首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the determination of organochlorine pesticides in soil samples combining microwave assisted micellar extraction (MAME) with solid-phase microextraction (SPME) and high-performance liquid chromatography-UV has been developed. A mixture of two nonionic surfactants (polyoxyethylene 10 lauryl ether and polyoxyethylene 10 stearyl ether) was used for the extraction of pesticides from agricultural soils, and different types of SPME fibers were compared. The different parameters which affect extraction efficiency in the SPME procedure were optimized such as extraction time and temperature. The method developed involves extraction and preconcentration for the target analytes in soil samples. The analytical parameters were also studied and good recoveries obtained, RSD being lower than 10% and detection limits ranging between 36 and 164 ng g(-1) for the pesticides studied. The proposed method was successfully applied to the determination of some organochlorine pesticides in several kinds of agricultural soil samples with different characteristics.  相似文献   

2.
A gas chromatographic method for the analysis of 10 organochlorine pesticides in 0.5 mL of whole blood is described. Sample preparation involved an ethyl ether and hexane extraction, followed by a silica solid phase extraction cleanup. The pesticides are quantified by gas chromatography/electron capture detection. Method limits of detection ranged from 1.1 to 5.2 microg/L. The mean and standard deviation for the recovery of 10 pesticides was 97.9 +/- 5.5%. Recoveries from whole blood were comparable to recoveries from plasma. This indicates that the preparation of plasma is unnecessary for the quantification of organochlorine pesticides in blood. This approach is particularly useful as a nonlethal approach for monitoring pesticide contamination in small animals for which the volume of blood is limiting.  相似文献   

3.
Supercritical fluid extraction of organochlorine pesticides in eggs   总被引:2,自引:0,他引:2  
The efficacy of supercritical fluid extraction (SFE) for the recovery of 16 common organochlorine pesticides (OCPs) from liquid whole eggs was investigated by employing supercritical carbon dioxide (SC-CO(2)) without the use of a solvent modifier to minimize interfering coextractives. The OCPs tested included aldrin; alpha-, beta-, delta-, and gamma-BHCs; p,p'-DDD, -DDE, and -DDT; dieldrin; endosulfans I, II, and sulfate; endrin; endrin aldehyde; heptachlor; and heptachlor epoxide. The SFE conditions were as follows: 10000 psi (680 bar), 40 degrees C, SC-CO(2) flow rate of 3.0 L/min with an extraction time of 40 min for a total of 120 L of CO(2). The OCPs were trapped off-line in an SPE cartridge containing Florisil and then eluted by an acetone/hexane mixture and analyzed by gas chromatography-electron capture detection (GC-ECD). Recovery studies were carried out on homogenized eggs fortified at the 0.05, 0.10, and 0.20 ppm levels. At the lowest level, 0.05 ppm, recoveries ranged from 81.8 to 108.3%, with CVs < 9.8%. All recoveries were significantly higher than those obtained by an AOAC/FDA solvent extraction method. Eggs containing incurred endosulfan I were also effectively extracted by SFE. This study suggests that the application of SFE for the extraction of OCPs from eggs will result in significant savings in analysis time and lower solvent use and disposal costs compared to conventional solvent extraction procedures.  相似文献   

4.
In the proposed method, a light petroleum solution of lanolin (wool fat) is adsorbed on diatomaceous earth in an Extrelut column, and the pesticides are eluted with acetonitrile saturated with light petroleum. After evaporation to a small volume, the extract is subjected to solid-phase extraction (SPE) on a C-18 column. The acetonitrile eluate is evaporated to dryness and the residue is taken up in light petroleum. Organophosphorus pesticides are determined by temperature-programmed gas chromatography (GC) on a wide-bore column using a flame photometric detector in the phosphorus mode. Organochlorine pesticides are determined after miniaturized Florisil cleanup by classic GC on an OV-17/QF-1 packed column, using an electron capture detector. This procedure is more rapid and straightforward than the time-consuming AOAC extraction method, 29.014. Cleanup was better and the results obtained were comparable. Recoveries for 13 organochlorine and organophosphorus pesticides, frequently found in lanolin, ranged from 80 to 90%.  相似文献   

