首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
《Applied soil ecology》2007,37(2-3):147-155
A number of studies have reported species specific selection of microbial communities in the rhizosphere by plants. It is hypothesised that plants influence microbial community structure in the rhizosphere through rhizodeposition. We examined to what extent the structure of bacterial and fungal communities in the rhizosphere of grasses is determined by the plant species and different soil types. Three grass species were planted in soil from one site, to identify plant-specific influences on rhizosphere microbial communities. To quantify the soil-specific effects on rhizosphere microbial community structure, we planted one grass species (Lolium perenne L.) into soils from three contrasting sites. Rhizosphere, non-rhizosphere (bulk) and control (non-planted) soil samples were collected at regular intervals, to examine the temporal changes in soil microbial communities. Rhizosphere soil samples were collected from both root bases and root tips, to investigate root associated spatial influences. Both fungal and bacterial communities were analysed by terminal restriction fragment length polymorphism (TRFLP). Both bacterial and fungal communities were influenced by the plant growth but there was no evidence for plant species selection of the soil microbial communities in the rhizosphere of the different grass species. For both fungal and bacterial communities, the major determinant of community structure in rhizospheres was soil type. This observation was confirmed by cloning and sequencing analysis of bacterial communities. In control soils, bacterial composition was dominated by Firmicutes and Actinobacteria but in the rhizosphere samples, the majority of bacteria belonged to Proteobacteria and Acidobacteria. Bacterial community compositions of rhizosphere soils from different plants were similar, indicating only a weak influence of plant species on rhizosphere microbial community structure.  相似文献   

2.
Arbuscular mycorrhizal fungi (AMF) are important functional components of ecosystems. Although there is accumulating knowledge about AMF diversity in different ecosystems, the effect of forest management on diversity and functional characteristics of AMF communities has not been addressed. Here, we used soil inoculum representing three different AM fungal communities (from a young forest stand, an old forest stand and an arable field) in a greenhouse experiment to investigate their effect on the growth of three plant species with contrasting local distributions - Geum rivale, Trifolium pratense and Hypericum maculatum. AM fungal communities in plant roots were analysed using the terminal restriction fragment length polymorphism (T-RFLP) method. The effect of natural AMF communities from the old and young forest on the growth of studied plant species was similar. However, the AMF community from the contrasting arable ecosystems increased H. maculatum root and shoot biomass compared with forest inocula and T. pratense root biomass compared to sterile control. According to ordination analysis AMF inocula from old and young forest resulted in similar root AMF communities whilst plants grown with AM fungi from arable field hosted a different AMF community from those grown with old forest inocula. AMF richness in plant roots was not related to the origin of AMF inoculum. G. rivale hosted a significantly different AM fungal community to that of T. pratense and H. maculatum. We conclude that although the composition of AM fungal communities in intensively managed stands differed from that of old stands, the ecosystem can still offer the ‘symbiotic service’ necessary for the restoration of a characteristic old growth understorey plant community.  相似文献   

3.
Glasshouse bioassays were conducted to assess the impact of different inputs of oilseed rape plant material on soil and rhizosphere microbial diversity associated with subsequently grown oilseed rape (Brassica napus) plants. The first bioassay focussed on the effect of oilseed rape rhizodeposits and fresh detached root material on microbial communities, in a rapid-cycling experiment in which oilseed rape plants were grown successively in pots of field soil for 4 weeks at a time, with six cycles of repeated vegetative planting in the same pot. Molecular analyses of the microbial communities after each cycle showed that the obligate parasite Olpidium brassicae infected the roots of oilseed rape within 4 weeks after the first planting (irrespective of the influence of rhizodeposits alone or in the presence of fresh detached root material), and consistently dominated the rhizosphere fungal community, ranging in relative abundance from 43 to 88 % when oilseed rape was grown more than once in the same soil. Fresh detached root material also led to a reduction in diversity within the soil fungal community, due to the increased relative abundance of O. brassicae. In addition, rhizosphere bacterial communities were found to have a reduced diversity over time when fresh root material was retained in the soil. In the second glasshouse experiment, the effect of incorporating mature, field-derived oilseed rape crop residues (shoots and root material) on microbial communities associated with subsequently grown oilseed rape was investigated. As before, molecular analyses revealed that O. brassicae dominated the rhizosphere fungal community, despite not being prevalent in either the residue material or soil fungal communities.  相似文献   

