首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Nitrogen fertilisation of maize (Zea mays L.) has become an important economic and environmental issue, especially in high-yielding irrigated Mediterranean areas. Producers have traditionally applied more N fertiliser than required and, as a result, some environmental problems have appeared in recent decades. A 4-year study (2002–2005) was conducted and six N rates (0, 100, 150, 200, 250 and 300 kg N ha?1 year?1) were compared. Before planting 50 kg N ha?1 were applied. The rest of the N was applied in two sidedresses, the first at V3–V4 developing stage and the second at V5–V6. Yield, biomass, grain N uptake, plant N uptake and SPAD-units were greatly influenced by both N fertilisation rate and soil NO3?-N content before planting and fertilising [Nini (0–90 cm)]. At the beginning of the experiment, Nini was very high (290 kg NO3?-N ha?1) and there was therefore no yield response to N fertilisation in 2002. In 2003, 2004 and 2005, maximum grain yields were achieved with 96, 153 and 159 kg N ha?1, respectively. Results showed that N fertilisation recommendations based only on plant N uptake were not correct and that Nini should always be taken into account. On the other hand, the minimum amount of N available for the crop [N applied with fertilisation plus Nini (0–90 cm)] necessary to achieve maximum grain yields was 258 kg N ha?1. This value was similar to plant N uptake, suggesting that available N was able to predict N maize requirements and could be an interesting tool for improving maize N fertilisation.  相似文献   

2.
The effect of nitrogen (N) supply through animal and green manures on grain yield of winter wheat and winter rye was investigated from 1997 to 2004 in an organic farming crop rotation experiment in Denmark on three different soil types varying from coarse sand to sandy loam. Two experimental factors were included in the experiment in a factorial design: (1) catch crop (with and without), and (2) manure (with and without). The four-course crop rotation was spring barley undersown with grass/clover – grass/clover – winter wheat or wheat rye – pulse crop. All cuttings of the grass–clover were left on the soil as mulch. Animal manure was applied as slurry to the cereal crops in the rotation in rates corresponding to 40% of the N demand of the cereal crops.Application of 50 kg NH4–N ha?1 in manure increased average wheat grain yield by 0.4–0.9 Mg DM ha?1, whereas the use of catch crops did not significantly affect yield. The use of catch crops interacts with other management factors, including row spacing and weed control, and this may have contributed to the negligible effects of catch crops. There was considerable variation in the amount of N (100–600 kg N ha?1 year?1) accumulated in the mulched grass–clover cuttings prior to ploughing and sowing of the winter wheat. This was reflected in grain yield and grain N uptake. Manure application to the cereals in the rotation reduced N accumulation in grass–clover at two of the locations, and this was estimated to have reduced grain yields by 0.1–0.2 Mg DM ha?1 depending on site. Model estimations showed that the average yield reduction from weeds varied from 0.1 to 0.2 Mg DM ha?1. The weed infestation was larger in the manure treatments, and this was estimated to have reduced the yield benefit of manure application by up to 0.1 Mg DM ha?1. Adjusting for these model-estimated side-effects resulted in wheat grain yields gains from manure application of 0.7–1.1 Mg DM ha?1.The apparent recovery efficiency of N in grains (N use efficiency, NUE) from NH4–N in applied manure varied from 23% to 44%. The NUE in the winter cereals of N accumulated in grass–clover cuttings varied from 14% to 39% with the lowest value on the coarse sandy soil, most likely due to high rates of N leaching at this location. Both NUE and grain yield benefit in the winter cereals declined with increasing amounts of N accumulated in the grass–clover cuttings. The model-estimated benefit of increasing N input in grass–clover from 100 to 500 kg N ha?1 varied from 0.8 to 2.0 Mg DM ha?1 between locations. This is a considerably smaller yield increase than obtained for manure application, and it suggests that the productivity in this system may be improved by removing the cuttings and applying the material to the cereals in the rotation, possibly after digestion in a biogas reactor.Cereal grain protein content was increased more by the N in the grass–clover than from manure application, probably due to different timing of N availability. Green-manure crops or manures with a relatively wide C:N ratio may therefore be critical for ensuring sufficiently high protein contents in high yielding winter wheat for bread making.  相似文献   

