首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
通过在共培养基中添加L-半胱氨酸,研究了L-半胱氨酸对农杆菌介导的大豆子叶节转化的影响。结果表明:L-半胱氨酸对大豆子叶节的转化有明显的促进作用,其中质量浓度为500 mg/L时转化效率最为显著。以此浓度为基础,通过GUS染色和分子检测,得到了大豆转基因植株,使转化效率由不加L-半胱氨酸的1.17%提高到了2.21%。  相似文献   

2.
通过动电位极化曲线、电化学阻抗谱(EIS)测试了L-半胱氨酸在H2SO4和HCI中对碳钢的缓蚀作用;通过量子化学研究和分子动力学模拟迸一步探讨了L-半胱氨酸的缓蚀机理.结果表明,在酸性介质中,L-半胱氨酸对碳钢有较好的缓蚀性能;量化计算与分子动力学模拟显示,L-半胱氨酸S原子极易接受金属提供的电子而与金属形成反馈配位键,是可能的亲电反应活性部位;在0.5mol/L硫酸和1.0mol/L盐酸中的结合能分别为-539.9 kJ/mol和-1437.3kJ/mol,表明L-半胱氨酸可强烈地吸附在碳钢表面.  相似文献   

3.
研究了在半胱氨酸自组装修饰金电极的电化学行为, 发现该电极对肾上腺素(EP)和尿酸(UA)具有良好的电催化氧化作用. 同时测定EP和UA采用差分脉冲法在pH为7. 7的磷酸缓冲溶液中进行. 尿酸的检出限为6. 5×10-7 mol/L, 肾上腺素的检出限为2. 4×10-7 mol/L. 该方法应用与EP和UA的同时测定, 结果令人满意.  相似文献   

4.
研究了在半胱氨酸自组装修饰金电极的电化学行为, 发现该电极对肾上腺素(EP)和尿酸(UA)具有良好的电催化氧化作用. 同时测定EP和UA采用差分脉冲法在pH为7. 7的磷酸缓冲溶液中进行. 尿酸的检出限为6. 5×10-7 mol/L, 肾上腺素的检出限为2. 4×10-7 mol/L. 该方法应用与EP和UA的同时测定, 结果令人满意.  相似文献   

5.
大豆分离蛋白乳化特性研究   总被引:1,自引:0,他引:1  
以低温脱脂豆粕为原料,采用碱溶酸沉法分离大豆分离蛋白(SPI),并探讨蛋白浓度、pH值、盐浓度以及多糖等外部因素对SPI乳化活性(EA)和乳化稳定性(ES)的影响.结果表明,随着蛋白浓度(0.2%~1.0%)的增加,SPI的EA下降,ES升高;EA和ES都随着pH值(2.0~10.0)的变化呈现先上升后下降的趋势,且在pH值4.0~5.0范围内最小;在pH值为2.0和10.0时,添加NaCl使SPI的乳化性能降低.在等电点pH值范围(4.0~5.0)内,一定浓度NaCl可以明显改善体系的EA和ES.魔芋胶、卡拉胶、黄原胶、玉米淀粉和羧甲基纤维素(CMC)的添加均可改善SPI的乳化性能,黄原胶与SPI的复合对体系EA的改善最为明显,其次是卡拉胶,魔芋胶对体系ES的改善最明显.  相似文献   

6.
[目的]建立测定栀子黄中的L-半胱氨酸盐酸盐含量的高效液相色谱法。[方法]采用十八烷基键合硅胶柱(岛津,4.66 mm×250 mm,5μm)色谱柱,以甲醇∶水(1∶9)为流动相,流速1.0 ml/min,检测波长220 nm。[结果]L-半胱氨酸盐酸盐在10~320μg/ml的浓度范围内有良好的线性关系,平均回收率为99.79%(RSD=1.6%,n=5),重复性试验的RSD为1.3%,稳定性试验的RSD为0.97%。[结论]该方法简便可行,重复性好,准确度高,可用于检测栀子黄中L-半胱氨酸盐酸盐的含量。  相似文献   

7.
试验检测冷冻稀释液中添加L-半胱氨酸对冻精解冻后精子质量参数、膜脂质过氧化程度的影响。结果显示:(1)在冷冻稀释液中添加0.1 mg.mL-1L-半胱氨酸能显著地提高冻融后精子的活率、顶体完整率及体外受精率(P<0.05),但对运动学参数没有影响(P>0.05)。(2)在冷冻稀释液中添加L-半胱氨酸(0.1、0.2和0.3mg.mL-1L-半胱氨酸)能显著降低膜脂质过氧化水平(P<0.05)。该结果表明冷冻稀释液中添加L-半胱氨酸能改善猪精子的冷冻效率。  相似文献   