5.
A validated analytical method for the multiresidue analysis of 40 organophosphate pesticides (OPs) and conversion products in raw wool has been developed. The method is based on the selective microwave-assisted extraction (MAE) of raw wool with acetonitrile and analysis of extracts by gas chromatography-flame photometric detector. The optimum MAE conditions were 20 min duration at 80 °C with 30 mL of acetonitrile per gram of wool. A validation study was performed according to the European SANCO guidelines 10684/2009. Limits of detection and quantification for all pesticides tested were from 0.01 to 0.2 mg/kg and from 0.2 to 1.0 mg/kg, respectively. The average recoveries of pesticides spiked at different levels were in the range of 70-120% with relative standard deviations of ≤ 20%. The extraction performance was compared to the one obtained with a reference Soxhlet extraction. The method was also applied in the analysis of real wool (after field application) samples.  相似文献   

6.
About 20 pesticides were determined in lyophilized fruits using a semiautomatic multiresidue method, based on solid-phase extraction (SPE) with a silica column. The lyophilization of the sample, besides the SPE procedure selected, provided clean extracts despite the complexity of the matrixes studied. In addition, the lyophilization process allows sample preservation for at least three months without changes in the concentrations of the pesticides. Determination and quantitation of organochlorine and pyrethroid residues was carried out using a gas chromatograph equipped with an electron capture detector (GC-ECD), and a mass spectrometric detector (GC-MS) was used for confirmation purposes. Organochlorine pesticides provided average recoveries (spiked at three concentration levels in eight different fruits) near 93 +/- 4%, being lower (89 +/- 8%) for pyrethroids as a consequence of their higher degradation and interaction with the sample matrix. On the other hand, the detection limits achieved for all pesticides (0.5-8 ng per g of lyophilized fruit) allow their determination at the MRLs established by the European Union, with good precision ( approximately 5%). Finally, from the 100 different fruits screened, only 10 positive responses were obtained, which were further confirmed by GC-MS.  相似文献   

7.
A rapid, multiresidue procedure utilizing the minimal cleanup necessary for gas-liquid chromatographic (GLC) analysis is presented. The samples are extraced with acetone and partitioned with methylene chloride-petroleum either to remove water. The organophosphorus and organonitrogen compounds are then quantitated by GLC, using a KCl thermionic detector. A Florisil cleanup of the extract is performed prior to the determination of organochlorine compounds by a GLC electron capture detector. Carbon-hydrogen compounds such as biphenyl and o-phenylphenol undergo the Florisil cleanup and may also be quantitated by GLC. Quantitative recoveries for 15 organophosphorus, 9 organochlorine, 5 organonitrogen, and 2 hydrocarbon pesticides show the range in polarities of pesticides recovered, from Monitor to biphenyl. The method is simple and fast with a great potential for the analysis of many more compounds.  相似文献   

8.
A multicolumn solid-phase extraction cleanup for the determination of organophosphorus (OP) and organochlorine (OC) pesticides plus PCB congeners in virgin olive oil is presented. The method involves dissolution of the olive oil in hexane, followed by a cleanup system using a diatomaceous earth column (Extrelut-QE) with reversed (C(18)) and normal (alumina) phase SPE columns. Determination of OPs was by GC-NPD, while the OCs and PCBs were analyzed using GC-ECD. Recovery assays for OPs varied from 81.7% to 105.3%, for OCs ranged between 74.3% and 99.4%, while for PCBs were from 60.1% to 119.2%. Quantitation limits ranged from 10 to 25 microg/kg olive oil for OPs, and from 1 to 6 microg/kg olive oil for OCs and PCBs. In the case of positive samples, the confirmation of pesticide identity was performed by ion-trap GC-MS/MS. The applicability of the method was assayed with 19 virgin olive oil samples collected from different olive mills of Aragón (Spain). Only one OP pesticide (acephate) was detected in one sample at a concentration of 10 microg/kg. Organochlorine pesticides were found in 5-47% of samples at very low levels ranging from 1.5 to 5.2 microg/kg. PCBs were found in 20-90% of samples, showing concentrations between 2.3 and 17.3 microg/kg.  相似文献   