3.
The efficient use by crops of nitrogen from manures is an agronomic and environmental issue, mainly in double-annual forage cropping systems linked to livestock production. A six-year trial was conducted for a biennial rotation of four forage crops: oat-sorghum (first year) and ryegrass-maize (second year) in a humid Mediterranean area. Ten fertilization treatments were introduced: a control (without N); two minerals equivalent to 250 kg N ha−1 year−1 applied at sowing or as sidedressing; dairy cattle manure at a rate of 170, 250 and 500 kg N ha−1 year−1 and four treatments where the two lowest manure rates were supplemented with 80 or 160 kg mineral N ha−1 year−1. They were distributed according to a randomized block design with three blocks. The highest N mineral soil content was found in the summer of the third rotation, in plots where no manure was applied. The yearly incorporation of manure reduced, in successive cropping seasons, the amount of additional mineral N needed as sidedressing to achieve the highest yields. Besides, in the last two years, there was no need for mineral N application for the manure rate of 250 kg N ha−1 year−1. This amount always covered the oat-sorghum N uptake. In the ryegrass-maize sequence uptakes were as high as 336 kg N ha−1 year−1. In the medium term, the intermediate manure rate (250 kg N ha−1 year−1) optimizes nutrient recycling within the farming system, and it should be considered in the analysis of thresholds for N of organic origin to be applied to systems with high N demand.  相似文献   

4.
Although producers’ prime objective may be to increase net returns, many are also interested in conserving and enhancing the quality the soil, water and air resources through adopting more environmentally friendly production practices. This study compared non-renewable energy inputs, energy output, and energy use efficiency of nine dryland cropping systems comprised of a factorial combination of three methods of input management [high (HIGH), i.e., conventional tillage plus full recommended rates of fertilizer and pesticides; reduced (RED), i.e., conservation tillage plus reduced rates of fertilizer and pesticides; and organic (ORG), i.e., conventional tillage plus N-fixing legumes and non-chemical means of weed and pest control]; and three crop rotation systems with varying levels of cropping diversity [a fallow-based rotation with low crop diversity (LOW); a diversified rotation using annual cereal, oilseed and pulse grains (DAG); and a diversified rotation using annual grains and perennial forages (DAP)]. The study was conducted over the 1996–2007 period on a Dark Brown Chernozemic soil (Typic Boroll) in the Canadian Prairies. As expected, total direct plus indirect energy input was the highest for the HIGH and RED input treatments (3773 MJ ha?1 year?1), and 50% less for ORG management. Most of the energy savings came from the non-use of inorganic fertilizers and pesticides in the ORG management treatments. Further, total energy use was the highest for the DAG treatments (3572 MJ ha?1 year?1), and similar but about 18% lower for the DAP and LOW crop diversity treatments compared to DAG. Thus, overall, the HIGH/DAG and RED/DAG systems had the highest energy requirements (4409 MJ ha?1 year?1) and ORG/DAP had the lowest (1806 MJ ha?1 year?1). Energy output (calorimetric energy content) was typically the highest for the HIGH input treatments (26,541 MJ ha?1 year?1), was about 4% less with RED, and 37% less with ORG management. The latter reflected the lower crop yields obtained with organic management. Similarly, energy output was the highest for the DAP treatments (25,008 MJ ha?1 year?1), about 5% less for DAG, and 20% less for the LOW crop diversity treatments. The higher energy output with the DAP treatments largely reflected that the entire harvested biomass of the forage crops was included in energy output, while for grain crops only the seed was included. The straw and crop residues from annual crops were returned to the land to protect the soil from erosion and to maintain soil organic matter as this is the recommended practice in this semi-arid region. In contrast to energy output and to net energy produced, energy use efficiency (measured as yield of grain plus forage produced per unit of energy input or as energy output/energy input ratio) was the highest for the ORG input treatments (497 kg of harvested production GJ?1 of energy input, and an energy output/energy input ratio of 8.8). We obtained lower, but generally similar energy use efficiency for the HIGH and RED input treatments (392 kg GJ?1 and ratio of 7.1). Thus, overall, ORG/DAP was the most energy efficient cropping system, while RED/LOW and RED/DAG generally ranked the lowest in energy use efficiency. Our findings support the current movement of producers toward ORG management as a means of reducing the reliance on non-renewable energy inputs and improving overall energy use efficiency of their cropping systems. Our results also suggest that moving away from traditional monoculture cereal rotations that employ frequent summer fallowing, toward extended and diversified crop rotations that use reduced tillage methods, although resulting in an increase in energy output, will not significantly reduce the overall reliance on non-renewable energy inputs, nor enhance energy use efficiency, unless perennial legume forages and/or legume grain crops are included in the cropping mix.  相似文献   