8.
9.
采用循环伏安法在铂电极表面聚合L-半胱氨酸制得修饰电极,再利用DNA与蛋白质的特异性结合,将小牛胸腺DNA与辣根过氧化物酶依次滴加到聚L-Cys/Pt电极表面,制备得到DNA-HRP/L-Cys/pt电极,实验证实该电极对过氧化氢具有响应快、灵敏度高、线性范围宽、稳定性好的性能,且具有良好的选择性,线性范围为1.2×10^-6~9.0×10^-3mol·L^-1,检出限:8.0×10^-7mol·L^-1.  相似文献   

10.
微波处理对大豆分离蛋白功能特性的影响   总被引:4,自引:0,他引:4  
[目的]为微波技术在食品加工业中的合理应用提供参考。[方法]以从大豆油中提取的大豆分离蛋白为试材,研究微波处理时间对其起泡性、泡沫稳定性、乳化性和乳化稳定性的影响。[结果]当微波功率为1000W时,在0~40s,大豆分离蛋白的起泡性、乳化性和乳化稳定性均随处理时间的延长而增加,并均在处理40s时达到最大值,其中,乳化性和起泡性分别比未处理的增加了120.00%和146;88%,随着处理时间的继续增长,分离蛋白的起泡性、乳化性和乳化稳定性呈下降趋势;泡沫稳定性受微波处理时间的影响最大,处理30s时达到最大值,比未处理的增加了209.38%,随着处理时间的继续增长,泡沫稳定性逐渐下降。[结论]1000W微波处理40S,可明显改善大豆分离蛋白的功能特性。  相似文献   

11.
羧甲基纤维素钠对大豆分离蛋白骨粘合性能的影响   总被引:1,自引:0,他引:1  
【目的】以体外动物骨骼为试验对象,研究羧甲基纤维素钠(CMC-Na)对大豆分离蛋白(soybean protein isolate,SPI)胶粘合性能的影响,探讨其作为医用骨粘合剂的潜在可能。【方法】利用动态流变仪、圆二色光谱(CD)、ANS荧光探针法、扫描电镜等方法,分析CMC-Na对SPI胶零切黏度、二级结构(α-螺旋,β-折叠,β-转角和无规则卷曲)、疏水性、表面形态的影响,并结合以体外动物骨骼为试验对象,用万能材料试验机测定CMC-Na对SPI胶粘合强度的影响。【结果】SPI胶的粘合强度随着浓度的升高而增大,浓度大于10%时粘合强度呈下降趋势;微量CMC-Na(0.01%)的添加能显著提高低浓度SPI胶(2%)的粘合强度(是未添加时的2.4倍,P<0.01)。且粘合强度和零切黏度呈显著正相关关系(r=0.815,P=0.036);微量CMC-Na的添加能改变SPI胶的二级结构,其中β-折叠含量由42.2%上升至49.1%,β-转角由2.1%上升至7.3%,α-螺旋由28.0%下降至19.7%,无规则卷曲由27.7%下降至23.9%。CMC-Na的添加提高了SPI胶的疏水性,适度的疏水改性有助于增强粘合强度。扫描电镜图谱显示,CMC-Na的添加使SPI胶表面颗粒的排布更加规整和致密,更利于与骨骼粘合。【结论】CMC-Na的添加,导致SPI胶二级结构的改变。α-螺旋含量降低而β-折叠含量增加,表明蛋白质分子展开程度增加,内部疏水基团暴露,表面疏水性提高,增加了SPI胶零切黏度,从而显著提高低浓度SPI胶的骨粘合强度;而低浓度SPI胶更利于机体吸收。因此,添加CMC-Na的SPI胶更有潜力作为骨粘合剂应用于医疗领域。  相似文献   

12.
大豆分离蛋白乙酰化功能特性研究   总被引:1,自引:0,他引:1  
通过实验表明:随着乙酸酐添加量的增加,大豆分离蛋白的改性程度提高,并且溶解性、乳化性及乳化稳定性和起泡性及泡沫稳定性明显提高。  相似文献   

13.
[目的]研究Alcalase蛋白酶对大豆分离蛋白的水解作用及水解物的性质。[方法]通过单因素试验,研究pH值、温度、酶浓度、底物浓度等因素对Alcalase蛋白酶酶解大豆分离蛋白的影响,通过正交试验确定Alcalase蛋白酶水解大豆分离蛋白的最佳水解条件。[结果]Alcalase蛋白酶水解大豆分离蛋白的最佳水解条件是pH值8.0、温度60℃、酶浓度1000U/g、底物浓度3%,水解时间2h,大豆分离蛋白水解度为46.13%。[结论]酶解后大豆分离蛋白的水解度达到了制备大豆多肽的要求。  相似文献   

14.
[目的]研究静置期间大豆分离蛋白凝胶的流变特性。[方法]将16%的大豆分离蛋白分散液在5、25℃条件下分别静置5、10、15、20、25、30 h,研究大豆分离蛋白凝胶的蠕变和松弛。[结果]各蠕变参数在不同静置温度下的变化趋势不一样,随着静置时间的延长,25℃下的蠕变参数比5℃下的蠕变参数下降的快。静置温度不同,各松弛参数的变化趋势不同;在同一静置温度下,随着静置时间的延长,各松弛参数的变化趋势基本一致,凝胶制备完成初测试的各个参数值较大,随后逐渐变小。与5℃相比,25℃下的凝胶松弛参数下降较快。[结论]大豆分离蛋白凝胶的蠕变和松弛参数在2种静置温度下的变化快慢不一样,低温静置有利于凝胶品质的变化。  相似文献   