9.
A multiresidue solid phase extraction (SPE) method for the isolation and subsequent gas chromatographic determination of nonpolar organochlorine and polar organophosphorus pesticide residues in eggs is described. The method uses an acetonitrile extraction followed by an SPE cleanup using graphitized carbon black and aminopropyl SPE columns. Organophosphorus pesticides are determined by gas chromatography with flame photometric detection. After further cleanup of the extract using Florisil SPE columns, organochlorine pesticides are determined by gas chromatography with electron capture detection. Studies were performed using eggs containing both fortified and incurred pesticide residues. The average recoveries were 86-108% for 8 fortified organochlorine pesticide residues and 61-149% for 28 fortified organophosphorus pesticide residues.  相似文献   

10.
Supercritical fluid carbon dioxide (SC-CO2), when used with an extraction enhancer, comprises a supercritical fluid extraction (SFE) system for extraction of pesticides and matrix components from fatty and nonfatty foods. After being mixed with the enhancer, samples ranging from 95% water to pure lipophilic oils can be extracted efficiently with SC-CO2. This extraction technique yields analyte recoveries in excess of 85% for over 30 types of pesticides at incurred levels ranging from 0.005 to 2 ppm in such diverse matrixes as carrots, lettuce, peanut butter, hamburger, and fortified butter fat and fortified potatoes. SC-CO2 provides a solvent medium that is nontoxic, nonflammable, and inexpensive while also eliminating the use and disposal of potentially carcinogenic organic solvents.  相似文献   

11.
A method for the multiresidue determination of 35 pesticides (30 insecticides and five herbicides) in olive oil by gas chromatography (GC) is described. Three liquid-liquid extraction (LLE) procedures based on (i) partition of pesticides between acetonitrile (ACN) and oil solution in n-hexane, (ii) partition of pesticides between saturated ACN with n-hexane and oil solution in n-hexane saturated with ACN, and (iii) partition of pesticides between ACN and oil were tested for the optimization of the highest pesticide recoveries with the lowest oil residue in the final extracts. Experimental tests were preformed in order to study the efficiency of different clean up procedures with N-Alumina, Florisil, C18, and ENVI-Carb solid-phase extraction (SPE) cartridges for the compounds analyzed by GC-nitrogen phosphorus detection. A second step of clean up was also performed for the compounds analyzed by GC-electron capture detection (ECD), by using phenyl-bonded silica (Ph), diol-bonded silica (Diol), cyanopropyl-bonded silica (CN), and amino propyl-bonded silica (NH2) SPE cartridges. LLE of the oil solution in hexane with ACN followed by an ENVI-Carb SPE clean up of the extract gave the best results for all target compounds. The ACN extract was additionally cleaned through a Diol-SPE cartridge for the determination of pesticides analyzed mainly by GC-ECD. Pesticide recoveries form virgin olive oil spiked with 20, 100, and 500 microg/kg concentrations of pesticides ranged from 70.9 to 107.4%. The proposed method featured good sensitivity, pesticide quantification limits were low enough, and the precision, expressed as relative standard deviation, ranged from 2.4 to 12.0%. The proposed method was applied successfully for the residue determination of the selected pesticides in commercial olive oil samples.  相似文献   

