首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Agricultural production systems are complex involving variability in climate, soil, crop, tillage management and interactions between these components. The traditional experimental approach has played an important role in studying crop production systems, but isolation of these factors in experimental studies is difficult and time consuming. Computer simulation models are useful in exploring these interactions and provide a valuable tool to test and further our understanding of the behavior of soil–crop systems without repeating experimentation.Productivity erosion and runoff functions to evaluate conservation techniques (PERFECT) is one of the soil–crop models that integrate the dynamics of soil, tillage and crop processes at a daily resolution. This study had two major objectives. The first was to calibrate the use of the PERFECT soil–crop simulation model to simulate soil and crop responses to changes of traffic and tillage management. The second was to explore the interactions between traffic, tillage, soil and crop, and provide insight to the long-term effects of improved soil management and crop rotation options. This contribution covers only the first objective, and the second will be covered in a subsequent contribution.Data were obtained from field experiments on a vertisol in Southeast Queensland, Australia which had controlled traffic and tillage treatments for the previous 5 years. Input data for the simulation model included daily weather, runoff, plant available water capacity, and soil hydraulic properties, cropping systems, and traffic and tillage management. After model calibration, predicted and measured total runoffs for the 5-year period were similar. Values of root mean square error (RMSE) for daily runoff ranged from 5.7 to 9.2 mm, which were similar to those reported in literature. The model explained 75–95% of variations of daily, monthly and annual runoff, 70–84% of the variation in total available soil water, and 85% of the variation in yield. The results showed that the PERFECT daily soil–crop simulation model could be used to generate meaningful predictions of the interactions between crop, soil and water under different tillage and traffic systems.Ranking of management systems in order of decreasing merit for runoff, available soil water and crop yield was (1) controlled traffic zero tillage, (2) controlled traffic stubble mulch, (3) wheeled zero tillage, and (4) wheeled stubble mulch.  相似文献   

2.
Soil water conservation is critical to long-term crop production in dryland cropping areas in Northeast Australia. Many field studies have shown the benefits of controlled traffic and zero tillage in terms of runoff and soil erosion reduction, soil moisture retention and crop yield improvement. However, there is lack of understanding of the long-term effect of the combination of controlled traffic and zero tillage practices, as compared with other tillage and traffic management practices.In this study, a modeling approach was used to estimate the long-term effect of tillage, traffic, crop rotation and type, and soil management practices in a heavy clay soil. The PERFECT soil–crop simulation model was calibrated with data from a 5-year field experiment in Northeast Australia in terms of runoff, available soil water and crop yield; the procedure and outcomes of this calibration were given in a previous contribution. Three cropping systems with different tillage and traffic treatments were simulated with the model over a 44-year-period using archived weather data.Results showed higher runoff, and lower soil moisture and crop production with conventional tillage and accompanying field traffic than with controlled traffic and zero tillage. The effect of traffic is greater than the effect of tillage over the long-term. The best traffic, tillage and crop management system was controlled traffic zero tillage in a high crop intensity rotation, and the worst was conventional traffic and stubble mulch with continuous wheat. Increased water infiltration and reduced runoff under controlled traffic resulted in more available soil water and higher crop yield under opportunity cropping systems.  相似文献   

3.
Efficient mechanisation is a major factor underlying the high productivity and low cost of most Australian crop production systems. Efficiency has generally been associated with greater work rates, achieved by using equipment of greater power and weight. This trend has continued until very recently, despite a reduction in tillage for weed control.

Scientists have warned of erosion and soil structural degradation caused by tillage and traffic, but tillage, rather than field traffic was seen as the major problem, and reduction of tillage as the solution. Reduced tillage has provided major benefits, but adoption has occurred slowly and sustained zero tillage is still rare, except in controlled traffic farming systems.

The first part of this paper presents research evidence of the direct cost, practical impact and long-term effects of wheel traffic on cropped soil. Direct cost is associated with the energy requirements of disturbing wheeled soil. Practical impact occurs as a result of the lost opportunities and additional operations associated with wheel ruts. Long-term productivity and environmental impact occur because wheel traffic reduces plant available water and increases runoff and erosion.