5.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   

6.
In areas of Southern Europe with very intensive pig production, most of the pig slurry (PS) is applied as fertilizer. However, in the European Union, no more than 170 kg N ha−1 year−1 can be applied in nitrate vulnerable zones (NVZs) from livestock manures. In this context, a six-year trial was conducted for a maize-triticale double-annual forage cropping rotation under rainfed conditions. Four different N rates were applied (0, 170, 250 and 330 kg N ha−1 year−1), to evaluate their effect on crop yield, N uptake, unrecovered N and soil nitrate content. The corresponding PS rates were defined as zero (PS 0), low (PSL) medium (PSM) and high (PSH). The annual average dry matter (DM) yields (maize + triticale) for the PS fertilization treatments PS0, PSL, PSM and PSH were 12.6, 17.7, 20.2 and 22.0 Mg DM ha−1, respectively. Maize DM yield was influenced mainly by weather conditions, and triticale DM yield was clearly influenced by initial soil NO3-N and PS fertilization rates. Unrecovered N was affected by PS fertilization rate and initial soil NO3-N content. A residual effect of the PS when applied to maize had an important effect on soil NO3-N and subsequent triticale DM yield. Moreover, total annual average unrecovered N, considering the sum of both crops (maize + triticale), were 91, 144, and 222 kg N ha−1 in PSL, PSM and PSH, respectively. In order to avoid part of this unrecovered N, mainly by lixiviation of nitrates, PS fertilization in triticale should be applied as side dressing at tillering. The application of N, in the form of PS, at rates higher than the legally permitted maximum of 170 kg N ha−1 year−1, may result in better yields. However, high rates of PS fertilization may originate in significantly lower N use efficiency and a higher potential environmental impact in double-cropping systems, practiced in rainfed sub-humid Mediterranean conditions.  相似文献   

7.
Soil fertility and climate risks are hampering crop production in the Sahelian region. Because experiments with only a few fertility management options on a limited number of sites and years cannot fully capture the complex and highly non-linear soil–climate–crop interactions, crop growth simulation models may suitably complement experimental research to support decision making regarding soil fertility and water management. By means of a long term (23 years) scenario analysis using the Agricultural Production Systems Simulator (APSIM) model, this study investigates millet response to N in view of establishing N recommendations better adapted to subsistence small-holder millet farming in the Sahel. Prior to this, the APSIM model was tested on a rainfed randomized complete block experiment carried out during the 1994 and 1995 cropping seasons, having contrasting rainfall conditions. The experiment combined, at three levels each, the application of cattle manure (300, 900 and 2700 kg ha?1), millet residue (300, 900 and 2700 kg ha?1) and mineral fertilizer (unfertilized control, 15 kg N ha?1 + 4.4 kg P ha?1 and 45 kg N ha?1 + 13.1 kg P ha?1) at ICRISAT Sahelian Center, Niger. The model suitably predicted plant available water PAW and the simulated water and nitrogen stress were in agreement with measurement (water) and expectation (N) regarding the fertilizer and rainfall conditions of the experiment. APSIM simulations were in satisfactory agreement with the observed crop growth except for the highest crop residue application rates (>900 kg ha?1). For biomass and grain yield, the model performance was relatively good in 1994 but biomass yields were slightly overpredicted in 1995. The model was able to adequately reproduce the average trend of millet grain yield response to N inputs from manure and fertilizer, and to predict the overall observed higher grain yield in 1995 compared to 1994, despite the better rainfall in 1994. The 23-year, long term scenario analysis combining different application rates of cattle manure, millet residue and mineral fertilizer, showed that moderate N application (15 kg N ha?1) improves both the long term average and the minimum yearly guaranteed yield without increasing inter-annual variability compared to no N input. Although it does imply a lower average yield than at 30 kg N ha?1, the application of 15 kg N ha?1 appears more appropriate for small-holder, subsistence farmers than the usual 30 kg N ha?1 recommendation as it guarantees higher minimum yield in worst years, thereby reducing their vulnerability.  相似文献   

