首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The aim of this study was to measure the pressures exerted by earthworms during burrowing. For this purpose we developed two methods with which to quantify the axial and radial pressure. The data were recorded with an electronic balance that was connected to a PC. Artificial earthworm burrows were used to standardize the measurements. Plexiglas tubes with diameters ranging from 2 to 6.3 mm which corresponded to the diameter of the earthworms were used. A pin was placed inside the tubes, on which the earthworms exerted a pressure by peristaltic locomotion. Only the maximum values of the pressure measurement were taken into account for evaluation, and the arithmetic mean was calculated. The measurements were conducted with Aporrectodea longa, Lumbricus terrestris, Aporrectodea caliginosa, Octolasion cyaneum, Allolobophora chlorotica, Aporrectodea rosea, Lumbricus rubellus and Dendrobaena octaedra. The species examined were classified into ecological groups. The mean axial pressures exerted by each group were in the order: epigeic (14–25 kPa), endogeic (27–39 kPa) and anecic (46–65 kPa). For the mean radial pressure the order was: epigeic (39–63 kPa), anecic (72–93 kPa) and endogeic (59–195 kPa). It was apparent from the results that radial pressure is the most important pressure with respect to the burrowing activity of earthworms. Received: 28 April 1998  相似文献   

2.
Temperature fluctuations are a fundamental entity of the soil environment in the temperate zone and show fast (diurnal) and slow (seasonal) dynamics. However, responses of soil ecosystem engineers, such as earthworms, to annual temperature dynamics are virtually unknown. We studied growth, mortality and cocoon production of epigeic earthworm species (Lumbricus rubellus and Dendrobaena octaedra) exposed to temperature fluctuations in root-free soil of a mid-European beech-oak forest. Both earthworm species (3 + 3 individuals of each species) were kept in microcosms containing soil stratified into L, F + H and Ah horizons. In the field, earthworm responses to smoothing of diurnal temperature fluctuations were studied, simulating possible global change. In the laboratory, earthworm responses to seasonal (±5 °C of the annual mean) and diurnal temperature fluctuations (±5 °C of the seasonal levels) were analyzed in a two-factorial design. Both experiments lasted 12 months to differentiate between seasonal and diurnal responses. In the third experiment overwintering success of both earthworm species was investigated by comparing effects of constant temperature regime (+2 °C), and daily or weekly temperature fluctuations (2 °C ± 5 °C).Temperature regime strongly affected population performance of the earthworms studied. In the field, smoothed temperature fluctuations beneficially affected population development of both earthworm species (higher biomass, faster maturity and reproduction, lower mortality). Consequently, density of both species increased faster at smoothed than at ambient temperature conditions. In the laboratory, responses of L. rubellus and D. octaedra to temperature treatments differed; however, in general, earthworms benefited from the absence of diurnal fluctuations. Total earthworm numbers were at a maximum at constant temperature and lowest in the treatment with both diurnal and seasonal temperature fluctuations. However, after one year L. rubellus tended to dominate irrespective of the temperature regime. In the overwintering experiment L. rubellus sensitively responded to even short-term winter frost and went extinct after one week of frost whereas D. octaedra much better tolerated frost conditions. Earthworms of both species which survived frosts were characterized by a significant body weight decrease during the period of frosts and fast recovery in spring suggesting a different pattern of individual resource expenditure as compared with constant +2 °C winter regime. Contrasting trends in the population dynamics of L. rubellus and D. octaedra during the frost-free period and during winter suggest that in the long-term temperature fluctuations contribute to the coexistence of decomposer species of similar trophic position in the forest litter. The results are discussed in context of consequences of climate change for the functioning of soil systems.  相似文献   

