201 kg C ha?1 with 100 kg N ha?1 rate and by 254 kg C ha?1 with SRet), MOM-N (by 12.4 kg N ha?1 with 100 kg N ha?1 rate and by 8.0 kg N ha?1 with SRet), Cmin(by 146 kg C ha?1 with 100 kg N ha?1 rate and by 44 kg C ha?1 with SRet), and Nmin(by 7.9 kg N ha?1 with 100 kg N ha?1 rate and by 9.0 kg N ha?1 with SRet)in soil than the corresponding zero-N and SRem treatments. Tillage, straw, and N fertilizer had no consistent effect on MB-C in soil. Correlations between these dynamic soil organic C or N fractions were strong and significant in most cases, except for MB-C, which had no significant correlation with MOM-C and MOM-N. Linear regressions between crop residue C input and mass of MOM-C, MOM-N, Cmin, and Nmin in soil were significant, but it was not significant for MB-C. The effects of management practices on dynamic soil organic C and N fractions were more pronounced in the 0- to 7.5-cm surface soil layer than in the 7.5- to 15-cm subsoil layer. In conclusion, the findings suggest that application of N fertilizer and retention of straw would improve soil quality by increasing macro-organic matter and N-supplying power of soil.  相似文献   

11.
Amending vegetable soils with organic materials is increasingly recommended as an agroecosystems management option to improve soil quality. However, the amounts of NO, N2O, and N2 emissions from vegetable soils treated with organic materials and frequent irrigation are not known. In laboratory-based experiments, soil from a NO 3 ? -rich (340 mg N?kg?1) vegetable field was incubated at 30°C for 30 days, with and without 10 % C2H2, at 50, 70, or 90 % water-holding capacity (WHC) and was amended at 1.19 g?C kg?1 (equivalent to 2.5 t?C ha?1) as Chinese milk vetch (CMV), ryegrass (RG), or wheat straw (WS); a soil not amended with organic material was used as a control (CK). At 50 % WHC, cumulative N2 production (398–524 μg N?kg?1) was significantly higher than N2O (84.6–190 μg N?kg?1) and NO (196–224 μg N?kg?1) production, suggesting the occurrence of denitrification under unsaturated conditions. Organic materials and soil water content significantly influenced NO emissions, but the effect was relatively weak since the cumulative NO production ranged from 124 to 261 μg N?kg?1. At 50–90 % WHC, the added organic materials did not affect the accumulated NO 3 ? in vegetable soil but enhanced N2O emissions, and the effect was greater by increasing soil water content. At 90 % WHC, N2O production reached 13,645–45,224 μg N?kg?1 from soil and could be ranked as RG?>?CMV?>?WS?>?CK. These results suggest the importance of preventing excess water in soil while simultaneously taking into account the quality of organic materials applied to vegetable soils.  相似文献   

12.
Agricultural fields, including rice (Oryza sativa L.) paddy fields, constitute one of the major sources of atmospheric methane (CH4) and nitrous oxide (N2O). Organic matter application, such as straw and organic fertilizer, enhances CH4 emission from paddy fields. In addition, rice straw management after harvest regulates CH4 emissions in the growing season. The interaction of tillage times and organic fertilizer application on CH4 and N2O emissions is largely unknown. Therefore, we studied the effects of fallow-season tillage times and fertilizer types on CH4 and N2O emissions in paddy fields in Ehime, southwestern Japan. From November 2011 to October 2013, four treatments, two (autumn and spring) or one (spring) in the first year, or two (autumn and spring) or three (autumn, winter, and spring) in the second year times of tillage with chemical or organic fertilizer application, were established. Gas fluxes were measured by the closed-chamber method. Increasing the number of tillage times from one to two decreased succeeding CH4 emission and the emission factor for CH4 (EFCH4) in the rice-growing season, suggesting that the substrate for CH4 production was reduced by autumn and spring tillage in the fallow season. Higher EFCH4 [1.8–2.0 kg carbon (C) ha?1 d?1] was observed when more straw was applied (6.9–7.2 Mg ha?1) in the second year. Organic fertilizer application induced higher CH4 emission just after the application as basal and supplemental fertilizers, especially at a lower straw application rate. This indicated that EFCH4 in the organically managed fields should be determined individually. Organic fertilizer application with two tillage times induced N2O efflux during the rice-growing season in the second year, but N2O emissions were not affected by winter tillage. Although paddy fields can act as an N2O sink because of reduced soil conditions when straw application was high, application of organic C and nitrogen as fertilizer can enhance N2O production by the denitrification process during the growing season, especially in the ripening stage when soil anaerobic conditions became moderate. These results suggest that negative emission factors for N2O (EFN2O) can be applied, and EFN2O of organic fertilizer should be considered during the estimation of N2O emission in the paddy field.  相似文献   

