首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane transport proteins that transduce free energy stored in electrochemical ion gradients into a concentration gradient are a major class of membrane proteins. We report the crystal structure at 3.5 angstroms of the Escherichia coli lactose permease, an intensively studied member of the major facilitator superfamily of transporters. The molecule is composed of N- and C-terminal domains, each with six transmembrane helices, symmetrically positioned within the permease. A large internal hydrophilic cavity open to the cytoplasmic side represents the inward-facing conformation of the transporter. The structure with a bound lactose homolog, beta-D-galactopyranosyl-1-thio-beta-D-galactopyranoside, reveals the sugar-binding site in the cavity, and residues that play major roles in substrate recognition and proton translocation are identified. We propose a possible mechanism for lactose/proton symport (co-transport) consistent with both the structure and a large body of experimental data.  相似文献   

2.
Crystal structure of rhodopsin: A G protein-coupled receptor   总被引:2,自引:0,他引:2  
Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) respond to a variety of different external stimuli and activate G proteins. GPCRs share many structural features, including a bundle of seven transmembrane alpha helices connected by six loops of varying lengths. We determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution. The highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the seven-helix transmembrane motif. The ground-state chromophore, 11-cis-retinal, holds the transmembrane region of the protein in the inactive conformation. Interactions of the chromophore with a cluster of key residues determine the wavelength of the maximum absorption. Changes in these interactions among rhodopsins facilitate color discrimination. Identification of a set of residues that mediate interactions between the transmembrane helices and the cytoplasmic surface, where G-protein activation occurs, also suggests a possible structural change upon photoactivation.  相似文献   

3.
Lu M  Fu D 《Science (New York, N.Y.)》2007,317(5845):1746-1748
YiiP is a membrane transporter that catalyzes Zn2+/H+ exchange across the inner membrane of Escherichia coli. Mammalian homologs of YiiP play critical roles in zinc homeostasis and cell signaling. Here, we report the x-ray structure of YiiP in complex with zinc at 3.8 angstrom resolution. YiiP is a homodimer held together in a parallel orientation through four Zn2+ ions at the interface of the cytoplasmic domains, whereas the two transmembrane domains swing out to yield a Y-shaped structure. In each protomer, the cytoplasmic domain adopts a metallochaperone-like protein fold; the transmembrane domain features a bundle of six transmembrane helices and a tetrahedral Zn2+ binding site located in a cavity that is open to both the membrane outer leaflet and the periplasm.  相似文献   

4.
Gap junction membrane channels mediate electrical and metabolic coupling between adjacent cells. The structure of a recombinant cardiac gap junction channel was determined by electron crystallography at resolutions of 7.5 angstroms in the membrane plane and 21 angstroms in the vertical direction. The dodecameric channel was formed by the end-to-end docking of two hexamers, each of which displayed 24 rods of density in the membrane interior, which is consistent with an alpha-helical conformation for the four transmembrane domains of each connexin subunit. The transmembrane alpha-helical rods contrasted with the double-layered appearance of the extracellular domains. Although not indicative for a particular type of secondary structure, the protein density that formed the extracellular vestibule provided a tight seal to exclude the exchange of substances with the extracellular milieu.  相似文献   

5.
The membrane rotor ring from the vacuolar-type (V-type) sodium ion-pumping adenosine triphosphatase (Na+-ATPase) from Enterococcus hirae consists of 10 NtpK subunits, which are homologs of the 16-kilodalton and 8-kilodalton proteolipids found in other V-ATPases and in F1Fo- or F-ATPases, respectively. Each NtpK subunit has four transmembrane alpha helices, with a sodium ion bound between helices 2 and 4 at a site buried deeply in the membrane that includes the essential residue glutamate-139. This site is probably connected to the membrane surface by two half-channels in subunit NtpI, against which the ring rotates. Symmetry mismatch between the rotor and catalytic domains appears to be an intrinsic feature of both V- and F-ATPases.  相似文献   

6.
The mechanosensitive channel of small conductance (MscS) responds both to stretching of the cell membrane and to membrane depolarization. The crystal structure at 3.9 angstroms resolution demonstrates that Escherichia coli MscS folds as a membrane-spanning heptamer with a large cytoplasmic region. Each subunit contains three transmembrane helices (TM1, -2, and -3), with the TM3 helices lining the pore, while TM1 and TM2, with membrane-embedded arginines, are likely candidates for the tension and voltage sensors. The transmembrane pore, apparently captured in an open state, connects to a large chamber, formed within the cytoplasmic region, that connects to the cytoplasm through openings that may function as molecular filters. Although MscS is likely to be structurally distinct from other ion channels, similarities in gating mechanisms suggest common structural elements.  相似文献   