12.
We evaluated the feasibility of extracting organic pesticides in soil using a hot-water percolation apparatus at 105 degrees C and 120 kPa pressure. Efficiency of the method was assessed by extracting six selected pesticides (acetochlor, atrazine, diazinon, carbendazim, imidacloprid, and isoproturon) from previously equilibrated soil at 13.6-65.8 mg/kg concentration range. Studies were performed on brown forest soil with clay alluviation (Luvisol). The method developed was compared to the traditional batch equilibrium method in terms of desorbed amount of pesticides from soil and extraction time. Pesticides in the liquid phase from the batch sorption experiment and in the effluent from the hot-water percolation were quantified by high-performance liquid chromatography with UV detection. The results of the percolation experiment are in close correlation with those of the conventional soil testing method. Desorbed quantities by hot-water percolation were 85% acetochlor, 62% atrazine, 65% carbendazim, 44% diazinon, 95% imidacloprid, and 84% isoproturon, whereas using batch equilibrium method 101, 66, 64, 37, 81, and 90% were desorbed, expressed as the percentage of the adsorbed amount of pesticide on soil following equilibration. The average time for hot-water extraction was 3.45 min, in contrast to the 16 h time consumption of the traditional batch method. The effect of temperature on stability of selected compounds was also evaluated using pesticide-spiked sand without soil. Recoveries of analytes ranged between 84.6 and 91.1% with reproducibility of 7.9-10.2%, except for diazinon, for which recovery was 59.4% with 14.4% relative standard deviation since decomposition occurred at elevated temperature. The percolation process has been described by a first-order kinetic equation. The parameters calculated from the equation provide an opportunity to estimate the amount of compound available for desorption, the rate of desorption processes in the studied soil-pesticide-water system, and modeling the leaching process to obtain additional information on the environmental behavior of the examined pesticide.  相似文献   

13.
The retention time relative to parathion, absolute retention time, concentration range, peak asymmetry factor, and peak shape class are given for each of 42 organophosphorus pesticides and 28 organochlorine pesticides analyzed by gas chromatography (GC) on 9 different packed columns. The packing materials used were 3% SP-2100, 1% Dexsil-300, 3% OV-17, 1.5% OV-17 + 1.95% QF-1, 4% SE-30 + 6% QF-1, 3% OV-17 + 3% OV-210, 5% DC-200 + 7.5% QF-1,3% Carbowax-20M, and 4% Reoplex-400. Retention data were determined at 200 degrees C with a carrier gas flow at uopt, using a 63Ni electron-capture detector. Results should be useful for preliminary identification of environmental samples and also for single or multiple pesticide residue analysis.  相似文献   

14.
Large amounts of contaminated process dust remain from the procedure of pesticide treatments applied to seed pellets. A pilot study in analytical-scale supercritical fluid extraction (SFE) was performed to determine the possibility of using supercritical carbon dioxide for the extraction of the nonpolar insecticide carbosulfan and the more polar insecticide imidacloprid present in contaminated dust waste, at concentrations of up to 20% (w/w). The effects of various experimental conditions, such as temperature, flow rate, and addition of modifier, on the recovery of the analytes were evaluated by extracting the pesticides both from spiked support material and from real dust samples. It was found that carbosulfan could easily be extracted from the dust waste within 30 min at 138 bar and 40 degrees C with a recovery of 98.9% (RSD = 2.3%, n = 10), compared to values obtained with a validated liquid extraction method. A sufficient removal of the more polar substance imidacloprid required the addition of a modifier, and the results showed a strong dependence of the extraction efficiency on the choice of modifier. Extractions at 276 bar and 80 degrees C with a solvent consisting of supercritical carbon dioxide modified with methanol (5%) gave a recovery of 97.0% (RSD = 3.6%, n = 10) using a 40 min extraction time. The results indicate that it seems to be possible to use process-scale SFE for the decontamination of pesticides from dust waste. The conditions outlined also permit analytical determinations of the two insecticides based on a combination of SFE and liquid chromatography.  相似文献   

15.
为加强有机氯农药(organic chlorinated pesticides,OCPs)的污染预防与控制,该研究分析了新疆典型农业地区有机氯农药的污染状况并对其进行了风险评价。采集表层土壤样品36个,分析其中15种OCPs的残留状况。六六六(Hexachlorocyclohexanes,HCHs)、滴滴涕(dichlorodiphenyltrichloroethanes,DDTs)、氯丹类化合物、硫丹和硫丹盐的质量分数范围分别是0.37~22.82、0.91~858.47、0.15~47.08ng/g、N.D(未检出)~16.27和N.D~73.83ng/g。对OCPs的来源进行分析,发现HCHs来源于历史上工业HCHs的使用或近期林丹的输入,DDT来源于工业品的违法使用和三氯杀螨醇的使用,研究区域氯丹存在新的来源,而硫丹新来源较少。通过主成分分析,从15种OCPs中提取了5个主成分,总方差解释量达到了79.93%。5个主成分分别归因于DDT和工业HCH s的使用、OCPs原料的差异以及研究区域内病虫害的发病特征等。利用灰色关联分析研究区域内OCPs污染状况,结果表明石河子污染水平最高,各研究区域土壤均需要采取进一步的污染控制措施。  相似文献   