3.
An investigation of earthworms across a sand dune system in NW England examined species distribution and abundance with respect to soil physico-chemical conditions and management. Replicated 0.1 m2 quadrats were examined every 50 m along 700 m transects across areas of vegetation succession and samples were then taken every 10 m where earthworms were first encountered. A translocation of Aporrectodea longa assessed the ability of this species to live in soils with a high sand content and laboratory work examined growth, maturation and survival of this species in soils with increasing proportions of sand (0–100%). Nine earthworm species were found on the dunes, but none in yellow dunes where organic matter (OM) content was <1%. Dendrobaena octaedra and Lumbricus rubellus were located 300 m from the strand line in grey dunes with an OM content of 3.9%. Allolobophora chlorotica and Lumbricus castaneus occurred within a wet dune slack at 340 m (OM content 11%). In areas of human disturbance (dune car park), A. longa, Aporrectodea caliginosa and Lumbricus terrestris were present, and in soil below pine trees L. castaneus and L. rubellus were present in litter. Laboratory growth of A. longa demonstrated significant (p < 0.05) increases in growth (2–2.75 g) with 25 and 50% sand compared with 0, 75 and 100% over 24 weeks and a greater rate of maturation. Initial results show earthworm colonisation to be influenced by dune successional stage. Laboratory findings suggested A. longa could exist in higher sand content areas but experimental design needs development. The translocation was unsuccessful. Future investigations could examine soil properties more closely and undertake monitoring on site throughout the year.  相似文献   

4.
The study examines humus profile development during a chronosequence consisting of four beech forest growth stages, and particularly the role of some components of soil fauna (lumbricid oligochaetes) on humus morphogenesis. An experimental site was set up in a lowland beech forest (Fougères state forest, eastern Brittany, France) to carry out a chronosequence analysis. This lowland beech forest is acidophilous, managed as an even-aged beech stand. The dominant tree species is beech (Fagus sylvatica L.). Samples were taken twice a year, from autumn 1997 to spring 2000 inclusive. Earthworms were caught after watering with formalin solutions. Only five species were found: three epigeic (litter-dwellers): Dendrobaena octaedra, D. rubida tenuis, Eisenia eiseni; one epi-anecic (litter/soil-dweller): Lumbricus rubellus; one endogeic (soil-dweller): Allolobophora caliginosa. D. octaedra is dominant in the four plots at densities ranging from 41 ind·m–2 (88 % of total earthworm population) to 12.4 ind·m–2 (99 % of total). Species richness and abundance are low in accordance with a moder humus form typical of acid soil conditions. Results are discussed according to plot heterogeneity, stand age, seasonal variations and functional diversity.  相似文献   

5.
There are very few studies on the effects of temporal changes in soil properties on ecosystem engineers in UK soils. This study addresses this lack by presenting earthworm diversity data from a six-year seasonality study comprising 72 monthly samples from the litter and soil of pasture woodland in the New Forest, southern England. These data were analysed in the context of soil moisture and soil temperature, key factors affecting earthworm abundance, and factors likely to be strongly affected by future climate change. The data for the whole period were analysed using non-parametric regression and an additive model used to separate within-year and between-year effects. Seasonal patterns are present for all the common species, generally with a maximum in March and a minimum in September. A majority of the five commonest species show a strong decline in abundance during the two extremely dry periods (2002–2003 and 2006). In sharp contrast, the same species showed a relative increase during the very wet summer and autumn of 2007. There was, however, no significant overall trend in either the climate data or the earthworm species data. The epigeic species, Dendrobaena octaedra, showed the largest decline in the driest months which caused a crash to the point where there were no adults sampled during the four dry summer months of 2003. A second congeneric species, Dendrobaena attemsi, also epigeic, appears to have invaded the woodland during the six year period and is increasing rapidly in abundance. This may indicate the start of a shift in the distribution of the two species, as D. octaedra generally has a northern European distribution and is frost-tolerant, while D. attemsi has a southern European distribution and is more drought-tolerant. In contrast, the very wet summer of 2007 seems to have damped the usual periodic seasonal oscillations in earthworm numbers. Endogeic worm species do not show the D. octaedra seasonal pattern as obviously, probably because these species are able to move more freely through the soil and because they are able to aestivate. These changes are likely to be due to a combination of human movement of earthworms (e.g. D. attemsi) and variations in local climate.  相似文献   

