首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete carbon budget and the turnover rate of assimilated carbon of ectomycorrhizal Scots pine seedlings growing on natural humus were determined in microcosm conditions. The main aim was to improve understanding of the partitioning of the assimilated carbohydrates within seedlings associated with multiple ectomycorrhizal fungi, and to discover carbon dynamics of the mycorrhizosphere.Plant photosynthesis and below-ground respiration were measured in order to obtain the actual carbon assimilation and respiration rates at the time of measurements. Soon after the photosynthesis and respiration rate measurements the seedlings were pulse-labeled with 14CO2 to follow carbon allocation to different plant, fungal and soil compartments and rhizosphere respiration. Long-term carbon allocation during the entire life span of the seedlings was estimated by measuring plant and mycorrhizal root-tip biomass. The ectomycorrhizal community was analyzed using morphotyping and ITS-sequencing.The 14C label was detected in rhizosphere respiration after 12 h and it peaked between 36 and 60 h after labeling. More than half of the assimilated carbon was allocated below-ground as biomass or respiration and higher mycorrhizal biomass increased the below-ground carbon turnover. The presence of Suillus variegatus affected the plant carbon balance in several ways. When S. variegatus was present, the below-ground respiration increased and this carbon loss was compensated by higher photosynthetic activity. Other fungal species did not differ between each other in their effects on carbon balance. Our findings indicate that some root-associated mycorrhizal fungal symbionts can significantly alter plant CO2 exchange, biomass distribution, and the allocation of recently photosynthesized plant-derived carbon.  相似文献   

2.
《Applied soil ecology》2011,47(3):341-346
We examined acid phosphatase activity (APA), N mineralization and nitrification rates, available N and P, and microbial biomass C, N and P in rhizosphere and bulk soils of 18-year-old Siberian elm (Ulmus pumila), Simon poplar (Populus simonii) and Mongolian pine (Pinus sylvestris var. mongolica) plantations on a nutrient-poor sandy soil in Northeast China. The main objective was to compare the rhizosphere effects of different tree species on N and P cycling under nutrient-deficient conditions. All tree species had the similar pattern but considerably different magnitude of rhizosphere effects. The APA, potential net N mineralization and nitrification rates increased significantly (by 27–60%, 110–188% and 106–142% respectively across the three species) in rhizosphere soil compared to bulk soil. This led to significantly higher Olsen-P and NH4+-N concentrations in rhizosphere soil, whereas NO3-N concentration was significantly lower in rhizosphere soil owing to increased microbial immobilization and root uptake. Microbial biomass C and N generally increased while microbial biomass P remained constant in rhizosphere soil relative to bulk soil, indicating the N-limited rather than P-limited microbial growth. Rhizosphere effects on P transformation were most pronounced for Siberian elm, while rhizosphere effects on N transformation were most pronounced for Mongolian pine, implying the different capacities of these species to acquire nutrients.  相似文献   

3.
Nitrogen (N) cycling in terrestrial ecosystems is complex since it involves the closely interwoven processes of both N uptake by plants and microbial turnover of a variety of N metabolites. Major interactions between plants and microorganisms involve competition for the same N species, provision of plant nutrients by microorganisms and labile carbon (C) supply to microorganisms by plants via root exudation. Despite these close links between microbial N metabolism and plant N uptake, only a few studies have tried to overcome isolated views of plant N acquisition or microbial N fluxes. In this study we studied competitive patterns of N fluxes in a mountainous beech forest ecosystem between both plants and microorganisms by reducing rhizodeposition by tree girdling. Besides labile C and N pools in soil, we investigated total microbial biomass in soil, microbial N turnover (N mineralization, nitrification, denitrification, microbial immobilization) as well as microbial community structure using denitrifiers and mycorrhizal fungi as model organisms for important functional groups. Furthermore, plant uptake of organic and inorganic N and N metabolite profiles in roots were determined.Surprisingly plants preferred organic N over inorganic N and nitrate (NO3) over ammonium (NH4+) in all treatments. Microbial N turnover and microbial biomass were in general negatively correlated to plant N acquisition and plant N pools, thus indicating strong competition for N between plants and free living microorganisms. The abundance of the dominant mycorrhizal fungi Cenococcum geophilum was negatively correlated to total soil microbial biomass but positively correlated to glutamine uptake by beech and amino acid concentration in fine roots indicating a significant role of this mycorrhizal fungus in the acquisition of organic N by beech. Tree girdling in general resulted in a decrease of dissolved organic carbon and total microbial biomass in soil while the abundance of C. geophilum remained unaffected, and N uptake by plants was increased. Overall, the girdling-induced decline of rhizodeposition altered the competitive balance of N partitioning in favour of beech and its most abundant mycorrhizal symbiont and at the expense of heterotrophic N turnover by free living microorganisms in soil. Similar to tree girdling, drought periods followed by intensive drying/rewetting events seemed to have favoured N acquisition by plants at the expense of free living microorganisms.  相似文献   