4.
Effects of diverse agricultural land management practices on soil and on root colonizing fungal communities were determined through a PCR-based molecular method and a culture-dependent method, respectively, in a field location with uniform soil type. Initiated in July 2000, the management systems were: conventional tomato production, frequent tillage (disk fallow), undisturbed weed fallow, bahiagrass pasture (Paspalum notatum var. notatum ‘Argentine’), and an organically managed system including cover crops and annual applications of poultry manure and urban plant debris. Culture-dependent colony counting was used to identify and enumerate communities of root colonizing fungi and length heterogeneity polymerase chain reaction (LH-PCR) analysis of internal transcribed spacer-1 (ITS-1) profiles to characterize phylotypes in soil fungal communities. Three years after initiation of land management treatments and midway through tomato cultivation, both methods detected a high degree of similarity in fungal community composition between weed fallow and bahiagrass plots. Soil fungal communities in organically managed plots were similar to each other and distinct from communities in other land management systems while the composition of root colonizing fungal communities in organic plots was divergent. The results demonstrate that the soil fungal communities and root colonizing fungal communities were affected differently depending on land and crop management practices. Fusarium oxysporum was a dominant species in all soil and root colonizing fungal communities except those subjected to organic management practices.  相似文献   

5.
Understanding the underlying mechanisms driving responses of belowground communities to increasing soil fertility will facilitate predictions of ecosystem responses to anthropogenic eutrophication of terrestrial systems. We studied the impact of fertilization of an alpine meadow on arbuscular mycorrhizal (AM) fungi, a group of root-associated microorganisms that are important in maintaining sustainable ecosystems. Species and phylogenetic composition of AM fungal communities in soils were compared across a soil fertility gradient generated by 8 years of combined nitrogen and phosphorus fertilization. Phylogenetic patterns were used to infer the ecological processes structuring the fungal communities. We identified 37 AM fungal virtual taxa, mostly in the genus Glomus. High fertilizer treatments caused a dramatic loss of Glomus species, but a significant increase in genus richness and a shift towards dominance of the lineage of Diversispora. AM fungal communities were phylogenetically clustered in unfertilized soil, random in the low fertilizer treatment and over-dispersed in the high fertilizer treatments, suggesting that the primary ecological process structuring communities shifted from environmental filtering (selection by host plants and fungal niches) to a stochastic process and finally to competitive exclusion across the fertilization gradient. Our findings elucidate the community shifts associated with increased soil fertility, and suggest that high fertilizer inputs may change the dominant ecological processes responsible for the assembly of AM fungal communities towards increased competition as photosynthate from host plants becomes an increasingly limited resource.  相似文献   

6.
Two complementary studies were performed to examine (1) the effect of 18 years of nitrogen (N) fertilization, and (2) the effects of N fertilization during one growing season on soil microbial community composition and soil resource availability in a grassland ecosystem. N was added at three different rates: 0, 5.44, and 27.2 g N m−2 y−1. In both studies, Schizachyrium scoparium was the dominant plant species before N treatments were applied. Soil microbial communities from each experiment were characterized using fatty acid methyl ester (FAME) analysis. Discriminant analysis of the FAMEs separated the three N fertilizer treatments in both experiments, indicating shifts in the composition of the microbial communities. In general, plots that received N fertilizer at low or high application rates for 18 years showed increased proportions of bacterial FAMEs and decreased fungal FAMEs. In particular, control plots contained a significantly higher proportion of fungal FAMEs C18:1(cis9) and C18:2(cis9,12) and of the arbuscular mycorrhizal fungal (AMF) FAME, C16:1(cis11), than both of the N addition treatment plots. A significant negative effect of N fertilization on the AMF FAME, C16:1(cis11), was measured in the short-term experiment. Our results indicate that high rates of anthropogenic N deposition can lead to significant changes in the composition of soil microbial communities over short periods and can even disrupt the relationship between AMF and plants.  相似文献   