8.
Efficient management of legumes in order to maximize benefits depends on a correct field assessment of N2 fixation. A field experiment was conducted during a 6-year period (2001–2002 to 2006–2007) in Córdoba (Southern Spain) on a rainfed Vertisol within the wheat-chickpea and wheat-faba bean rotation framework of a long-term experiment started in 1986. The aim was to determine the effect of tillage systems [no tillage (NT) and conventional tillage (CT)] on chickpea and faba bean N2 fixation. Fixation was calculated using the 15N isotopic dilution (ID) and 15N natural abundance (NA) methods with the reference being the wheat crop. The strong inter-annual rain variation caused great differences in the behaviour of both leguminous plants with regard to grain yield, nodule biomass and N2 fixation. The NT system showed more nodule biomass than the CT system in both legumes. The ID method was more accurate than the NA method in determining N2 fixation. The average amount of fixed N in faba bean (80 kg ha?1 year?1) was much greater than that in chickpea (31 kg ha?1 year?1). The Vertisol under the NT system offered more favourable conditions for the stimulation of the N2 fixation, with fixed N values that were significantly higher than under CT. The N added to the system through N2 fixation was low in faba bean and virtually nonexistent in chickpea, only in terms of above-ground biomass.  相似文献   

9.
In Jiangsu province, Southeast China, high irrigated rice yields (6–8000 kg ha−1) are supported by high nitrogen (N) fertilizer inputs (260–300 kg N ha−1) and low fertilizer N use efficiencies (recoveries of 30–35%). Improvement of fertilizer N use efficiency can increase farmers’ profitability and reduce negative environmental externalities. This paper combines field experimentation with simulation modeling to explore N fertilizer management strategies to realize high yields, while increasing N use efficiency. The rice growth model ORYZA2000 was parameterized and evaluated using data from field experiments carried out in Nanjing, China. ORYZA2000 satisfactorily simulated yield, crop biomass and crop N dynamics, and the model was applied to explore options for different N-fertilizer management regimes, at low and high levels of indigenous soil N supply, using 43 years of historical weather data.On average, yields of around 10–11,000 kg ha−1 were realized (simulated and in field experiments) with fertilizer N rates of around 200 kg ha−1. Higher fertilizer doses did not result in substantially higher yields, except under very favorable weather conditions when yields exceeding 13,000 kg ha−1 were calculated. At fertilizer rates of 150–200 kg ha−1, and at the tested indigenous soil N supplies of 0.6–0.9 kg ha−1 day−1, high fertilizer N recovery (53–56%), partial N productivity (50–70 kg kg−1) and agronomic N use efficiency (20–30 kg kg−1) were obtained with application in three equal splits at transplanting, panicle initiation and booting. Increasing the number of splits to six did not further increase yield or improve any of the N use efficiency parameters.  相似文献   

10.
Soil management systems may negatively affect the quality of the soil. Policymakers and farmers need scientific information to make appropriate land management decisions. Conventional (CT) and zero tillage (ZT) are two common soil management systems. Comparative field studies under controlled conditions are required to determine the impact of these systems on soil quality and yields. The research presented studied plant and soil physical and chemical characteristics as affected by different agricultural management practices, i.e. ZT and CT, cropped with continuous wheat or maize in monoculture (M) or in a yearly rotation (R) of these two crops, either with residue retention (+r) or without residues retention (?r), in an experimental field in the Transvolcanic Belt of Mexico after 14 years. The dominant factors defining soil quality were organic C, total N, moisture, aggregate stability, mechanical resistance, pH and EC. The principal component combining the variables organic C, total N, aggregate stability and moisture content showed the highest correlations with final yield (R = 0.85 for wheat and 0.87 for maize).After 14 years of continuous practice, ZTM + r and ZTR + r had the best soil quality and produced the highest wheat and maize yields of average 2001–2004 (6683 and 7672 kg ha?1 and 5085 and 5667 kg ha?1, respectively). Removing the residues, i.e. treatments ZTM ? r with maize (average 2001–2004: 1388 kg ha?1) and ZTR ? r and CTR ? r with wheat (average 2001–2004: 3949 and 5121 kg ha?1), gave the lowest yields and less favourable soil physical and chemical characteristics compared to the other practices. It was found that zero tillage with residue retention is a feasible management technology for farmers producing maize and wheat in the agro-ecological zone studied, resulting in a better soil quality and higher yields than with the conventional farmer practice (maize monoculture, conventional tillage and residue removal).  相似文献   