7.
Memapsin 2 (beta-secretase) is a membrane-associated aspartic protease involved in the production of beta-amyloid peptide in Alzheimer's disease and is a major target for drug design. We determined the crystal structure of the protease domain of human memapsin 2 complexed to an eight-residue inhibitor at 1.9 angstrom resolution. The active site of memapsin 2 is more open and less hydrophobic than that of other human aspartic proteases. The subsite locations from S4 to S2' are well defined. A kink of the inhibitor chain at P2' and the change of chain direction of P3' and P4' may be mimicked to provide inhibitor selectivity.  相似文献   

8.
How ion channels are gated to regulate ion flux in and out of cells is the subject of intense interest. The Escherichia coli mechanosensitive channel, MscS, opens to allow rapid ion efflux, relieving the turgor pressure that would otherwise destroy the cell. We present a 3.45 angstrom-resolution structure for the MscS channel in an open conformation. This structure has a pore diameter of approximately 13 angstroms created by substantial rotational rearrangement of the three transmembrane helices. The structure suggests a molecular mechanism that underlies MscS gating and its decay of conductivity during prolonged activation. Support for this mechanism is provided by single-channel analysis of mutants with altered gating characteristics.  相似文献   

9.
Membrane transporters that use energy stored in sodium gradients to drive nutrients into cells constitute a major class of proteins. We report the crystal structure of a member of the solute sodium symporters (SSS), the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT). The approximately 3.0 angstrom structure contains 14 transmembrane (TM) helices in an inward-facing conformation with a core structure of inverted repeats of 5 TM helices (TM2 to TM6 and TM7 to TM11). Galactose is bound in the center of the core, occluded from the outside solutions by hydrophobic residues. Surprisingly, the architecture of the core is similar to that of the leucine transporter (LeuT) from a different gene family. Modeling the outward-facing conformation based on the LeuT structure, in conjunction with biophysical data, provides insight into structural rearrangements for active transport.  相似文献   

10.
Tertiary structure of plant RuBisCO: domains and their contacts   总被引:23,自引:0,他引:23  
The three-dimensional structure of ribulose-1,5-biphosphate carboxylase-oxygenase (RuBisCO), has been determined at 2.6 A resolution. This enzyme initiates photosynthesis by combining carbon dioxide with ribulose bisphosphate to form two molecules of 3-phosphoglycerate. In plants, RuBisCO is built from eight large (L) and eight small (S) polypeptide chains, or subunits. Both S chains and the NH2-terminal domain (N) of L are antiparallel beta, "open-face-sandwich" domains with four-stranded beta sheets and flanking alpha helices. The main domain (B) of L is an alpha/beta barrel containing most of the catalytic residues. The active site is in a pocket at the opening of the barrel that is partly covered by the N domain of a neighboring L chain. The domain contacts of the molecule and its conserved residues are discussed in terms of this structure.  相似文献   

11.
TRAAK channels, members of the two-pore domain K(+) (potassium ion) channel family K2P, are expressed almost exclusively in the nervous system and control the resting membrane potential. Their gating is sensitive to polyunsaturated fatty acids, mechanical deformation of the membrane, and temperature changes. Physiologically, these channels appear to control the noxious input threshold for temperature and pressure sensitivity in dorsal root ganglia neurons. We present the crystal structure of human TRAAK at a resolution of 3.8 angstroms. The channel comprises two protomers, each containing two distinct pore domains, which create a two-fold symmetric K(+) channel. The extracellular surface features a helical cap, 35 angstroms tall, that creates a bifurcated pore entryway and accounts for the insensitivity of two-pore domain K(+) channels to inhibitory toxins. Two diagonally opposed gate-forming inner helices form membrane-interacting structures that may underlie this channel's sensitivity to chemical and mechanical properties of the cell membrane.  相似文献   

12.
Voltage-dependent ion channels contain voltage sensors that allow them to switch between nonconductive and conductive states over the narrow range of a few hundredths of a volt. We investigated the mechanism by which these channels sense cell membrane voltage by determining the x-ray crystal structure of a mammalian Shaker family potassium ion (K+) channel. The voltage-dependent K+ channel Kv1.2 grew three-dimensional crystals, with an internal arrangement that left the voltage sensors in an apparently native conformation, allowing us to reach three important conclusions. First, the voltage sensors are essentially independent domains inside the membrane. Second, they perform mechanical work on the pore through the S4-S5 linker helices, which are positioned to constrict or dilate the S6 inner helices of the pore. Third, in the open conformation, two of the four conserved Arg residues on S4 are on a lipid-facing surface and two are buried in the voltage sensor. The structure offers a simple picture of how membrane voltage influences the open probability of the channel.  相似文献   

13.
Molecular modeling of the HIV-1 protease and its substrate binding site   总被引:13,自引:0,他引:13  
The human immunodeficiency virus (HIV-1) encodes a protease that is essential for viral replication and is a member of the aspartic protease family. The recently determined three-dimensional structure of the related protease from Rous sarcoma virus has been used to model the smaller HIV-1 dimer. The active site has been analyzed by comparison to the structure of the aspartic protease, rhizopuspepsin, complexed with a peptide inhibitor. The HIV-1 protease is predicted to interact with seven residues of the protein substrate. This information can be used to design protease inhibitors and possible antiviral drugs.  相似文献   