In controlled traffic all equipment wheels are restricted to compacted permanent traffic lanes, so that soil in the crop beds and traffic lanes can be managed respectively for optimum cropping and optimum trafficability. Controlled traffic farming recognizes the symbiosis between controlled traffic and zero tillage in providing opportunities for more productive and sustainable farming of soil uncompromised by wheel effects.

The beneficial effects of controlled traffic have been demonstrated in widely different soils and mechanisation systems (e.g. Australia and China), and it has been vigorously advocated in both the USA and Europe, but large-scale adoption has been rare. The second part of this paper discusses cropping system response to controlled traffic farming, and the program which led to large-scale adoption in Australia. This happened first in extensive grain production, but adoption has since occurred in many Australian farming systems, supported by the availability of high-precision field guidance systems and a greater range of compatible equipment.

Controlled traffic farming reduces soil degradation and the energy requirements of cropping. It is also more productive, and its practicality and economic viability have been clearly demonstrated in enthusiastic farmer adoption, and the formation of an Australian Controlled Traffic Farming Association.  相似文献   


4.
Research information on the effect of tillage systems on cocoyam (Xanthosoma sagittifolium (L.) Schott) growth, nutrient status and yield is lacking in Africa. The effects of zero tillage with mulch, zero tillage without mulch, manual mounding, manual ridging and conventional tillage on cocoyam yield, growth and nutrient availability were compared during 2 years on an Alfisol (Oxic Tropuldaf) at Owo in the rainforest zone of Nigeria. The surface soil (0–20 cm) was chemically analyzed before and after crop harvest and selected soil physical properties were determined. Concentration of soil organic C, N, P, K and Mg and the leaf N, P and K were significantly influenced (p = 0.05) by tillage, with zero tillage with mulch being the most effective treatment in conserving the fertility of the surface soil (0–20 cm). Soil fertility, as indicated by organic C, N, P, K, Ca and Mg, declined significantly (p = 0.05) over time in all tillage systems, but this decline was more pronounced in the conventional tillage. Zero tillage with mulch, zero tillage without mulch, manual mounding, manual ridging and conventional tillage reduced the soil organic C concentration by 20, 23, 23, 24 and 33%, respectively over the 2-year period. The decreases in soil N concentration were 25, 31, 31, 38 and 56%, soil P concentration were 13, 15, 17, 16 and 26%, and soil K concentration were 16, 26, 31, 37 and 53%, respectively. Tillage did not affect corm and cormel yields in the first year. In the second year, due to the elimination of ploughing, significant differences were obtained in the cormel yield but not of corm yield. In 2005, zero tillage with mulch produced the highest cormel yield (13.5 mg ha−1) of cocoyam followed by zero tillage without mulch (13.2 mg ha−1), manual mounding (12.7 mg ha−1) and manual ridging (12.5 mg ha−1). The lowest cormel yield (9.5 mg ha−1) of cocoyam was produced by conventional tillage. Soil water contents in zero tillage with mulch and zero tillage without mulch were significantly higher (p = 0.05) than in the other tillage systems. Soil bulk density ranging from 1.21 to 1.40 mg m−3 correlated positively with leaf nutrient concentration and yield. Cocoyam can be grown successfully on zero tillage, with mulch and without mulch or minimum tillage systems on an Alfisol of the humid tropics.  相似文献   