13.
探讨秸秆还田与施氮对高纬度黑土区春玉米产量与温室气体排放特性的影响,对促进粮食增产和降低环境代价具有重要意义。本研究通过位于黑土区的大田定位试验,利用静态箱-气相色谱计数方法,在秸秆还田与不还田和3个氮素用量(纯N:120 kg·hm~(-2),240 kg·hm~(-2)和300 kg·hm~(-2))条件下,研究了春玉米不同生育时期农田土壤CO2、N2O和CH4综合温室效应与排放强度,以及土壤过氧化氢酶和脲酶活性的变化。结果表明:无秸秆还田时,高氮用量处理春玉米产量最高;秸秆还田后,中等氮用量处理(240 kg·hm~(-2))春玉米产量最高,且与无秸秆还田的高氮处理间无显著差异。无秸秆还田时,随施氮量增加,CO2、N2O和CH4排放量均显著提高,综合温室效应和土壤温室气体排放量与强度显著增加(P0.05);增施氮肥配合秸秆还田,增加了CO2和N2O的排放量,而土壤CH4的碳汇功能增强,温室气体排放量与强度未显著提高(P0.05)。无秸秆还田,增施氮肥降低了土壤过氧化氢酶活性但提高了土壤脲酶活性;而秸秆还田使得增施氮肥引起的土壤过氧化氢酶活性降低的幅度加大但土壤脲酶活性提高的幅度变小。因此,秸秆还田后配合中等用量氮处理(240 kg·hm~(-2))玉米产量最高,且能够抑制单纯增施氮肥对综合温室效应和土壤温室气体排放强度的促进作用,推荐在生产中参考使用。  相似文献   

14.
More efficient use of green manure-derived nitrogen (N) may improve crop yields and reduce environmental impacts in stockless organic arable farming. In this 3-month incubation study, we tested a new strategy where green manure leys are harvested and preserved until the following spring either as compost mixed with straw or as silage of harvested ley biomass. Grass-clover compost or silage was soil-incorporated by either simulated ploughing (green manure placed at 15 cm depth) or harrowing (green manure mixed into the upper 5-cm soil horizon) in order to assess treatment effects on net release of plant-available N, nitrous oxide (N2O) fluxes and soil respiration. Grass-clover silage provided the highest net N release with similar results for the two incorporation methods. Up to one third of the total N content in silage became plant-available during the 3 months. In contrast, no net N release was observed for the composted grass-clover and straw mixture. In fact, soil incorporation of compost by harrowing caused temporal immobilization of soil mineral N. Silage incorporated by ploughing gave rise to the largest N2O effluxes with silage-induced emissions corresponding to 0.3 % of applied total N. Possibly N2O production via denitrification was stimulated by oxygen-limited conditions near the decomposing silage. In contrast, compost incorporated by harrowing caused net N2O uptake, presumably an effect of reduced mineral N availability in this treatment. Overall, our study revealed that ensiled grass-clover was the best fertilizer product and that the method chosen for incorporation of green manure is likely to influence N2O emissions.  相似文献   