7.
The quantity and quality of peanut yields are seriously compromised by consecutive monoculture in the subtropical regions of China. Root exudates, which represent a growth regulator in peanut–soil feedback processes, play a principal role in soil sickness. The growth inhibition of a species in an in vitro bioassay enriched with root exudates and allelochemicals is commonly viewed as evidence of an allelopathic interaction. However, for some of these putative examples of allelopathy, the results have not been verified in more natural settings with plants continuously growing in soil. In this study, the phenolic acids in peanut root exudates, their retention characteristics in an Udic Ferrosol, and their effects on rhizosphere soil microbial communities and peanut seedling growth were studied. Phenolic acids from peanut root exudates were quickly metabolized by soil microorganisms and did not accumulate to high levels. The peanut root exudates selectively inhibited or stimulated certain communal bacterial and fungal species, with decreases in the relative abundance of the bacterial taxa Gelria glutamica, Mitsuaria chitosanitabida, and Burkholderia soli and the fungal taxa Mortierella sp. and Geminibasidium hirsutum and increases in the relative abundance of the bacterial taxon Desulfotomaculum ruminis and the fungal taxa Fusarium oxysporum, Bionectria ochroleuca and Phoma macrostoma. The experimental application of phenolic acids to non-sterile and sterile soil revealed that the poor performance of the peanut plants was attributed to changes in the soil microbial communities promoted by phenolic acids. These results suggest that pathogenic fungal accumulation at the expense of such beneficial microorganisms as plant growth promoting rhizobacteria, mycorrhizal fungi induced by root exudates, rather than direct autotoxicity induced by root exudates, might represent the principal cause underlying the soil sickness associated with peanut plants. We hope that our study will motivate researchers to integrate the role of soil microbial communities in allelopathic research, such that their observed significance in soil sickness during continuous monocropping of fields can be further explored.  相似文献   

8.
The effects of coloniser plant species on microbial community growth and composition were investigated on recently deglaciated terrain at Glacier Bay, south-east Alaska. Analysis of microbial communities using phospholipids fatty acid analysis (PLFA) revealed that Alnus and Rhacomitrium had the greatest impact on microbial growth, increasing total PLFA by some 6-7 fold relative to bare soil, whereas Equisetum led to a 5.5 fold increase in total PLFA relative to bare soil. These coloniser species also had significant effects on the composition of their associated microbial communities. Rhacomitrium, Alnus, and Equisetum increased bacterial PLFA, a measure of bacterial biomass, relative to bare soil. Rhacomitrium and Alnus also dramatically increased the concentration of the fungal fatty 18:2ω6 in soil relative to bare soil, by 12-fold and 8-fold, respectively. The net effect of the above changes was a significant increase in the ratio of fungal: bacterial fatty acids in soil associated with Alnus and Rhacomitrium, but not Equisetum. Possible reasons for these effects of particular plants on microbial communities are discussed, as is their significance in relation to the development of microbial communities in relatively sterile, recently deglaciated ground.  相似文献   

9.
The effect of manure and mineral fertilization on the arbuscular mycorrhizal (AM) fungal community structure of sunflower (Helianthus annuus L.) plants was studied. Soils were collected from a field experiment treated for 12 years with equivalent nitrogen (N) doses of inorganic N, dairy manure slurry, or without N fertilization. Fresh roots of tall fescue (Festuca arundinacea Schreb.) grass collected from the field plots without N fertilization and unfumigated field soils were used as native microbial inoculum sources. Sunflower plants were sown in pots containing these soils, and three different means of manipulating the microbial community were set: unfumigated soil with fresh grass roots, fumigated soil with fresh grass roots, or fumigated soil with sterilized grass roots. Assessing the implications with respect to plant productivity and mycorrhizal community structure was investigated. Twelve AM fungal OTUs were identified from root or soil samples as different taxa of Acaulospora, Claroideoglomus, Funneliformis, Rhizophagus, and uncultured Glomus, using PCR-DGGE and sequencing of an 18S rRNA gene fragment. Sunflower plants grown in manure-fertilized soils had a distinct AMF community structure from plants either fertilized with mineral N or unfertilized, with an abundance of Rhizophagus intraradices-like (B2). The results also showed that AM inoculation increased P and N contents in inorganic N-fertilized or unfertilized plants, but not in manure-fertilized plants.  相似文献   