5.
Heavy wheel traffic causes soil compaction, which adversely affects crop production and may persist for several years. We applied known compaction forces to entire plots annually for 5 years, and then determined the duration of the adverse effects on the properties of a Vertisol and the performance of crops under no-till dryland cropping with residue retention. For up to 5 years after a final treatment with a 10 Mg axle load on wet soil, soil shear strength at 70–100 mm and cone index at 180–360 mm were significantly (P < 0.05) higher than in a control treatment, and soil water storage and grain yield were lower. We conclude that compaction effects persisted because (1) there were insufficient wet–dry cycles to swell and shrink the entire compacted layer, (2) soil loosening by tillage was absent and (3) there were fewer earthworms in the compacted soil. Compaction of dry soil with 6 Mg had little effect at any time, indicating that by using wheel traffic only when the soil is dry, problems can be avoided. Unfortunately such a restriction is not always possible because sowing, tillage and harvest operations often need to be done when the soil is wet. A more generally applicable solution, which also ensures timely operations, is the permanent separation of wheel zones and crop zones in the field—the practice known as controlled traffic farming. Where a compacted layer already exists, even on a clay soil, management options to hasten repair should be considered, e.g. tillage, deep ripping, sowing a ley pasture or sowing crop species more effective at repairing compacted soil.  相似文献   

6.
Tillage and residue management practices are sought in the subarctic where small grain production is often curtailed by the lack of soil water. Barley (Hordeum vulgare L.) grain yield and evapotranspiration were compared among four tillage and three residue management practices near Delta Junction, Alaska, USA from 1988 through 1991. Barley was hand-harvested in the fall whereas soil water content was determined biweekly during the growing season by neutron attenuation. Grain yield was similar for spring disk, fall chisel, and conventional (fall and spring disk) tillage across years. No tillage, however, resulted in a 260 kg ha−1 greater yield as compared with fall chisel and conventional tillage in 1990 when evaporative demand exceeded that in other years by nearly 10%. In 1990 and 1991, grain yield from plots devoid of stubble and loose straw was at least 200 kg ha−1 greater than from plots with stubble or stubble and loose straw. Barley consumed at least 15 mm more water to achieve the greater yield on no tillage or no stubble and loose straw plots. Water-use efficiency did not vary among tillage treatments, but was greatest in 1990 for plots devoid of stubble and loose straw. This study suggests that, in dry years with high evaporative demand, no tillage or removal of stubble and loose straw from the soil surface will enhance grain production and water-use efficiency of barley in the subarctic.  相似文献   

7.
Soil erosion remains a serious problem on most agricultural fields especially in the humid tropics. Experiments were conducted between 2003 and 2005 to test the efficiency and efficacy of using vetiver grass strip (VGS), vetiver grass mulch (VGM) and an agronomic practice of using an organomineral fertilizer (OMF) capable of improving soil structure and a control, as treatments, on soil and water conservation and improvement of maize yields. The treatments, in three replicates, were laid out in a randomized complete block design on 7% runoff plots on an Alfisol in the sub humid region of Southern Nigeria. Soil physical conditions were significantly best under VGM plots and least under VGS plots. Nevertheless, runoff and soil loss were generally in the increasing order of VGS, VGM and OMF. Although mean runoff and soil loss on VGS plots were 36.6% and 28% of the value of the control plot in 2003, when 2 tonnes/ha of vetiver grass mulch was applied to the control plot in 2004, these values were increased to 61.5% and 48.4%, respectively indicating a significant reduction of runoff and soil loss on the mulched plots. Vetiver grass mulch (VGM) at 6 tonnes/ha was more effective than VGS plots in reducing runoff than soil loss. Whereas mean runoff for VGM, VGS and OMF plots were 28.67, 38.44 and 42.44 mm, respectively, the corresponding mean soil losses at 6 tonnes/ha were 980.5 kg/ha, 389 kg/ha and 1251 kg/ha, respectively. Mean soil losses were 629 kg/ha and 591.5 kg/ha higher on VGM than VGS plots at 4 tonnes/ha and 6 tonnes/ha, respectively. Mean No3-N levels of runoff water on the VGS plots were 40.4% and 65.6% of the levels of the OMF and the control plots, respectively over 2003 and 2004. Nutrient loads of eroded sediments were highest for OMF plots and least for VGS plots. Carbon, Nitrogen and P contents of eroded sediments were 22–23.5%, 12–35.9%, and 20.6–37.6% lower on VGS plots than other treatments.