15.
Combination of a pre-season wet soil condition and rice straw incorporation just before transplanting, which is typical for a tropical rice double cropping, can induce a flash of methane (CH4) emission shortly after the transplanting. The conventional practice of alternate wetting and drying (AWD) irrigation technique that typically starts at 21 days after transplanting (DAT) can hardly reduce this emission because the soil become methanogenic before the onset of AWD treatment. Field experiments were conducted in Central Luzon, Philippines, during the 2014–2017 dry rice seasons to examine the effects of the timing of rice straw/stubble incorporation on the efficacy of AWD in reducing the CH4 emission. Two treatments of the timing of stubble incorporation were stubbles incorporated during the start of wet land preparation (S1) and stubbles incorporated during the dry fallow tillage (S2). For the water management, we compared two treatments: continuous flooding (CF) and AWD with – 15 cm threshold for irrigation. The AWD under S2 was implemented earlier at 10 DAT. We observed a significant interaction (p < 0.01) between effects of AWD and straw management on CH4 emissions; the seasonal total CH4 emission was reduced by AWD compared with CF by 73% under S2, while the reduction was <20% under S1. The AWD significantly (p < 0.05) increased the nitrous oxide (N2O) emissions by 47 and 48% relative to CF under S1 and S2, respectively. The global warming potential (GWP, CH4 + N2O) and yield-scaled GWP were still substantially lower by 62 and 59%, respectively, in AWD than in CF under S2, but the reduction was not realized under S1 due to the relatively smaller CH4 reduction and increased N2O emission. The results confirm that pre-season aerobic stubble decomposition and earlier implementation of AWD enhanced AWD’s mitigation potential in reducing substantially the CH4 emission from the tropical rice double-cropping system.  相似文献   

16.
Abstract

We studied the effect of crop residues with various C:N ratios on N2O emissions from soil. We set up five experimental plots with four types of crop residues, onion leaf (OL), soybean stem and leaf (SSL), rice straw (RS) and wheat straw (WS), and no residue (NR) on Gray Lowland soil in Mikasa, Hokkaido, Japan. The C:N ratios of these crop residues were 11.6, 14.5, 62.3, and 110, respectively. Based on the results of a questionnaire survey of farmer practices, we determined appropriate application rates: 108, 168, 110, 141 and 0 g C m?2 and 9.3, 11.6, 1.76, 1.28 and 0 g N m?2, respectively. We measured N2O, CO2 and NO fluxes using a closed chamber method. At the same time, we measured soil temperature at a depth of 5 cm, water-filled pore space (WFPS), and the concentrations of soil NH+ 4-N, NO? 3-N and water-soluble organic carbon (WSOC). Significant peaks of N2O and CO2 emissions came from OL and SSL just after application, but there were no emissions from RS, WS or NR. There was a significant relationship between N2O and CO2 emissions in each treatment except WS, and correlations between CO2 flux and temperature in RS, soil NH+ 4-N and N2O flux in SSL and NR, soil NH+ 4-N and CO2 flux in SSL, and WSOC and CO2 flux in WS. The ratio of N2O-N/NO-N increased to approximately 100 in OL and SSL as N2O emissions increased. Cumulative N2O and CO2 emissions increased as the C:N ratio decreased, but not significantly. The ratio of N2O emission to applied N ranged from ?0.43% to 0.86%, and was significantly correlated with C:N ratio (y = ?0.59 ln [x] + 2.30, r 2 = 0.99, P < 0.01). The ratio of CO2 emissions to applied C ranged from ?5.8% to 45% and was also correlated with C:N ratio, but not significantly (r 2 = 0.78, P = 0.11).  相似文献   

17.
Biochar has been shown to be potentially beneficial for enhancing yields and soil properties, and diminishing nitrogen (N) losses. However, it remains unclear how biochar regulates soil carbon (C) and N to mitigate N losses induced by straw mixing with N fertilizer in dryland soils. Therefore, we investigated the effects of straw mixing (S1), S1 with biochar (SB) and no straw inputs (S0), and routine urea application rates (N1) and 70% of routine rates (N0.7) on yields and N losses, and identify the relationship between N losses and soil C and N compounds. Results showed that N0.7 and N1 were suitable for the maize and wheat seasons, respectively, contributing to mitigating N losses without reducing crop yields. Moreover, in the maize season, N0.7-SB significantly mitigated the straw-induced NH3-N and N2O-N emissions by 106% and 81%, respectively. In the wheat season, N1-SB reduced the straw-induced NH3-N and N2O-N emissions by 35% and 66%, respectively. In addition, N0.7-SB sharply reduced soil inorganic N (SIN) storage in the maize season. Furthermore, the NH3-N and N2O-N emission rates were negatively correlated with dissolved organic carbon/SIN content (0–20 cm) (DOC/SIN0-20). N losses (N2O-N and NH3-N emissions and SIN storage) were positively correlated with SIN0-20, but negatively correlated with soil organic carbon / SIN0-20 (SOC/ SIN0-20). This study provides further evidence that biochar with an appropriate N application rate decreased SIN0-20 and increased DOC/SIN0-20, thus reducing SIN storage and the straw-induced gaseous N emissions without decreasing crop yields.  相似文献   