6.
In the burozems of the plains, the composition of the invertebrates and saprophages (the prevailing primary destroyers) differed from that in the mountainous soils only by the absence of millipedes of the Geophilomorpha order. At the same time, the differences in these characteristics between the burozems and soddypodzolic soils of the neighboring coniferous-broad-leaved forests were more significant: in the latter, the composition of the ecological groups of earthworms was more diverse. Among the earthworms, secondary destroyers (detritophages) consuming well-decomposed residues of plants and animals predominated: Aporrectodea caliginosa, A. rosea, and Octolasium lacteum. In the taiga burozems, among the secondary destroyers, very few O. lacteum among the earthworms, and Polyzonium germanicum among the millipede diplopods were found. Primary destroyers that only comminute plant tissues (Dendrobaena octaedra and Dendrodrilus rubidus f. tenuis) were the main representatives in the invertebrate population of these soils. The differences also concerned the group composition and the proportion between the life forms of the earthworms. In the southern taiga burozems, only the litter (Dendrobaena octaedra and Dendrodrilus rubidus f. tenuis) earthworms and species of the upper soil layer (Octolasium lacteum) were present. In the mountainous burozems of the Transcarpathian region, litter inhabitants (Dendrobaena attemsi and Aporrectodea submontana), soil-litter inhabitants (Dendrobaena alpina—Transcarpathian region), and inhabitants of the upper (Helodrilus cernosvitovianus) and middle (Aporrectodea carpathica and A. sturanyi) soil layers (in the Primorskii region, only the soil-litter Eisenia nordenskioldi) were identified. In the soddy-podzolic soils, dwellers of the middle soil layers (Aporrectodea caliginosa, A. rosea, and Lumbricus terrestris) were constantly present along with the species dwelling in the litter and in the upper soil layers (in the litter—Dendrobaena octaedra, Dendrodrilus rubidus f. tenuis, and L. castaneus; in the litter-soil layer—L. rubellus; in the upper soil layer—Octolasium lacteum). The higher diversity of the earthworm life forms in the soddy-podzolic soils points to the stronger development of their humus horizons as compared to those horizons in the burozems of the southern taiga and mountains.  相似文献   

7.
In North America, many species of European earthworms have been introduced to northern forests. Facilitative or competitive interactions between these earthworm species may result in non-additive effects on native plant and animal species. We investigated the combined versus individual effects of the litter-dwelling earthworm Dendrobaena octaedra Savigny, 1826 and the deep-burrowing species Lumbricus terrestris L., 1758 on microarthropod assemblages from boreal forest soil by conducting a mesocosm experiment. Soil cores from earthworm-free areas of northern Alberta, Canada, were inoculated with D. octaedra alone, L. terrestris alone, both worm species together, or no earthworms. After 4.5 months, microarthropods were extracted from the soil, counted, and identified to higher taxa. Oribatid mites were further identified to family and genus. Abundance of microarthropods was significantly lower in the treatment containing both species than in the no earthworm treatment and the L. terrestris treatment. Oribatida and Prostigmata/Astigmata differed significantly among treatments and were lowest in the treatment containing both earthworm species, followed by the D. octaedra treatment, although post-hoc pairwise comparisons were not significant. Within the Oribatida, composition differed between the control and L. terrestris treatments as compared to the D. octaedra and both-species treatments, with Suctobelbella and Tectocepheus in particular having higher abundances in the control treatment. Effects of the two earthworm species on microarthropods were neither synergistic nor antagonistic. Our results indicate that earthworms can have strong effects on microarthropod assemblages in boreal forest soils. Future research should examine whether these changes have cascading effects on nutrient cycling, microbial communities, or plant growth.  相似文献   

8.
The effect of heavy metal pollution on Oligochaeta (Enchytraeidae and Lumbricidae) populations was studied along a pollution gradient in vicinity of Olkusz (southern Poland). The study sites, which differed in metal concentrations in the humus layer, were established in mixed-pine forests 3.5 km, 2.5 km, 3.9 km, 7.9 km and 31.9 km (reference site) from the source of pollution (zinc smelter). Enchytraeid and earthworm population density and species composition were determined from soil sampled four times from the study sites. Enchytraeidae populations consisted of nine genera and 18 species. The dominating enchytraeid species in all study sites was Cognettia sphagnetorum (approx. 90%), except for the most polluted site, where Enchytraeus, Fridericia and Henlea were the most common species diversity and heterogeneity were the highest in the most polluted site. The highest mean densities were found in the reference site (16,333 individuals m?2) and lowest in the most polluted site (3932 individuals m?2). Earthworm populations consisted of three epigeic species, and the most abundant one was Dendrobaena octaedra. Earthworms densities in all sites sampled were low. The concentrations of Zn, Pb and Cd in: humus layer, and in enchytraeids and earthworms, were the highest for the most polluted site and decreased with distance from pollution source. Density of Enchytraeidae and body loads of metals in Enchytraeidae and Lumbricidae can be employed for biomonitoring.  相似文献   