The significant beneficial effect of OMF in producing the highest yields was dwarfed by the potential danger of water pollution by nutrient loads in the absence of a soil erosion control measure. Although the differences were not significant, grain yields on VGM plots were 4% and 47.4% higher than on VGS plots when 4 and 6 tonnes/ha of grass mulch were applied.  相似文献   


8.
Any soil deformation induced by agricultural machinery is transmitted three‐dimensionally and the “kneading effect” of tractor wheeling further rearranges soil particles and aggregates anisotropically. In this work, we investigated how heterogeneous soil structure remained 10 y after a complete wheeling of fields in 1995 with a single pass of 2 × 2.5 Mg and of 6 × 5 Mg on a silty loam Luvisol derived from loess. Control plots received no tractor wheeling. We also analyzed how soil physical properties responded to the tractor wheeling under two management systems: continuous conservation tillage (chisel plow = CS) with mulch cover and conventional tillage (plowing to 25 cm depth annually = CT). We compared three sampling dates: done before wheeling in 1995, after wheeling in 1995, and in 2004. Results showed that applying tractor wheeling in 1995 not only reduced total soil‐pore volume but also increased soil strength as expressed by precompression stress. The reduction of total pore volume at 30 cm depth was more pronounced in CS than in CT. After 10 y of continuous use of the two tillage systems, the precompression stress of the wheeled soils was greater in the vertical direction than in the horizontal direction. This anisotropy of soil strength and its load dependency were also more pronounced in CS than in CT. The effect of wheeling on the fluxes of gas and water was covered up by the effects of biochannels, causing a prevailing vertical passage. From this study, we conclude that heavy, agricultural machinery causes soil degradation, which is more evident in CS than in CT.  相似文献   

9.
Systematic exportation, burning of crop residues and decreases in fallow periods have led to a large-scale depletion of soil organic matter and degradation of soil fertility in the cotton (Gossypium hirsutum L.) cropping systems of Cameroon. The present study tested whether soil management systems based on a no-till with mulch approach intercropped with cereals, which has been shown to restore cotton production, could boost the biological activity of soil macrofauna. The impacts of no tillage with grass mulch (Brachiaria ruziziensis Germain and Eward) (NTG) and no tillage with legume mulch (Crotalaria retusa L. or Mucuna pruriens Bak.) (NTL) on the abundance, diversity and functional role of soil invertebrates were evaluated during the third year of implementation in northern Cameroon (Windé and Zouana), compared to conventional tillage (CT) and no tillage (NT) without mulch. Macrofauna were sampled from two 30 cm × 30 cm soil cubes (including litter) at the seeding stage of cotton, and 30 days later. The collected organisms were grouped into detritivores, herbivores and predators. Examination of the soil macrofauna patterns revealed that the abundance and diversity of soil arthropods were significantly higher in NTG and NTL than in CT plots (+103 and +79%, respectively), while that of NT plots was in-between the no tillage groups and CT (+37%). Regarding major ecological functions, herbivores and predators were significantly more abundant in NTG and NTL plots than in CT plots at Windé (+168 and +180%, respectively), while detritivores, predators and herbivores were significantly more abundant in the NTG plots than in CT plots at Zouana (+92, +517 and +116%, respectively). Formicidae (53.6%), Termitidae (24.7%) and Lumbricidae (9.4%) were the most abundant detritivores while Julidae (46.1%), Coleoptera larvae (22.1%) and Pyrrhocoridae or Reduviidae (11.8%) were the dominant herbivores. The major constituents of the predatory group were Araneae (33.8%), Carabidae (24.6%), Staphylinidae (15.7%) and Scolopendridae (10.3%). Direct seeding mulch-based systems, NTG and NTL, favoured the establishment of diverse macrofaunal communities in the studied cotton cropping system.  相似文献   