11.
Fertiliser recommendation systems should aim at a finer tuning of non-renewable P inputs for agronomic, environmental and economic reasons. Modern decision support systems should take into account the relevant soil characteristics, the P recycling capabilities of the cropping system, and crop requirements for attainable production in a range of soil/weather conditions. Unfortunately, information is still lacking for low input cropping systems in south-western France. In 1968 INRA Toulouse set up a P experiment, which has been going on for 36 years, on a deep alluvial silty-clay/clay soil with varying CaCO3. Four P regimes (P0, P1, P2, P4) were arranged in four blocks with periodic changes in the fertiliser dressings. Wheat, maize, sunflower, sorghum and soybean were tested for grain yield (GY) and grain P concentration (GPC) response to soil Olsen P concentration. The highest GY were observed in both P2 and P4, although P1 yields were significantly lower in only 4 years out of 36. P0 resulted 32 times in lower yields than P2–P4 and 27 times in lower yields than P1. Wheat was the crop most sensitive to the absence of P fertilization (GYP0/GYPmax = 0.72); maize and sorghum were intermediate (0.77) and sunflower was the less sensitive on average (0.83). As the highest GPC values were observed in the P4 treatments, P removal was maximum for P4 (21.9 kg P ha−1 year−1) and minimal in P0 (11.7 kg P ha−1 year−1). The critical soil Olsen P values for yield responses were determined using the Cate–Nelson and Mitscherlich approaches. Although the thresholds differ for the two methods (3.3–7.2 mg P kg−1 with Cate–Nelson; 4.4–11.2 mg P kg−1 with Mitscherlich), crops ranked similarly with both methods. Critical soil P values were lowest for maize and highest for sunflower, while wheat, soybean and sorghum had intermediate values. Because of low-input management and frequent water stress, critical values fall within the lower range of published values. Only in the P4 treatment were P-Olsen values potentially hazardous for the environment (>20 mg P kg−1) 8–10 years after the beginning of the experiment. Annual P dressings of 17.5 kg P ha−1 year−1 (P1) were sufficient to achieve good yields but P dressings of 35 kg P ha−1 year−1 (P2) were necessary to stabilize soil P around the critical level in the calcareous part of the experiment.  相似文献   

12.
One experiment lasting for two years was carried out at Pegões (central Portugal) to estimate the impact of mature white lupine residue (Lupinus albus L.) on yield of fodder oat (Avena sativa L. cv. Sta. Eulalia) as the next crop in rotation, comparing with the continuous cultivation of cereal, under two tillage practices (conventional tillage and no-till) and fertilized with five mineral nitrogen (N) rates, with three replicates. Oat as a first crop in the rotation provided more N to the agro-ecosystem (63 kg N ha−1) than did lupine (30–59 kg N ha−1). This was at a cost of 100 kg of mineral N ha−1, whereas lupine was grown without addition of N. A positive response of oat as a second crop was obtained per kg of lupine-N added to the system when compared with the continuous oat–oat. The cereal also responded positively to mineral N in the legume amended soil in contrast with the oat–oat sequence where no response was observed, partly due to the fast mineralization rate of lupine residue and a greater soil N immobilization in the continuous oat system. Each kg N ha−1 added to the soil through the application of 73 kg DM ha−1 mature lupine residue (above- and belowground material) increased by 72 kg DM ha−1 the oat biomass produced as the second crop in rotation when 150 kg mineral N ha−1 were split in the season, independent of tillage practice. Mature legume residue conserved in the no-tilled soil depressed the yield of succeeding cereal but less than the continuous oat–oat for both tillage practices, where the application of mineral N did not improve the crop response.  相似文献   