9.
《Applied soil ecology》2007,35(1):46-56
A study on the widespread earthworm Dendrobaena octaedra was conducted to determine which individual life history traits were the most sensitive to copper and to determine the contribution of changes in individual traits to changes in the population growth rate (λ). The study showed that the effect of copper on population growth rate mirrored the effects seen on growth, maturation and reproductive output, with stimulation at the lowest concentrations and inhibition at the highest concentration. A decomposition analysis showed that the mean change in λ was mainly driven by time between consecutive cocoon productions, except at the highest copper concentration (200 mg/kg dry soil) where decreased production of fertile cocoons also contributed to the reductions in λ. The highest population growth rate (λ = 1.18 week−1) occurred at 80 mg Cu/kg dry soil. At higher concentrations λ became gradually smaller, and was almost 1 week−1 (where no population increase or decrease occurs) at the highest exposure concentration of 200 mg Cu/kg dry soil suggesting that extinction would occur if a population of D. octaedra were to be exposed to copper concentrations only slightly higher than this level.  相似文献   

10.
The study was conducted on Dendrobaena octaedra—a small epigeic earthworm species common in different forest types. In the laboratory the P (parent animals collected in forest) and F1 generations were cultured separately in containers filled with 50 g artificial soil. The containers were kept at 15±0.5 °C, 80% humidity and constant artificial light of low intensity. Every month during the 47 months of culture, the animals and cocoons were removed from the soil by washing on a sieve, weighed, and replaced into new soil. Individuals of the F1 generation did not reproduce continuously. Cocoon production was seasonal, despite culture in constant conditions throughout the whole experiment. Reproduction was highest in spring and summer, and dropped in the winter months. Seasonality characterized the fraction of animals reproducing as well as the number of cocoons produced. The observed seasonal changes in the cocoon production of the F1 generation cultured in constant conditions suggest that internal regulation of reproduction may exist in the earthworm D. octaedra. External factors like temperature, moisture, photoperiod or food supply, which could be responsible for seasonality of reproduction were missing.  相似文献   

11.
Soils of a forest ecosystem in Berlin (West) are highly polluted by Pb and less polluted by Cd and Cu. Pb levels in earthworm species depend primarily on soil type and only secondarily on the distance from a highway crossing the forest. The dominating species Lumbricus rubellus and Dendrobaena octaedra show different body burdens especially of Cd. Liming the forest soils decreases the Pb concentrations significantly. Only in D. octaedra has body weight been found to be related to Pb; Pb has been increased from 50 mg kg–1 in small to 250 mg kg–1 in large specimens; Cu has been regulated at a more or less constant absolute level (about 0.4 pg per specimen). This species obviously regulates or accumulates the three metals in different ways. Centipedes as predators of earthworms in the sites show markedly less pollution of Pb and Cd (about 2.5 and 0.6 mg kg–1) than the worms, but higher concentrations of the essential Cu (about 40 mg kg–1). The use of earthworms as indicators of heavy metal pollution should take into account the biology of the various species, the soil type, the type and amount of organic matter as well as chemical parameters such as pH value or basic anions.  相似文献   