10.
The increased limiting effects of soil compaction on Central Anatolian soils in the recent years demonstrate the need for a detailed analysis of tillage system impacts. This study was undertaken to ascertain the effects of seven different tillage systems and subsequent wheel traffic on the physical and mechanical properties of typical Central Anatolian medium textured clay loam soil (Cambisol), south of Ankara, Turkey. Both tillage and field traffic influenced soil bulk density, porosity, air voids and strength significantly except the insignificant effect of traffic on moisture content. Traffic affected the soil properties mostly down to 20 cm. However, no excessive compaction was detected in 0–20 cm soil depth. The increases of bulk density following wheel traffic varied between 10–20% at 0–5 cm and 6–12% at 10–15 cm depth. In additions, traffic increased the penetration resistance by 30–74% at 0–10 cm and 7–33% at 10–20 cm. Less wheel traffic-induced effects were found on chisel tilled plots, compared to ploughed plots. Soil stress during wheel passage was highly correlated with soil strength. Also, both tillage and traffic-induced differences were observed in mean soil aggregate sizes, especially for mouldboard ploughed plots. The obtained data imply that chisel+cultivator-tooth harrow combination provides more desirable soil conditions for resisting further soil compaction.  相似文献   

11.
Low and extremely variable precipitations limit dryland crop production in the semi-arid areas of Aragón (NE Spain). These areas are also affected by high annual rates of topsoil losses by both wind and water erosion. A long-term experiment to determine the feasibility of conservation tillage in the main winter barley production areas of Aragón was initiated in 1989 at four locations, three on loam to silt loam soils (Xerollic Calciorthid) and one on a silty clay loam (Fluventic Ustochrept), receiving between 300 and 600 mm of average annual rainfall. In this study, we compared, under both continuous cropping and cereal-fallow rotation, the effects of conventional tillage (mouldboard plough) and two conservation tillage systems, reduced tillage (chisel plough) and no-tillage, on soil water content and penetration resistance during the first two growing seasons. Whereas reduced and conventionally tilled treatments generally had similar soil water content during the experimental period, the effects of no-tillage were inconsistent. No-tilled plots had from 26% less to 17% more stored soil water (0–80 cm) than conventional tilled plots at the beginning of the growing season. In contrast to the conventional and reduced tillage treatments, penetration resistances were between 2 and 4 MPa after sowing in most of the plough layer (0–40 cm) under no-tillage at all sites. Fallow efficiencies in moisture storage in the cereal-fallow rotation, when compared with the continuous cropping system, ranged from −8.7 to 12%. The highest efficiencies were recorded when the rainfall in the months close to primary tillage exceeded 100 mm. Since this event is very unlikely, long fallowing (9–10 months) appears to be an inefficient practice for water conservation under both conventional and conservation management. Our results suggest that, up to now, only reduced tillage could replace conventional tillage without adverse effects on soil water content and penetration resistance in the dryland cereal-growing areas of Aragón.  相似文献   

12.
Soil compaction can affect crop growth and greenhouse gas emission and information is required of how both these aspects are affected by compaction intensity and weather. In this paper we describe treatments of compaction intensity and their effects on soil physical conditions and crop growth in loam to sandy loam cambisol soils. Soil conditions and crop performance were measured over three seasons in a field experiment on soil compacted by wheels on freshly ploughed seedbeds. Ploughing buried the chopped residues of the previous crop. After ploughing, traffic was controlled such that the experimental plots received wheel traffic only as treatments. The overall objective was to discover how the intensity and distribution of soil compaction just before sowing influenced crop performance, soil conditions and emissions of nitrous oxide. Compaction treatments were zero, light compaction by roller (up to 1 Mg m−1) and heavy compaction by loaded tractor, (up to 4.2 Mg). The experiment was located at Boghall, near Edinburgh (860 mm average annual rainfall) for the first two seasons under spring and winter barley (Hordeum vulgare L.) and in a drier area at North Berwick (610 mm average annual rainfall) for the third season under winter oil-seed rape (Brassica napus L.). Heavy compaction in dry soil conditions had little effect on crop growth. However, in wet conditions heavy compaction reduced air porosity, air permeability and gas diffusivity, increased cone resistance and limited winter barley growth and grain yield. Heavy compaction in wet conditions reduced winter barley yields to 7.1 Mg ha−1, in comparison to 8.8 Mg ha−1 in the zero compaction treatment. The compaction status of the top 15 cm of soil seemed to be particularly important. Loosening of the top 10 cm of soil immediately after heavy compaction restored soil conditions for crop growth. However, zero seed bed compaction gave patchy and uneven crop emergence in dry conditions. Both zero and light compaction to a target depth of 10 cm gave similar crop productivity. Maintenance of a correct compaction level near the soil surface is particularly important for establishment and overwintering of barley and oil seed rape.  相似文献   