10.
《Applied soil ecology》2010,46(3):138-143
We tested the potential for arbuscular mycorrhizal fungi to mediate plant adaptation to mine soil conditions utilizing a full factorial experiment involving two fungal communities, two ecotypes of plants and two soil types. We found that plants grew larger with fungal communities derived from mine soil regardless of the soil type in which they were grown. There was no evidence that the plants suffered from aluminum toxicity; however, plants grown in coal tailings produced far less biomass than those grown in low-nutrient clay soil. Andropogon virginicus L. grown from seeds collected from a coal mine had increased allocation to roots in sterile soil. Plantago lanceolata L. grown from seeds collected from a coal mine also showed an increased allocation to roots. We concluded that harsh edaphic conditions may help reinforce the symbiotic relationship between plants and AM fungi, resulting in more beneficial symbionts.  相似文献   

11.
We studied the microbial communities in maize (Zea mays) rhizosphere to determine the extent to which their structure, biomass, activity and growth were influenced by plant genotype (su1 and sh2 genes) and the addition of standard and high doses of different types of fertilizer (inorganic, raw manure and vermicompost). For this purpose, we sampled the rhizosphere of maize plants at harvest, and analyzed the microbial community structure (PLFA analysis) and activity (basal respiration and bacterial and fungal growth rates). Discriminant analysis clearly differentiated rhizosphere microbial communities in relation to plant genotype. Although microorganisms clearly responded to dose of fertilization, the three fertilizers also contributed to differentiate rhizosphere microbial communities. Moreover, larger plants did not promoted higher biomass or microbial growth rates suggesting complex interactions between plants and fertilizers, probably as a result of the different performance of plant genotypes within fertilizer treatments, i.e. differences in the quality and/or composition of root exudates.  相似文献   

12.
Fungi are key to the functioning of soil ecosystems, and exhibit a range of interactions with plants. Given their close associations with plants, and importance in ecosystem functioning, soil-borne fungi have been proposed as potential biological indicators of disturbance and useful agents in monitoring strategies, including those following the introduction of genetically modified (GM) crops. Here we report on the impact of potato crop varieties, including a cultivar that was genetically modified for its starch quality, on the community composition of the main phyla of fungi in soils, i.e. Ascomycota, Basidiomycota and Glomeromycota in rhizosphere and bulk soil. Samples were collected at two field sites before sowing, at three growth stages during crop development and after the harvest of the plants, and the effects of field site, plant growth stage and plant cultivar (genotype) on fungal community composition assessed using three phylum-specific T-RFLP profiling strategies and multivariate statistical analysis (NMDS ordinations with ANOSIM test). In addition, fungal biomass, arbuscular mycorrhizal colonization of roots and activities of extracellular fungal enzymes (laccases, Mn-peroxidases and cellulases) involved in degradation of lignocelluloses-rich organic matter were determined. Fungal community compositions, densities and activities were observed to differ significantly between the rhizosphere and bulk soil. The most important factors determining fungal community composition and functioning were plant growth stage for the rhizosphere communities and location and soil properties for the bulk soil communities. The basidiomycetes were the most numerous fungal group in the bulk soils and in the rhizosphere of young plants, with a shift toward greater ascomycete numbers in the rhizosphere at later growth stages. There were no detectable differences between the GM cultivar and its parental cultivar in terms of influence on fungal community structure of function. Fungal community structure and functioning of both GM- and parental cultivars fell within the range of other cultivars at most sampling moments.  相似文献   

13.
The present study of arbuscular mycorrhizal (AM) fungi is focused on the identification of AM ecotypes associated with different plants species (Poa annua, Medicago polymorpha, and Malva sylvestris) growing in three contaminated soils with different organic matter, phosphorus, and trace element (TE; Cu, Cd, Mn, and Zn) contents. Soils were amended with biosolid and alperujo compost. Shifts in AM fungal community structure, diversity, richness, root colonization, and plant TE uptake were evaluated. Soil properties and plant species had a significant effect on AM fungal community composition as well as on root colonization. However, AM fungal diversity and richness were only affected by soil properties and especially by soil organic matter that was a major driver of AM fungal community. As soil quality increased, Glomeraceae decreased in favor of Claroideoglomeraceae in the community, AM fungal diversity and richness increased, and root colonization decreased. No effect due to amendment (exogenous organic matter) addition was found either in AM fungal parameters measured or TE plant uptake. Our results revealed that the role of TE contamination was secondary for the fungal community behavior, being the native organic matter content the most significant factor.  相似文献   