13.
APSIM Nwheat is a crop system simulation model, consisting of modules that incorporate aspects of soil water, nitrogen (N), crop residues, and crop growth and development. The model was applied to simulate above- and below-ground growth, grain yield, water and N uptake, and soil water and soil N of wheat crops in the Netherlands. Model outputs were compared with detailed measurements of field experiments from three locations with two different soil types. The experiments covered two seasons and a range of N-fertiliser applications. The overall APSIM Nwheat model simulations of soil mineral N, N uptake, shoot growth, phenology, kernels m−2, specific grain weight and grain N were acceptable. Grain yields (dry weight) and grain protein concentrations were well simulated with a root mean square deviation (RMSD) of 0.8 t ha−1 and 1.6 protein%, respectively. Additionally, the model simulations were compared with grain yields from a long-term winter wheat experiment with different N applications, two additional N experiments and regional grain yield records. The model reproduced the general effects of N treatments on yields. Simulations showed a good consistency with the higher yields of the long-term experiment, but overpredicted the lower yields. Simulations and earlier regional yields differed, but they showed uniformity for the last decade.In a simulation experiment, the APSIM Nwheat model was used with historical weather data to study the relationship between rate and timing of N fertiliser and grain yield, grain protein and soil residual N. A median grain yield of 4.5 t ha−1 was achieved without applying fertiliser, utilising mineral soil N from previous seasons, from mineralisation and N deposition. Application of N fertiliser in February to increase soil mineral N to 140 kg N ha−1 improved the median yield to 7.8 t ha−1 but had little effect on grain protein concentration with a range of 8–10%. Nitrogen applications at tillering and the beginning of stem elongation further increased grain yield and in particular grain protein, but did not affect soil residual N, except in a year with low rainfall during stem elongation. A late N application at flag leaf stage increased grain protein content by several per cent. This increase had only a small effect on grain yield and did not increase soil residual N with up to 40 kg N ha−1 applied, except when N uptake was limited by low rainfall in the period after the flag leaf stage. The economic and environmental optima in winter wheat were identified with up to 140 kg N ha−1 in February, 90 kg N ha−1 between tillering and beginning of stem elongation and 40 kg N ha−1 at flag leaf stage resulting in a median of 8.5 t ha−1 grain yield, 14.0% grain protein and 13 kg N ha−1 soil residual N after the harvest. The maximum simulated yield with maximum N input from two locations in the Netherlands was 9.9 t ha−1.  相似文献   

14.
Depending on soil and management, ploughing up grassland for use as arable land can lead to an increase in the release of mineralized nitrogen and a high risk of nitrogen leaching during winter. The amount of N leaching is also dependent on the N efficiency of following crops and the level of N fertilization.In a field experiment in northwest Germany permanent grassland was ploughed and used as arable land. The experiment was conducted over 2 years at three sites and investigated two main factors: (i) succeeding crops, either spring barley (and catch crop)–maize or silage maize–maize; and (ii) N-fertilization either nil or moderate (120 kg N ha−1 for barley or 160 kg for maize). Plant yields, the soil mineral nitrogen (SMN) content and the nitrate leaching losses over winter were determined. On average for the 2-year period, the SMN in autumn and the nitrate leaching losses during winter for the rotation barley–maize were 76 kg ha−1 SMN and 81 kg N ha−1 N leaching losses, and for maize–maize they amounted to 108 and 113 kg ha−1, respectively. The SMN and N leaching losses for the plots with no N fertilizer were 49 and 52 kg N ha−1 and for the plots fertilized at a moderate N level they were 135 and 142 kg N ha−1, respectively.We conclude that although the extent of nitrate leaching is influenced by the site conditions and management of the grassland prior to ploughing, the management after ploughing is the decisive factor. The farmer can significantly reduce nitrate leaching with his choice of succeeding crop and the amount of N fertilization.  相似文献   