13.
Grain yields are presented from a 10-year field trial with four tillage regimes (annual ploughing, harrowing only, ploughing/harrowing alternate years and minimum tillage) on clay loam. We also present soil physical analyses and use the compaction verification tool (CVT) to assess compaction on plots with annual ploughing and minimum tillage, after using slurry tankers with contrasting wheel loads (4.1 Mg, 6.6 Mg) and wheeling intensities (1×/10×) in the 11th trial year, and yields monitored two years after compaction. Winter wheat yields in the period before compaction were strongly affected by tillage, with annual ploughing giving on average 24% higher yield than direct drilling. Both wheat and oats were far less affected in treatments with harrowing only or ploughing/harrowing alternate years, on average within 6% of annual ploughing. Yields after compaction were affected by both previous tillage and compaction intensity. In the first year, single wheeling after annual ploughing gave 23% yield reduction with 4.1 Mg wheel load and 28% reduction with 6.6 Mg wheel load, whilst multiple wheeling gave 14% reduction at 6.6 Mg wheel load. Yield reductions after minimum tillage ranged from 63% (single wheeling with 4.1 Mg) to 100% (multiple wheeling with 6.6 Mg). Similar trends were found in the second year. The soil physical data indicated that all wheeling led to changes in bulk density, pore sizes and permeability in both topsoil and subsoil on both sampled tillage plots. However, effects in the subsoil were partly masked by the soil's high initial bulk density, partly due to its high clay content. The CVT, which plots air capacity against hydraulic conductivity, suggested some harmful compaction on both plots, with the minimum tillage plot being less affected than the ploughed plot. However, yield results did not support this conclusion, indicating that other factors limited yields on the minimum tilled plot.  相似文献   

14.
In the middle terrace area of south Sumatra, Indonesia, where red acid soils poor in crop productivity are widely distributed, the effects of cropping pattern and cultivation techniques on physico-chemical properties of soil were investigated. Five patterns for cassava cropping, including monoculture, a rotation with annual food crops, and three intercroppings with differences in the combination with annual crops and in the planting density, were evaluated in Experiment I. In Experiment II, eight plots composed of the combinations of two tillage methods (no-tillage or conventional tillage), the presence or absence of surface mulch from crop residues, and two rates of chemical fertilizers were established for a maize–soybean–cowpea sequential cropping pattern. At the end of 3 years, there was no difference in total C and total N concentrations among the plots in Experiment I irrespective of the mulch treatment using crop residues. Soil organic matter (SOM) concentration was not affected even in the no-tillage plot where the maximum crop residues (20 t ha−1) was given as surface mulch with the increased root residues due to higher rates of fertilizers (Experiment II). In Experiment I, available P concentration was highest in an intercropping with higher fertilizer rates and lowest cassava planting density. In Experiment II, an increase in available P was attained by mulching and the higher rate of fertilizers, and a minor positive effect of fertilizer was also observed in exchangeable Mg and K concentrations. Surface mulch resulted in less clay fraction compared with the non-mulch plots in both the experiments, suggesting its effect on the maintenance of soil particle distribution. An additional finding suggested no prominent influence of cassava monoculture on the level of SOM in this area based on the comparison with other major land uses, including secondary forest, rubber plantation, and mixed cultivation of fruits with crops. Nevertheless, the introduction of crop residue mulch and higher rates of fertilizers are recommended for sustaining soil quality and achieving higher crop yields.  相似文献   