14.
Sodium/calcium (Na(+)/Ca(2+)) exchangers (NCX) are membrane transporters that play an essential role in maintaining the homeostasis of cytosolic Ca(2+) for cell signaling. We demonstrated the Na(+)/Ca(2+)-exchange function of an NCX from Methanococcus jannaschii (NCX_Mj) and report its 1.9 angstrom crystal structure in an outward-facing conformation. Containing 10 transmembrane helices, the two halves of NCX_Mj share a similar structure with opposite orientation. Four ion-binding sites cluster at the center of the protein: one specific for Ca(2+) and three that likely bind Na(+). Two passageways allow for Na(+) and Ca(2+) access to the central ion-binding sites from the extracellular side. Based on the symmetry of NCX_Mj and its ability to catalyze bidirectional ion-exchange reactions, we propose a structure model for the inward-facing NCX_Mj.  相似文献   

15.
16.
Membrane-integral pyrophosphatases (M-PPases) are crucial for the survival of plants, bacteria, and protozoan parasites. They couple pyrophosphate hydrolysis or synthesis to Na(+) or H(+) pumping. The 2.6-angstrom structure of Thermotoga maritima M-PPase in the resting state reveals a previously unknown solution for ion pumping. The hydrolytic center, 20 angstroms above the membrane, is coupled to the gate formed by the conserved Asp(243), Glu(246), and Lys(707) by an unusual "coupling funnel" of six α helices. Comparison with our 4.0-angstrom resolution structure of the product complex suggests that helix 12 slides down upon substrate binding to open the gate by a simple binding-change mechanism. Below the gate, four helices form the exit channel. Superimposing helices 3 to 6, 9 to 12, and 13 to 16 suggests that M-PPases arose through gene triplication.  相似文献   

17.
An abnormal alpha 2-antiplasmin that is associated with a serious bleeding tendency has been found in a Dutch family and is referred to as alpha 2-antiplasmin Enschede. This abnormal alpha 2-antiplasmin is converted from an inhibitor of plasmin to a substrate. The molecular defect of alpha 2-antiplasmin Enschede, as revealed by sequencing of cloned genomic DNA fragments, consists of an alanine insertion near the active site region of the molecule. Substitution of this fragment into complementary DNA for a wild-type alpha 2-antiplasmin yields a translation product with physical and functional properties typical of the abnormal alpha 2-antiplasmin Enschede. The naturally occurring mutant may serve as a model for investigating the structures that determine the properties of an inhibitor versus those of a substrate in serine protease inhibitors.  相似文献   

18.
Native human plasminogen has a radius of gyration of 39 angstroms. Upon occupation of a weak lysine binding site, the radius of gyration increases to 56 angstroms, an extremely large ligand-induced conformational change. There are no intermediate conformational states between the closed and open form. The conformational chang is not accompanied by a change in secondary structure, hence the closed conformation is formed by interaction between domains that is abolished upon conversion to the open form. This reversible change in conformation, in which the shape of the protein changes from that best described by a prolate ellipsoid to a flexible structure best described by a Debye random coil, is physiologically relevant because a weak lysine binding site regulates the activation of plasminogen.  相似文献   

19.
The nucleobase-cation-symport-1 (NCS1) transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85-angstrom resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 transmembrane helices, 10 of which are arranged in two inverted repeats of five helices. The structures of the outward-facing open and substrate-bound occluded conformations were solved, showing how the outward-facing cavity closes upon binding of substrate. Comparisons with the leucine transporter LeuT(Aa) and the galactose transporter vSGLT reveal that the outward- and inward-facing cavities are symmetrically arranged on opposite sides of the membrane. The reciprocal opening and closing of these cavities is synchronized by the inverted repeat helices 3 and 8, providing the structural basis of the alternating access model for membrane transport.  相似文献   

20.
A critical enzyme in protein breakdown in Escherichia coli is protease La (the lon gene product), which hydrolyzes proteins and adenosine triphosphate (ATP) in a coupled process. The mechanism of this process was studied with fluorogenic tripeptides. Although proteins and peptides are degraded at the same active site, protein substrates enhance the ability of the enzyme to degrade these peptides two- to tenfold. Proteins that are not substrates had little or no effect. Thus, protein substrates must bind to protease La at two sites, the active site and an allosteric site whose occupancy enhances proteolytic activity. This effect did not require that the proteins themselves be degraded. Proteins could induce peptide breakdown even in the absence of ATP, and proteins and ATP had additive effects in stimulating peptidase activity. A multistep cyclical mechanism is proposed in which the binding of the substrate and ATP activates the protease. The enzyme can then cleave a peptide bond, but is inactivated through ATP hydrolysis. Such a mechanism may help account for the selectivity of protein breakdown and prevent inappropriate or excessive proteolysis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号