14.
Although extreme climatic events such as drought have important consequences for belowground carbon (C) cycling, their impact on the plant-soil system of mixed plant communities is poorly understood. Our objective was to study the effect of drought on C allocation and rhizosphere-mediated CO2 fluxes under three plant species: Lolium perenne, Festuca arundinacea and Medicago sativa grown in monocultures or mixture. The conceptual approach included 14CO2 pulse labeling of plants grown under drought and optimum water conditions in order to be able to follow above- and belowground C allocation. After 14C pulse labeling, we traced 14C allocation to shoots and roots, soil and rhizospheric CO2, dissolved organic carbon (DOC) and microbial biomass.Drought and plant community composition significantly affected assimilate allocation in the plant-soil system. Drought conditions changed the source sink relationship of monocultures, which transferred a relatively larger portion of assimilates to their roots compared to water sufficient plants. In contrast, plant mixture showed an increase in 14C allocation to shoots when exposed to drought.Under drought stress, root respiration was reduced for all monocultures except under the legume species. Microbial respiration remained similar in all cases showing that microbial activity was less affected by drought than root activity. This may be explained by strongly increased assimilate allocation to easily available exudates or rhizodeposits under drought. In conclusion, plant community composition may modify the impact of climatic changes on carbon allocation and belowground carbon fluxes. The presence of legume species attenuates drought effects on rhizosphere processes.  相似文献   

15.
Both environmental and climatic changes are known to influence soil microbial biomes in terrestrial ecosystems. However, there are limited data defining the interactive effects of multi-factor environmental disturbances, including N-deposition, precipitation, and air temperature, on soil fungal communities in temperate forests. A 3-year outdoor pot experiment was conducted to examine the temporal shifts of soil fungal communities in a temperate forest following N-addition, precipitation and air temperature changes. The shifts in the structure and composition of soil fungal communities were characterized by denaturing gradient gel electrophoresis and DNA sequencing. N-addition regimen induced significant alterations in the composition of soil fungal communities, and this effect was different at both higher and lower altitudes. The response of the soil fungal community to N-addition was much stronger in precipitation-reduced soils compared to soils experiencing enhanced precipitation. The combined treatment of N-addition and reduced precipitation caused more pronounced changes in the lower altitude versus those in the higher one. Certain fungal species in the subphylum Pezizomycotina and Saccharomycotina distinctively responded to N fertilization and soil water control at both altitudes. Redundancy discrimination analysis showed that changes in environmental factors and soil physicochemical properties explained 43.7% of the total variability in the soil fungal community at this forest ecosystem. Variations in the soil fungal community were significantly related to the altitude, soil temperature, total soil N content (TN) and pH value (P < 0.05). We present evidence for the interactive effects of N-addition, water manipulation and air temperature to reshape soil fungal communities in the temperate forest. Our data could provide new insights into predicting the response of soil micro-ecosystem to climatic changes.  相似文献   

16.
《Applied soil ecology》2007,35(2):261-271
Arbuscular mycorrhizal (AM) fungi are known to exist in wetlands, but little is known about their function in these environments. We conducted greenhouse experiments to study the effects of AM fungal assemblages—collected from different vegetation communities in a Florida wetland-under free-drained and flooded conditions, and at three phosphorus (P) levels on growth and P nutrition of Typha latifolia L. and Panicum hemitomon Schult. We also studied the effects of flooding on the spread of extraradical hyphae from P. hemitomon roots. For both plants no AM fungal assemblage had a consistent effect on plant growth and P nutrition. For T. latifolia, flooding nearly eliminated AM fungal colonization and, in the free-drained treatments, P amendment suppressed colonization. Furthermore, colonization by some mycorrhizal assemblages increased shoot- and root-P concentrations, but there were no significant plant growth responses. For P. hemitomon, the mycorrhizal association was suppressed by flooding and P amendment but, among the fungal assemblages, there were differences in root colonization. Mycorrhizal colonization improved some plant-growth and P-nutrition parameters at lower P levels relative to nonmycorrhizal controls, but generally conferred no benefit or was detrimental at higher P levels. Extraradical hyphae of most assemblages were restricted by flooding to 2.5 cm, though differences among AM fungal assemblages occurred with a maximum observed extension of 16.5 cm. We conclude that the impact of the mycorrhizal association on these wetland plants was a function of the complex interactions among the AM fungal assemblages, plant species, water condition, and P level. Future studies should focus on understanding the species composition of the assemblages, and potential adaptation to wetland conditions among these fungal species.  相似文献   