15.
Soil erosion from agricultural lands is a serious problem on the Chinese Loess Plateau. In total, 28 field rainfall simulations were carried on loamy soils under different management practices, namely conventional tillage (CT), no till with mulch (NTM), reduced tillage (RT), subsoiling with mulch (SSM), subsoiling without mulch (SS), and two crops per year (TC), to investigate (i) the effects of different soil management practices on runoff sediment and (ii) the temporal change of runoff discharge rate and sediment concentration under different initial soil moisture conditions (i.e. initially dry soil surface, and wet surface) and rainfall intensity (85 and 170 mm h− 1) in the Chinese Loess Plateau. NTM was the best alternative in terms of soil erosion control. SSM reduced soil loss by more than 85% in 2002 compared to CT, and its effects on runoff reduction became more pronounced after 4 years consecutive implementation. SS also reduced considerably the runoff and soil loss, but not as pronounced as SSM. TC resulted in a significant runoff reduction (more than 92%) compared to CT in the initial ‘dry’ soil, but this effect was strongly reduced in the initial ‘wet’ soil. Temporal change of runoff discharge rate and sediment concentration showed a large variation between the different treatments. In conclusion, NTM is the most favorable tillage practices in terms of soil and water conservation in the Chinese Loess Plateau. SSM can be regarded as a promising measure to improve soil and water conservation considering its beneficial effect on winter wheat yield.  相似文献   

16.
The submontaneous tract of Punjab comprising 10% of the state, is prone to soil erosion by water. Soils of the area are coarse in texture, low in organic matter and poor in fertility. High intensity rains during the monsoon season result in fertile topsoil removal. There is an urgent need to control soil erosion in this region so as to improve soil productivity. A field study was conducted to estimate the effect of tillage and different modes of mulch application on soil erosion losses. Treatments comprised two levels of tillage, viz. minimum (Tm) and conventional (Tc) in the main plots and five modes of straw mulch application, viz. mulch spread over whole plot (Mw), mulch spread on lower one-third of plot (M1/3), mulch applied in strips (Ms), vertical mulching (Mv) and unmulched control (Mo), in subplots in a replicated split plot design. Rate of mulch application was 6 t ha−1 in all modes. Compared with Mo, Mw reduced runoff by 33%. Runoff and soil loss were 5 and 40% higher under Tc than under Tm. Though other modes of straw mulch application (M1/3, Ms and Mv) controlled soil loss better than Mo, their effectiveness was less than Mw. Tm was more effective in conserving soil moisture than Tc. Compared with Mo, Mw had 3–7% higher soil moisture content in the 0–30 cm soil depth under Tm. Minimum soil temperature of the surface layer was 1.4–2.4 °C lower under Mw than under Mo. Straw mulching reduced maximum soil temperature and helped in conserving soil moisture. Minimum tillage coupled with Mw was highly effective in reducing soil erosion losses, decreasing soil temperature and increasing moisture content by providing maximum surface cover.  相似文献   

17.
Abstract. Three different management systems were compared in an olive grove on a Vertic soil, near the city of Cordoba, Spain. Rainfall, runoff and soil loss were recorded from experimental plots of 6×12 m for three years. Results indicated that the no-tillage system, which was kept weed-free with herbicides, gave the largest soil loss (8.5 t ha−1 yr−1) and average annual runoff coefficient (21.5%), due to increased soil compaction, particularly outside the canopy projection area. A system that used a grass cover gave the lowest soil losses (1.2 t ha−1 yr−1) and average annual runoff coefficient (2.5%) due to the protective effects of the cover and increased soil aggregate stability. The third system, conventional tillage, gave intermediate results, with a soil loss of 4.0 t ha−1 yr−1 and an average runoff coefficient of 7.4%. The search for alternative soil management to conventional tillage should consider occasional light tillage to establish a grass cover that would keep both soil erosion and runoff losses to a minimum.  相似文献   