12.
Previous laboratory studies using epigeic and anecic earthworms have shown that earthworm activity can considerably increase nitrous oxide (N2O) emissions from crop residues in soils. However, the universality of this effect across earthworm functional groups and its underlying mechanisms remain unclear. The aims of this study were (i) to determine whether earthworms with an endogeic strategy also affect N2O emissions; (ii) to quantify possible interactions with epigeic earthworms; and (iii) to link these effects to earthworm-induced differences in selected soil properties. We initiated a 90-day 15N-tracer mesocosm study with the endogeic earthworm species Aporrectodea caliginosa (Savigny) and the epigeic species Lumbricus rubellus (Hoffmeister). 15N-labeled radish (Raphanus sativus cv. Adagio L.) residue was placed on top or incorporated into the loamy (Fluvaquent) soil. When residue was incorporated, only A. caliginosa significantly (p < 0.01) increased cumulative N2O emissions from 1350 to 2223 μg N2O-N kg−1 soil, with a corresponding increase in the turnover rate of macroaggregates. When residue was applied on top, L. rubellus significantly (p < 0.001) increased emissions from 524 to 929 μg N2O-N kg−1, and a significant (p < 0.05) interaction between the two earthworm species increased emissions to 1397 μg N2O-N kg−1. These effects coincided with an 84% increase in incorporation of residue 15N into the microaggregate fraction by A. caliginosa (p = 0.003) and an 85% increase in incorporation into the macroaggregate fraction by L. rubellus (p = 0.018). Cumulative CO2 fluxes were only significantly increased by earthworm activity (from 473.9 to 593.6 mg CO2-C kg−1 soil; p = 0.037) in the presence of L. rubellus when residue was applied on top. We conclude that earthworm-induced N2O emissions reflect earthworm feeding strategies: epigeic earthworms can increase N2O emissions when residue is applied on top; endogeic earthworms when residue is incorporated into the soil by humans (tillage) or by other earthworm species. The effects of residue placement and earthworm addition are accompanied by changes in aggregate and SOM turnover, possibly controlling carbon, nitrogen and oxygen availability and therefore denitrification. Our results contribute to understanding the important but intricate relations between (functional) soil biodiversity and the soil greenhouse gas balance. Further research should focus on elucidating the links between the observed changes in soil aggregation and controls on denitrification, including the microbial community.  相似文献   

13.
Summary The earthworms Lumbricus rubellus (Hoffmeister) and Dendrobaena octaedra (Savigny) were studied in the laboratory to determine their effects on decomposition and nutrient cycling in coniferous forest soil. CO2 evolution was monitored, and pH, PO 4 3– –P, NH 4 + –N, NO 3 –N, total N, and total C in the leaching waters were measured. After three destructive samplings, numbers of animals, mass loss, pH, and KCl-extractable nutrients were analysed.The earthworms clearly enhanced the mass loss of the substrate, especially that of litter. L. rubellus stimulated microbial respiration by 15–18%, whereas D. octaedra stimulated it only slightly. The worms significantly raised the pH of the leaching waters and the humus; L. rubellus raised the value by 0.2–0.6 pH units and D. octaedra by 0.1–0.4 units. Both worms increased N mineralization. Although the biomass of both worms decreased during the experiment, the N released from decomposing tissues did not explain the increase in N leached in the presence of earthworms. The worms influenced the level of PO 4 3– –P only slightly.  相似文献   

14.
Trace metals and metalloids (TMM) in forest soils and invasive earthworms were studied at 9 sites in northern New England, USA. Essential (Cu, Mo, Ni, Zn, Se) and toxic (As, Cd, Pb, Hg, U) TMM concentrations (mg kg−1) and pools (mg m−2) were quantified for organic horizons (forest floor), mineral soils and earthworm tissues. Essential TMM tissue concentrations were greatest for mineral soil-feeding earthworm Octolasion cyaneum. Toxic TMM tissue concentrations were highest for organic horizon-feeding earthworms Dendobaena octaedra, Aporrectodea rosea and Amynthas agrestis. Most earthworm species had attained tissue concentrations of Pb, Hg and Se potentially hazardous to predators. Bioaccumulation factors were Cd > Se > Hg > Zn > Pb > U > 1.0 > Cu > As > Mo > Ni. Only Cd, Se, Hg and Zn were considered strongly bioaccumulated by earthworms because their average bioaccumulation factors were significantly greater than 1.0. Differences in bioaccumulation did not appear to be caused by soil concentrations as earthworm TMM tissue concentrations were poorly correlated with TMM soil concentrations. Instead, TMM bioaccumulation appears to be species and site dependent. The invasive A. agrestis had the greatest tissue TMM pools, due to its large body mass and high abundance at our stands. We observed that TMM tissue pools in earthworms were comparable or exceeded organic horizon TMM pools; earthworm tissue pools of Cd were up 12 times greater than in the organic horizon. Thus, exotic earthworms may represent an unaccounted portion and flux of TMM in forests of the northeastern US. Our results highlight the importance of earthworms in TMM cycling in northern forests and warrant more research into their impact across the region.  相似文献   