18.
ABSTRACT

The influence of long-term application of different types of compost on rice grain yield, CH4 and N2O emissions, and soil carbon storage (0 ? 30 cm) in rice paddy fields was clarified. Two sets of paddy fields applied with rice straw compost or livestock manure compost mainly derived from cattle were used in this study. Each set comprised long-term application (LT) and corresponding control (CT) plots. The application rates for rice straw compost (42 years) and livestock manure compost (41 years in total with different application rates) were 20 Mg fresh weight ha–1. Soil carbon storage increased by 33% and 37% with long-term application of rice straw compost and livestock manure compost, respectively. The soil carbon sequestration rate by the organic matter application was 23% higher with the livestock manure compost than with the rice straw compost. The rice grain yield in the LT plot was significantly higher than that in the corresponding CT plot with both types of compost. Although the difference was not significant in the rice straw compost, cumulative CH4 emissions increased with long-term application of both composts. Increase rate of CH4 emission with long-term application was higher in the livestock manure compost (99%) than that in the rice straw compost (26%). In both composts, the long-term application did not increase N2O emission significantly. As with the rice straw compost, the increase in CH4 emission with the long-term application of livestock manure compost exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was positive, indicating a net increase in the GHG emissions. The increase in CH4 and net GHG emissions owing to the long-term application of the livestock manure compost could be higher than that of the rice straw compost owing to the amount of applied carbon, the quality of compost and the soil carbon accumulation. The possibility that carbon sequestration in the subsoil differs depending on the type of composts suggests the importance of including subsoil in the evaluation of soil carbon sequestration by long-term application of organic matter.  相似文献   

19.
ABSTRACT

The influence of the long-term combination of rice straw removal and rice straw compost application on methane (CH4) and nitrous oxide (N2O) emissions and soil carbon accumulation in rice paddy fields was clarified. In each of the initial and continuous application fields (3 and 39?51 years, respectively), three plots with different applications of organic matter were established, namely, rice straw application (RS), rice straw compost application (SC) and no application (NA) plots, and soil carbon storage (0?15 cm), rice grain yield and CH4 and N2O fluxes were measured for three years. The soil carbon sequestration rate by the organic matter application was higher in the SC plot than in the RS plot for both the initial and continuous application fields, and it was lower in the continuous application field than in the initial application field. The rice grain yield in the SC plot was significantly higher than those in the other plots in both the initial and continuous application fields. Cumulative CH4 emissions followed the order of the NA plot < the SC plot < the RS plot for both the initial and continuous application fields. The effect of the organic matter application on the N2O emissions was not clear. In both the initial and continuous application fields, the increase in CH4 emission by the rice straw application exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was a positive, indicating a net increase in the GHG emissions. However, the change in the GHG balance by the rice straw compost application showed negative (mitigating GHG emissions) for the initial application field, whereas it showed positive for the continuous application field. Although the mitigation effect on the GHG emissions by the combination of the rice straw removal and rice straw compost application was reduced by 21% after 39 years long-term application, it is suggested that the combination treatment is a sustainable management that can mitigate GHG emissions and improve crop productivity.  相似文献   

20.
The net effect of no-till techniques on nitrous oxide (N2O) emissions is inconsistent and poorly quantified in comparison to conventionally tilled farming. This study assesses N2O emissions and yields from paddy fields during the wheat-growing season under conventional and no-till farming, as well as mitigation of N2O evolution using dicyandiamide and chlorinated pyridine (CP) as nitrification inhibitor (NI). Both tillage practices and NIs significantly (P?<?0.01) affected cumulative N2O emissions and yields. In comparison to conventional tillage, the cumulative N2O emissions under no-till farming were increased by 8.2–19.3 % and the water-filled pore space was higher on most days. Relative to no-tillage, the conventional tillage averagely increased the wheat yield by 6.0 % and reduced yield-scaled N2O–N emission by 44.5 %. The two NIs averagely increased the wheat yield by 9.7 % and reduced yield-scaled N2O–N emission by 67.7 %. The treatment with CP produced the highest yield with the lowest N2O emissions, thus leading to the lowest yield-scaled N2O–N emission (0.15–0.17 kg N2O–N t?1 grain yield) under both tillage practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号