18.
To promote conservation tillage in organic farming systems, weed control and ley removal within arable-ley rotations need to be optimized. A long-term field trial was thus established in Frick, Switzerland in 2002 on a clayey soil and with a mean precipitation of 1000 mm/year. The tillage experiment distinguished between conventional tillage with mouldboard ploughing (CT, 15 cm depth) and reduced tillage (RT), including a chisel plough (15 cm) and a stubble cleaner (5 cm). Results of a 2-year grass-clover ley (2006/2007) and silage maize (2008) are presented. Due to dry conditions, mean grass-clover yields were 25% higher in RT than in CT, indicating better water retention of RT soils. Clover cover and mineral contents of the fodder mixture were also higher in RT. The ley was successfully removed in autumn 2007 in RT plots, and a winter pea catch crop was sown before maize. In CT, ploughing took place in spring 2008. Maize yields were 34% higher in RT than in CT, despite a two- to three-fold higher but still tolerable weed infestation. Maize in RT plots benefited from an additional 61.5 kg of easily decomposable organic N/ha incorporated into the soil via the pea mulch. Measurement of arbuscular mycorrhizal colonization of maize roots indicated a similar mechanical disturbance of the topsoil through the reduced ley removal system compared with ploughing. It is suggested that RT is applicable in organic farming, even in arable-ley rotations, but long-term effects need further assessment.  相似文献   

19.
Soil erosion is a major threat to global economic and environmental sustainability. This study evaluated long-term effects of conservation tillage with poultry litter application on soil erosion estimates in cotton (Gossypium hirsutum L.) plots using RUSLE 2.0 computer model. Treatments consisting of no-till, mulch-till, and conventional tillage systems, winter rye (Secale cereale L.) cover cropping and poultry litter, and ammonium nitrate sources of nitrogen were established at the Alabama Agricultural Experiment Station, Belle Mina, AL (34°41′N, 86°52′W), beginning fall 1996. Soil erosion estimates in cotton plots under conventional tillage system with winter rye cover cropping declined by 36% from 8.0 Mg ha−1 year−1 in 1997 to 5.1 Mg ha−1 year−1 in 2004. This result was largely attributed to cumulative effect of surface residue cover which increased by 17%, from 20% in 1997 to 37% in 2004. In conventional tillage without winter rye cover cropping, soil erosion estimates were 11.0 Mg ha−1 year−1 in 1997 and increased to 12.0 Mg ha−1 year−1 in 2004. In no-till system, soil erosion estimates generally remained stable over the study period, averaging 0.5 and 1.3 Mg ha−1 year−1with and without winter rye cover cropping, respectively. This study shows that cover cropping is critical to reduce soil erosion and to increase the sustainability of cotton production in the southeast U.S. Application of N in the form of ammonium nitrate or poultry litter significantly increased cotton canopy cover and surface root biomass, which are desirable attributes for soil erosion reduction in cotton plots.  相似文献   

20.
Production of winter wheat in central Alberta may be risky due to winter-kill by low temperatures. Winter survival can be enhanced with a snow-trapping stubble. The effect of barley stubble height and tillage on snow depth and soil temperature was investigated during the winters of 1983–1984 and 1984–1985 on a Black Chernozemic soil at Lacombe, Alberta. Snow depth was measured only in 1984–1985 and was deepest under zero tillage with the tallest stubble (30 cm). Under zero tillage, stubble height had a significant effect on soil temperature. Soil temperatures under zero tillage with no stubble were the lowest and fluctuated greatly in response to air temperatures. Soil temperatures increased with an increase in stubble height and were highest at a stubble height of 15 or 30 cm. Soil temperatures in plots with stubble 15 cm tall were 3.9-5.3°C higher than in plots with no stubble. Under conventional tillage, stubble did not affect soil temperatures in 1983–1984, but in 1984–1985 soil temperatures in November and December were warmer when stubble was incorporated than when it was removed. Soil temperatures under conventional tillage were generally similar to temperatures under zero tillage with no stubble or with stubble of 7.5 cm. Although the soil temperatures during the course of this study did not go below the critical lethal limits of −20°C, the results indicated that stubble height and zero tillage may provide a solution to some of the problems associated with winter kill of winter wheat in central Alberta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号