17.
Plants can mediate interactions between aboveground herbivores and belowground decomposers as both groups depend on plant-provided organic carbon. Most vascular plants also form symbiosis with arbuscular mycorrhizal fungi (AMF), which compete for plant carbon too. Our aim was to reveal how defoliation (trimming of plant leaves twice to 6 cm above the soil surface) and mycorrhizal infection (inoculation of the fungus Glomus claroideum BEG31), in nutrient poor and fertilized conditions, affect plant growth and resource allocation. We also tested how these effects can influence the abundance of microbial-feeding animals and nitrogen availability in the soil. We established a 12-wk microcosm study of Plantago lanceolata plants growing in autoclaved soil, into which we constructed a simplified microfood-web including saprotrophic bacteria and fungi and their nematode feeders. We found that fertilization, defoliation and inoculation of the mycorrhizal fungus all decreased P. lanceolata root growth and that fertilization increased leaf production. Plant inflorescence growth was decreased by defoliation and increased by fertilization and AMF inoculation. These results suggest a negative influence of the treatments on P. lanceolata belowground biomass allocation. Of the soil organisms, AMF root colonization decreased with fertilization and increased with defoliation. Fertilization decreased numbers of bacterial-feeding nematodes, probably because fertilized plants produced less root mass. On the other hand, bacterial feeders were more abundant when associated with defoliated than non-defoliated plants despite defoliated plants having less root mass. The AMF inoculation per se increased the abundance of fungal feeders, but the reduced and increased root AM colonization rates of fertilized and defoliated plants, respectively, were not reflected in the numbers of fungal feeders. We found no evidence of plant-mediated effects of the AM fungus on bacterial feeders, and against our prediction, soil inorganic nitrogen concentrations were not positively associated with the concomitant abundances of microbial-feeding animals. Altogether, our results suggest that (1) while defoliation, fertilization and AMF inoculation all affect plant resource allocation, (2) they do not greatly interact with each other. Moreover, it appears that (3) while changes in plant resource allocation due to fertilization and defoliation can influence numbers of bacterial feeders in the soil, (4) these effects may not significantly alter mineral N concentrations in the soil.  相似文献   

18.
The progenitor of maize is Balsas teosinte (Zea mays subsp. parviglumis) which grows as a wild plant in the valley of the Balsas river in Mexico. Domestication, primarily targeting above-ground traits, has led to substantial changes in the plant's morphology and modern maize cultivars poorly resemble their wild ancestor. We examined the hypotheses that Balsas teosinte (accession PI 384071) has a) a different root system architecture and b) a structurally and functionally different rhizosphere microbial community than domesticated cultivars sweet corn (Zea mays subsp. mays accession PI 494083) and popping corn (Zea mays subsp. mays accession PI 542713). In a greenhouse experiment, five plants from each corn variety were grown in individual pots containing a Maury silt loam – perlite (2:1) mixture and grown to the V8 growth stage at which rhizosphere bacterial and fungal community structure was assessed using terminal restriction fragment length polymorphism and fatty acid methyl ester analysis. Functional characteristics of the rhizosphere were assayed by examining the potential activity of seven extracellular enzymes involved in carbon, nitrogen and phosphorus cycling. Root system architecture was characterized by root scans of sand grown plants at the V5 growth stage. Compared to the control the sweet corn rhizosphere had different bacterial and fungal community structure, decreased fungal diversity and increased bacterial abundance. Teosinte caused a significant change in the rhizosphere bacterial and fungal community structure and increased bacterial abundance, but no significant decrease in bacterial or fungal diversity where the former was found to be significantly greater than in the sweet corn rhizosphere. Popping corn did not trigger significant changes in the bacterial or fungal diversity and bacterial abundance in the soil. The individual popping corn plants changed the bacterial and fungal communities in different directions and the overall effect on community structure was significant, but small. Of the enzymes analyzed, potential N-acetylglucosaminidase (NAG) activity was found to contributed most to the differentiation of teosinte rhizosphere samples from the other corn varieties. The teosinte root system had proportionally more very fine (diameter < 0.03 mm) roots than popping corn and sweet corn and it developed the highest root to shoot dry weight ratio, followed by popping corn. Sweet corn had significantly lower average root diameter than popping corn and teosinte and grew proportionally the least below-ground dry mass. The results allude to functional and structural differences in the rhizosphere microbial communities of the corn varieties that, with additional research, could lead to useful discoveries on how corn domestication has altered rhizosphere processes and how plant genotype influences nutrient cycling.  相似文献   