15.
以湿法脱胚的玉米胚芽为原料,采用碱溶酸沉法制备了玉米胚芽分离蛋白;探讨了不同条件如温度、pH、盐浓度等对玉米胚芽分离蛋白的溶解性,解释了溶解性在这些条件下的变化的规律。研究了玉米胚芽分离蛋白对小鼠体内的免疫调节作用,研究结果表明,玉米胚芽分离蛋白能显著提高正常小鼠的免疫脏器指数、腹腔巨噬细胞的吞噬百分率、吞噬指数和淋巴细胞的转化功能活性,促进溶血素的形成。结果提示:玉米胚芽分离蛋白能提高机体的免疫功能,是一种很好的非特异性免疫激活剂。  相似文献   

16.
超声对豌豆分离蛋白结构及乳化性能的调控效应   总被引:1,自引:0,他引:1  
【目的】考察超声波处理对豌豆分离蛋白(pea protein isolate,PPI)结构和理化性质的影响,揭示超声处理对PPI乳化特性的调控机制,为豌豆蛋白作为天然乳剂及其相关产品在食品领域中的应用提供理论依据。【方法】选用频率为20 kHz、功率为600 W的超声波经不同时长(0、20、30、40和60 min)的预处理后制备改性豌豆蛋白(ultrasonic-pea protein isolate,U-PPI),再经高压均质制备U-PPI乳液。通过自由氨基、总巯基、粒径、溶解度及SDS-PAGE探究超声波处理对豌豆蛋白理化性质的影响;借助圆二色谱仪分析U-PPI二级结构的变化;通过内源性色氨酸荧光测定分析U-PPI三级结构的变化;通过乳化活性指数、粒径、乳液界面蛋白分布、Zeta电位和表观黏度表征U-PPI的乳化能力和乳液稳定性;借助激光共聚焦荧光显微镜观察乳状液的微观结构。【结果】超声波处理对PPI结构具有显著修饰作用,30—40 min的短时间超声处理能够显著降低α-螺旋并提高β-折叠含量,使PPI的结构更加舒展柔韧,更多的疏水基团暴露在界面上,同时超声波的解聚效应还引起PPI的平均粒径减小、溶解度显著增大;因而在此条件下超声处理对PPI结构的修饰有利于其在油/水界面形成致密而稳定的蛋白膜,有效地提高了PPI的乳化活性和乳状液的稳定性,微观结构也显示其乳液粒径更小、分布更加均匀。然而,60 min的长时间超声处理会导致PPI的疏水重聚,溶解度降低,不利于其在油/水界面的吸附重排,降低了其乳化活性和乳液稳定性。【结论】30和40 min超声处理产生的空化效应、机械效应等对PPI具有显著的解聚作用,促使蛋白分子结构舒展,有利于其在油/水界面的吸附重排,从而显著改善了豌豆蛋白的乳化性能。  相似文献   

17.
[目的]为了改善麦秆表面胶接性能以制备大豆分离蛋白胶黏剂麦秆刨花板,分别对麦秆表面进行化学处理和酶处理。[方法]通过接触角测量和计算扩散-渗透系数(K),对未处理(对照试样)和两种化学处理及三种酶处理麦秆的麦秆表面润湿性进行评价分析,并通过X射线光电子能谱(XPS)对处理试样和对照试样进行表面元素分析。[结果]结果表明氢氧化钠处理、过氧化氢处理以及脂肪酶处理后的麦秆表面扩散-渗透系数K值同对照试样相比,分别提高了58.0%,48.7%和83.2%。XPS分析表明处理后的麦秆表面硅元素含量的急剧减少和蜡质层的破坏都为麦秆表面润湿性的改善起到了很重要的作用。[结论]麦秆化学处理和脂肪酶处理为豆胶麦秆刨花板的制备提供了技术支持。  相似文献   

18.
 研究了大豆分离蛋白的枯草杆菌蛋白酶水解产物的聚集行为。加入枯草杆菌蛋白酶后,大豆蛋白分离物被迅速降解为分子量小于6.5kDa小分子组分,这些组分相互作用形成大的聚集物。水解液的浊度变化趋势呈S型,底物浓度大于3.2%(酶浓度为750U/mL)时蛋白质的浓度对聚集过程的影响更明显,此临界浓度主要取决于酶浓度。适当的预热处理有利于酶促聚集。由于聚集物能溶于SDS和尿素,说明非共价键(主要是疏水相互作用、氢键和离子键)对聚集物的形成有特别重要的作用。最后并提出了酶促聚集的机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号