15.
Ecosystems of northern North America existed without earthworm fauna until European settlers arrived and introduced European species. The current extent of invasion by some of these species, Lumbricus terrestris L., Octolasion tyrtaeum Savigny and Dendrobaena octaedra Savigny, into an aspen forest in the Canadian Rocky Mountains and the effects of the invasion on soil chemistry, microflora, soil microarthropods and vegetation were investigated. Densities of earthworm species, soil structure, plant coverage and abundance were determined along three transects starting at the edge of the forest. At locations with L. terrestris, litter was incorporated into the soil, and where O. tyrtaeum was present, organic layers were mixed with mineral soil layers. Organic layers disappeared almost entirely when both species occurred together. Carbon and nitrogen concentrations were reduced in organic layers in the presence of L. terrestris and O. tyrtaeum. Microbial biomass and basal respiration were reduced when L. terrestris and O. tyrtaeum were present, presumably due to resource competition and habitat destruction. Microarthropod densities and the number of microarthropod species were strongly reduced in the presence of O. tyrtaeum (−75% and −22%, respectively), probably through mechanical disturbances, increasing compactness of the soil and resource competition. The coverage of some plant species was correlated with earthworm abundance, but the coverage of others was not. Despite harsh climatic conditions, the invasion of boreal forest ecosystems by mineral soil dwelling earthworm species is proceeding and strongly impacts soil structure, soil chemistry, microorganisms, soil microarthropods and vegetation.  相似文献   

16.
On four differently managed and abandoned alpine meadows and pastures densities, biomasses and 15N signatures of the macrofauna were assessed to evaluate the structural and functional changes of the decomposer food webs. The composition of the macrofauna decomposer community changes remarkably after the abandonment of alpine meadows and pastures. Lumbricus rubellus functions as key primary decomposer on alpine meadows and pastures whereas on abandoned sites other primary decomposers including Dendrobaena octaedra, Cylindroiulus meinerti, C. fulviceps and diptera larvae become more important. Decomposer species, such as Enantiulus nanus, presumably function as both primary and secondary decomposers and endogeic earthworms, such as Octolasion lacteum and Aporrectodea rosea, uniformly function as secondary decomposers. Abandonment of pasturing causes a shift in the composition of the macrofauna and the newly established fauna is unable to process and translocate the litter materials produced by the plants of the abondoned sites.  相似文献   

17.
We have shown previously that riboflavin is stored in chloragosomes of chloragocyte-derived earthworm eleocytes what may have an adaptive value for worms vulnerable to soil-derived pathogen invasion. Thus, it is important to determine whether riboflavin stores are also present in earthworm species with low eleocyte counts, especially in the chloragocytes of their chloragogen tissue that surrounds the coelomic site of the intestine, and find out its putative roles in earthworm immunity. Experiments were performed on adult worms from 6 species. Freely floating coelomocytes (consisting of amoebocytes plus species-specific numbers of eleocytes) were extruded by mild electric shock and then chloragocytes from the same anaesthetized worm were mechanically detached into buffer. Both cell suspensions were analyzed by spectrofluorometry for riboflavin content. It turned out that riboflavin is stored in species-specific quantities in all investigated species. Riboflavin storage predominates in free coelomocytes of eleocyte-rich species (Eisenia andrei, Dendrobaena veneta, Allolobophora chlorotica) while in chloragocytes of species with few eleocytes (Lumbricus terrestris, L. rubellus, and Aporrectodea caliginosa). Upon a massive microbial impact, the coelomocytes (both amoebocytes and eleocytes) are involved in the formation of multicellular bodies encapsulating soil-derived pathogens, what is connected with enhanced coelomocyte mobility. Thus the second aim of the present investigation was to check if riboflavin can participate in coelomocyte accumulations. Tests performed in a 48-well chemotaxis chamber revealed that riboflavin behave as chemoattractant for coelomocytes of all investigated earthworm species, which may be one of mechanisms underpinning its immunomodulatory functions.  相似文献   