15.
Poor soil and drought stress are common in semiarid areas of China, but maize has a high demand for nitrogen (N) and water. Maize production using the technique of double ridges and furrows mulched with plastic film are being rapidly adopted due to significant increases in yield and water use efficiency (WUE) in these areas. This paper studied N use and water balance of maize crops under double ridges and furrows mulched with plastic-film systems in a semiarid environment over four growing seasons from 2007 to 2010. To improve precipitation storage in the non-growing season, the whole-year plastic-film mulching technique was used. There were six treatments which had 0, 70, 140, 280, 420 or 560 kg N ha−1 applied in every year for maize. In April 2011, spring wheat was planted in flat plots without fertilizer or mulch following four years of maize cultivation. After four years, all treatments not only maintained soil water balance in the 0–200 cm soil layer but soil water content also increased in the 0–160 cm soil layer compared to values before maize sowing in April 2007. However, under similar precipitation and only one season of spring wheat, soil water content in the 0–160 cm soil layer sharply decreased in all treatments compared to values before sowing in April 2011. Over the four years of maize cultivation, average yield in all treatments ranged from 4071 to 6676 kg ha−1 and WUE ranged from 18.2 to 28.2 kg ha−1 mm−1. In 2011, the yield of spring wheat in all treatments ranged from 763 to 1260 kg ha−1 and WUE from 3.5 to 6.5 kg ha−1 mm−1. The potential maximum grain yield for maize was 6784 kg ha−1 with 360 kg N ha−1 applied for four years, but considerable NO3N accumulated in the soil profile. A lesser application (110 kg N ha−1) to this tillage system yielded in 82% of the maximum, increased nitrogen use efficiency and mitigated the risk of nitrogen loss from the system. This study suggests that double ridge–furrow and whole-year plastic-film mulching could sustain high grain yields in maize with approximately 110 kg N ha−1 and maintain soil water balance when annual precipitation is >273 mm in this semiarid environment.  相似文献   

16.
This study aimed to evaluate the productivity of Arundo donax under good water and N availability coming from non-conventional sources, in different Italian environments (Padova and Bologna in the north, Reggio Calabria and Catania in the south) in relation to three harvest periods (autumn; mid-winter; late-winter).In the northern locations A. donax had already reached maximum productivity the year after transplanting, with 85 and 98 t ha−1 of dry matter at Padova and Bologna, respectively. At Reggio Calabria and Catania a further biomass increase was obtained from the second to third year of cultivation, when production was 62 t ha−1 and 51 t ha−1, respectively.The average dry matter production was 74, 66 and 65 t ha−1 with autumn, mid-winter and late-winter harvesting, respectively.Under N input ranging from 225 to 329 kg ha−1 year−1 at the different locations, the apparent N balance (input–output) was negative except in Catania indicating a great potential of A. donax to provide high N uptake, which would be a useful feature in environments under the European Nitrates Directive.  相似文献   

17.
UK livestock agriculture can significantly reduce its protein imports by increasing the amount of forage based protein grown on-farm. Forage legumes such as red clover (Trifolium pratense L.) produce high dry matter yields of quality forage but currently available varieties lack persistence, particularly under grazing. To assess the impact of red clover persistence on protein yield, diploid red clover populations selected for improved persistence were compared with a range of commercially available varieties. All populations were grown over four harvest years in mixed swards with either perennial ryegrass (Lolium perenne L.) or perennial plus hybrid ryegrass (L. boucheanum Kunth). Red clover and total sward dry matter (DM) herbage yields were measured in Years 1–4, red clover plant survival in Years 3 and 4 and herbage protein (CP) yield and concentration in Years 2 and 4. In general, red clover DM yield in year 4 (3.4 t ha−1) was lower than in year 1 (13.9 t ha−1) but the red clover populations differed in the extent of this decline. Differences in the persistence of the red clover populations in terms of plant survival and yield were reflected in the contribution of red clover to the total sward yield in Year 4, which ranged from 61% for the highest yielding population, AberClaret, to 11% in the lowest yielding, Vivi. Increased red clover DM yield was reflected in a greater CP yield (protein weight per unit area), which ranged from 1.6 t ha−1 year−1 to 2.9 t ha−1 year−1 in Year 2 and from 1.1 t ha−1 year−1 to 1.9 t ha−1 year−1 in Year 4. CP concentration (protein weight per unit herbage weight) of all of the red clover populations was within a range considered suitable for ruminant production. The implication of these results for the future use of red clover in sustainable grassland systems is discussed.  相似文献   