16.
A new method for the determination of clomazone, fipronil, tebuconazole, propiconazole, and azoxystrobin in samples of rice paddy soil is presented. The extraction of the pesticides from soil samples was performed by using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. Some extraction conditions such as salt addition, sample acidification, use of buffer, and cleanup step were evaluated. The optimized method dealt with a single extraction of the compounds under study with acidified acetonitrile, followed by the addition of MgSO(4) and NaCl prior to the final determination by liquid chromatography-atmospheric chemical pressure ionization-tandem mass spectrometry. Validation studies were carried out in soil samples. Recoveries of the spiked samples ranged between 70.3 and 120% with relative standard deviation lower than 18.2%. The limits of quantification were between 10 and 50 μg kg(-1). The method was applied to the analysis of real samples of soils where rice is cultivated.  相似文献   

17.
A method based on semiautomated solid phase extraction using octadecyl-bonded silica disks and gas chromatography-mass spectrometry, operated in selected ion monitoring mode, allows detection and quantification of approximately 100 pesticides and transformation products in drinking water. Samples (500 mL) were passed through the disk, and the retained pesticides were eluted with acetone and ethyl acetate. Typical recoveries for pesticides at 0.1 microg L(-1) in water were in the range of 72-120% with relative standard deviations less than 20%. Calibration curves were linear over the range of 0.025-0.5 microg mL(-1) (equivalent to a concentration range in drinking water of 0.05-1.0 microg L(-1)).  相似文献   

18.
Several extraction methods are compared for the simultaneous analysis of organophosphorus pesticides in unpolished rice. Four stationary phases were used for the subsequent gas-liquid chromatographic (GLC) determination of the selected pesticides. Using 3 different GLC columns, 11 pesticides were completely separated and identified. The efficiency of the cleanup and the sensitivity of the analytical method were evaluated by using powdered unpolished rice samples fortified with the pesticides and also wheat and dried bean samples. Average recoveries ranged from 74.7% for disulfoton to 97.4% for malathion in unpolished rice and from 68.1% for disulfoton to 108.3% for malathion in other crops. The method described is applicable to the analysis of selected organophosphorus pesticide residues in unpolished rice, wheat, buckwheat, and dried beans.  相似文献   

19.
Stir bar sorptive extraction (SBSE) in combination with GC-ECD/FPD analysis is here applied to the determination of the residues of 11 pesticides (hexachlorobenzene, lindane, chlorothalonil, parathion methyl, parathion ethyl, fenitrothion, malathion, dieldrin, alpha- and beta-endosulfan, and tetradifon) in herbal teas prepared with Passiflora alata Dryander spiked leaves. The method was optimized using spiked herbal teas in a range from 0.05 to 1 pg/microL for organochlorine pesticides and from 0.15 to 3 pg/microL for organophosphorus pesticides. The method is reproducible and repeatable with recoveries calculated from herbal teas prepared with spiked plant material versus spiked herbal teas, varying from about 30% for tetradifon to about 90% for parathion methyl and malathion. The limits of quantitation (LOQs) ranged from 0.017 pg/microL for lindane to 0.117 pg/microL for malathion.  相似文献   

20.
The efficacy of sulfuric acid cleanup and KOH-ethanol hydrolysis confirmation was studied for 22 organochlorine pesticides and 2 polychlorinated biphenyls (PCBs). Mean recoveries for different treatment times are given. The method was applied to analysis of several wastewater samples by gas chromatography with electron capture detection. Organochlorine compounds were extracted by using separatory funnels and 15% diethyl ether in hexane as extractant. All the compounds studied could be analyzed except trifluralin, dichloran, dieldrin, and endrin, which were destroyed after treatment with concentrated H2SO4. The pesticides found most commonly in the samples analyzed were fenson, tetradifon, lindane, methoxychlor, and dicofol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号