19.
Soil chemistry and biota heavily influence crop plant growth and mineral nutrition. The stress-severity and optimal resource allocation hypotheses predict mutualistic symbiotic benefits to increase with the degree of metabolic imbalance and environmental stress. Using two cross-factorial pot experiments with the same biologically active calcareous soil, one time highly saline and nutrient-deficient, and the other time partially desalinated and amended with mineral soil fertilizer, we explored whether these general predictions hold true for zinc (Zn) nutrition of bread wheat in mycorrhizal symbiosis. Increased arbuscular mycorrhizal (AM) fungal root colonization positively correlated with plant Zn nutrition, but only when plants were impaired in growth due to salinity and nutrient-deficiency; this was particularly so in a cultivar-responsive to application of mineral Zn fertilizer. Evidence for direct involvement of AM fungi were positive correlations between Zn uptake from soil and frequency of fungal symbiotic nutrient exchange organelles, as well as the quantitative abundance of AM fungi of the genera Funneliformis and Rhizophagus, but not Claroideoglomus. Combined partial soil desalination and fertilization swapped the dominance ranking from Claroideoglomus spp. to Funneliformis spp. Positive growth, nitrogen, and Zn uptake responses to mycorrhization were contingent on moderate soil fertilization with ZnSO4. In agreement with the predictions of the stress-severity and optimal resource allocation hypotheses, plants limited in growth due to chemically adverse soil conditions invested relatively more into AM fungi, as evident from heavier root colonization, and took up relatively more Zn and nitrogen in response to mycorrhization, than better growing and less mycorrhized plants. It thus appears that crop plant cultivar-dependent mycorrhization and Zn fertilizer-responsiveness may reinforce each other, provided that there is bioavailable Zn in soil and plant growth is impaired by suboptimal chemical soil conditions.  相似文献   

20.
《Applied soil ecology》2005,28(3):191-201
Annual plant species differ in their rhizosphere microbial community composition. However, rhizosphere communities are often investigated under controlled conditions, and it is unclear if perennial plants growing in the field also have rhizosphere communities that are specific to a particular plant species. The aim of our study was to determine the bacterial community composition of three species of Banksia (B. attenuata R. Brown, B. ilicifolia R. Brown and B. menziesii R. Brown) growing in close proximity in a native woodland in Western Australia and to relate community structure to function. All three species are small trees that produce cluster roots in the field following winter rains. Cluster roots and rhizosphere soil were sampled in early spring (August 2001) and again four weeks later (September 2001). Many new cluster roots were formed in the period between the August and the September sampling. Rhizosphere soil pH, percent soil moisture and C and N content did not differ significantly among species or sampling times. However, the bacterial community composition on the cluster roots and in the rhizosphere soil, studied by denaturing gradient gel electrophoresis (DGGE), differed among the three species, with cluster root age class (young or mature to senescing) and also between sampling times. These changes in community composition were accompanied by changes in the activity of some of the enzymes studied. The activities of β-glucosidase and protease increased over time. The three species differed in asparaginase activity, but not in the activity of acid and alkaline phosphatase in the rhizosphere. These results suggest a relationship between the changes in composition and function of bacterial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号