18.
Experiments were carried out to study the effects of N fertilizer rates and timing of application on the yield and grain quality of a rainfed emmer crop (Triticum dicoccum Shübler) under Mediterranean conditions. The following parameters were analyzed: hulled and net grain yield, hulled index, spikes m?2, spikelets per spike, kernels m?2, thousand-kernel weight, biomass, plant height, lodging, grain protein and ash content. In the first experiment, different N rates (30, 60 and 90 kg N ha?1 plus a control not fertilized) were split at three phenological stages (seeding 20%, tillering 40% and stem elongation 40%). In the second experiment, three N doses (30, 60 and 90 kg N ha?1) were applied to three crop stages (seeding, tillering and stem elongation). In the third experiment, the rate of 90 kg N ha?1 was distributed in different amounts (90-0-0, 0-90-0, 0-0-90, 45-45-0, 45-0-45, 0-45-45, 30-30-30) at the three mentioned crop stages. Increasing N rates resulted in higher hulled and net grain yield, as well as protein content. Fertilization (from 60 to 90 kg N ha?1) applied to tillering maximized hulled and net grain yield. Fertilization (90 kg N ha?1) applied to stem elongation gave the highest grain protein content (%) while splitting application (30 kg N ha?1 each) at three phenological stages maximized protein yield per hectare. Application of half or one-third of 90 kg N ha?1 to stem elongation improved grain protein content in comparison with applications at sowing, or at both sowing and tillering. The main factor determining higher yields with increasing N rates in this emmer crop was the number of kernels m?2. None of the yield components accounted for differences in grain yield when timing and splitting application were varied.  相似文献   

19.
Crop residue is often grazed by sheep after harvest, over the dry summer period from December to March in Mediterranean environments. However, soil cover provided by crop residues is a key component of conservation agriculture for maintaining favourable soil structure and high yields.A series of 31 site × year experiments was conducted to assess the effect of summer stubble grazing on residue levels and following crop yields. Relatively light grazing, with stocking rates below 10 dry sheep equivalent (DSE) and between 90 and 471 DSE days ha−1, had no significant effect on the amount of residue, soil properties, soil water, weeds or yield in the following crop. The main effect of grazing was to knock down and scatter the standing crop residues. However, longer term grazing at relatively high intensity (956 DSE days ha−1) on heavy soil, over both summer and winter, as in a pasture phase, did significantly reduce residue levels, infiltration and yield (by 59%). The effect of summer grazing on soil mineral N was small and inconsistent, with increased mineral N, by about 3–7 kg N ha−1, following grazing at two of the 13 sites. By contrast, higher mineral N, by 2–15 kg N ha−1, was measured in the un-grazed plots at three of the 13 sites. This was due to increased growth of legume pastures in the absence of grazing.More research is needed to confirm the yield effects when cropping after an annual pasture/fallow that is grazed over summer and winter, particularly on different soil types.  相似文献   

20.
This work was aimed at providing a sustainable approach in the use of manure in irrigated maize crop under Mediterranean climatic conditions. To this end, the effect of continuous annual applications of dairy cattle manure, combined or not with mineral N fertilizer, on the following parameters was studied: grain yield, grain and plant N concentration, N uptake by plant, N use efficiency, and soil N and organic carbon. The experiment was conducted in a furrow-irrigated sandy soil under dry Mediterranean conditions during seven years. Three different rates of cattle manure (CM): 0, 30 and 60 Mg ha−1, were applied each year before sowing. These CM rates were combined with four mineral N rates (0, 100, 200 and 300 kg N ha−1) applied at sidedress.On average, the highest grain yields during the 7 years were obtained with the combination of CM at 30 Mg ha−1 and mineral fertilizer and with CM at 60 Mg ha−1 without mineral fertilizer. With CM at 30 Mg ha−1, mineral fertilizer increased yields during most of the growing seasons, meanwhile with CM at 60 Mg ha−1, there was not any significant effect of the joint application of mineral fertilizer on yields. Overall, best results were obtained exceeding maximum rates according to present legislation. The mean apparent nitrogen recovery (ANR) fraction during the 7 seasons was 29% for N exclusively applied as CM. Overall, increased N rates applied as CM resulted in decreased ANRs. However, ANR with CM at 30 and 60 Mg ha−1 increased during the first two seasons. This increased ANR ascribed to mineralization of residual organic N applied in previous seasons explained the increasing yields observed in the treatments along the study.The application of CM during 7 years increased the soil organic carbon in the first 30 cm by 5.7 and 9.9 Mg ha−1 with CM at 30 and 60 Mg ha−1, respectively, when compared to the initial stock. Thus, manure-based fertilization could be an alternative to mineral fertilizer in order to achieve high maize yields while improving soil quality under dry Mediterranean conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号