18.
A laboratory experiment was performed to assess the impact of ecologically different earthworm species on soil water characteristics, such as soil tension, water content, and water infiltration rate. Three earthworm species (Lumbricus rubellus, Aporrectodea caliginosa, Lumbricus terrestris) were exposed in soil columns (diameter 30 cm, height 50 cm) for 100 days with a total fresh earthworm biomass of 22.7 ± 0.4 g per column, each in duplicate. Each column was equipped with tensiometers at 10 and 40 cm and FD-probes at 10 cm depth, to continuously measure the temporal development of soil tension and soil moisture. Additionally, 30 g of sieved and rewetted horse manure was placed on the soil surface as a food source. Precipitation events (10 mm) were simulated at day 28 and day 64. At the end of the experiment the water infiltration rate and the runoff at 55 cm depth were determined.The results showed considerable evidence, that ecologically different earthworms modify soil water characteristics in different ways. The anecic L. terrestris and the endogeic A. caliginosa showed the tendency to enhance the drying of the topsoil and subsoil. Their intensive and deep burrowing activity might enhance the exchange of water vapor due to a better aeration in soil. In contrast, the epigeic L. rubellus tended to enhance the storage of soil moisture in the topsoil, which might be linked to lower rates of litter loss from soil surface and thus a thicker litter layer remaining. A. caliginosa led to considerable higher water infiltration rates and faster water discharges in the subsoil, relative to the other species, probably due to a high soil dwelling activity.  相似文献   

19.
Mika Räty 《Pedobiologia》2004,48(3):283-291
The aim of the study was to compare earthworm communities in anthropogenous birch stands with different origin in Finland. A total of nine forest sites were investigated: three birch stands (Betula pendula) planted ca. 30 years prior to the study after clear-cutting of spruce stands (“Birch after Spruce”, BS), three birch stands planted ca. 30 years earlier on arable soil that had been under normal cultivation until forestation (“Birch after Field”, BF), and three “Natural Deciduous” forests (D). Earthworms were sampled in May and October 1999 using a combination of formaline extraction and modified wet funnels. There were conspicuous differences between replicates of similarly managed forests. Earthworms were totally lacking in one of the D sites, while another had an abundant and diverse community. Only Dendrobaena octaedra was present in one BS site, while the two others harboured also Aporrectodea caliginosa and three Lumbricus species. All these species were also present in the BF sites, where their total biomass (ranging from 70 to 138 g (f.w.)/m2) was 2.6 times the average in BS, and of the same magnitude as the average in natural deciduous stands. A separate experiment revealed that L. terresris and A. caliginosa, which are not found in the surrounding coniferous forest, are able to live and reproduce in the soil of the D site where they were absent. It was concluded that earthworm species survive and reproduce in birch stands established on arable soil, where they have invaded during the long cultivation. On the other hand, their possibilities to disperse from cultural landscapes determine their presence not only in birch stands established in earlier coniferous forests, but also in “natural deciduous” forests where source populations are not present in the surroundings.  相似文献   

20.
The gut load and gut transit time (GTT) of the endogeic earthworm Hormogaster elisae in laboratory cultures at 18 °C and 23 ºC were studied. The GTT, 5.25 h ± 0.40 at 18 ºC and 3.63 h ± 0.46 at 23 ºC, was determined by staining the soil with alimentary colouring (tartrazine). The gut load was calculated with two methods: earthworm mass difference, before and after voiding the gut, and dry mass of the gut content. The gut load ranged between 168 and 261 mg wet mass g live earthworm mass–1 (mass difference method) or 137–196 mg dry mass g live earthworm mass–1 (dry mass method). With the obtained data a potential annual soil turnover for H. elisae was calculated: 211–470 kg wet soil mass kg live earthworm mass–1 year–1 (mass difference method) or 176–325 kg dry soil mass kg live earthworm mass–1 year–1 (dry mass method).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号