4.
In arid and semiarid Mediterranean regions, an increase in the severity of drought events could be caused by rising atmospheric CO2 concentrations. We studied the effects of the interaction of CO2, water supply and inoculation with a plant-growth-promoting rhizobacterium (PGPR), Pseudomonas mendocina Palleroni, or inoculation with an arbuscular mycorrhizal (AM) fungus, Glomus intraradices (Schenk & Smith), on aggregate stabilisation of the rhizosphere soil of Lactuca sativa L. cv. Tafalla. The influence of such structural improvements on the growth of lettuce was evaluated. We hypothesised that elevated atmospheric CO2 concentration would increase the beneficial effects of inoculation with a PGPR or an AM fungus on the aggregate stability of the rhizosphere soil of lettuce plants. Leaf hydration, shoot dry biomass and mycorrhizal colonisation were decreased significantly under water-stress conditions, but this decrease was more pronounced under ambient vs elevated CO2. The root biomass decreased under elevated CO2 but only in non-stressed plants. Under elevated CO2, the microbial biomass C of the rhizosphere of the G. intraradices-colonised plants increased with water stress. Bacterial and mycorrhizal inoculation and CO2 had no significant effect on the easily-extractable glomalin concentration. Plants grown under elevated CO2 had a significantly higher percentage of stable aggregates under drought stress than under well-watered conditions, particularly the plants inoculated with either of the assayed microbial inocula (about 20% higher than the control soil). We conclude that the contribution of mycorrhizal fungi and PGPR to soil aggregate stability under elevated atmospheric CO2 is largely enhanced by soil drying.  相似文献   

5.
Mineral fertilization is a common management practice in short rotation forestry. The mycorrhizal formation of trees can be affected by fertilizer applications, however, very little is known on such effects in arable soils. The effects of a nitrogen (N) and phosphorus (P) fertilization on mycorrhizal formation of two poplar clones (Populus trichocarpa and P. tremula x tremuloides) were investigated at the plantation Abbachhof (South Germany). We determined the ectomycorrhizal colonization and the abundance of VAM spores in the soil during three years, and the species richness of sporocarps during one growing season. Approximately 26 to 73% of the fine roots of P. trichocarpa and 41 to 82% of the fine roots of P. tremula x tremuloides were colonized with ectomycorrhizal fungi. The percentage of ectomycorrizal colonization on P. tremula x tremuloides was significantly reduced after both fertilization treatments. On P. trichocarpa only the P‐fertilization reduced the ectomycorrhizal colonization. The composition of ectomycorrhizal morphotypes was significantly affected by the N and P fertilization on P. tremula x tremuloides, but not on P. trichocarpa. Sporocarps of 12 ectomycorrhizal fungi species were found at the plantation. Cortinarius uliginosus, Lactarius controversus and Krombholziella aurantiaca produced sporocarps only on control plots, whereas Cortinarius croceocaeruleus, Inocybe umbrina, Laccaria tortilis, Paxillus involutus and Rhizopogon roseolus produced sporocarps only on fertilized plots. Inocybe geophylla, I. glabripes, Laccaria laccata and Tuber borchii produced sporocarps on both control and fertilized plots. The density of VAM spores was lower in the rooting zone of Populus trichocarpa than under P. tremula x tremuloides. In an efficient management of these short rotation plantations mineral fertilizer applications must be low enough to avoid undesired suppressions of mycorrhizal formation.  相似文献   

6.
The formation of adventitious roots in humus accumulations in tree canopies is widely acknowledged from tropical and temperate rainforests, while the occurrence of those canopy roots in temperate tree species under mesic climates has been largely disregarded for ca. 100 years. Moreover, almost nothing is yet known of the ecological growth conditions or the structure or morphology of such canopy root systems. This study reports on the occurrence of tree fine roots in crown humus pockets of old European beech (Fagus sylvatica L.) trees. The aim was to compare these canopy roots with the fine roots in the terrestrial organic layer soil in terms of fine root biomass density, root morphological traits, ectomycorrhizal colonisation and chemical composition of the root tissue, and to relate these root traits to the chemical properties of the respective soils. Fine root biomass density in crown humus pockets was ca. 7 times higher than in the terrestrial organic layer, even though soil chemical properties of both rooting media were similar. Fine roots in the canopy differed from terrestrial fine roots by lower specific root tip abundance, specific root length, and specific root surface area, all of which points to a longer lifespan of the fine roots in the canopy. Moreover, canopy roots revealed a lower percentage of root tips colonised by ectomycorrhizal fungi than terrestrial roots (87% vs. 93%). Chemical composition of the root tissue in canopy and terrestrial soils was similar for most elements, but canopy roots showed lower P, Fe, and Al concentrations and a higher N/P ratio than terrestrial roots. Root P concentrations of both canopy and terrestrial fine roots were closely related to soil P concentration, but not to soil C/P or N/P ratios. On the other hand, tissue N of canopy roots, but not of terrestrial roots, revealed a clear dependence on soil N and C/N values, suggesting a more limited N availability in the canopy soil compared to the terrestrial organic layer. However, the overall small differences in soil chemical properties between canopy and terrestrial organic layer soil cannot explain the markedly higher volumetric root density in the crown humus and the differences in ecomorphological traits between canopy and terrestrial soil. Instead, it is speculated that these differences are more likely a result of temporarily high water availability in crown humus pockets due to high water flow along the surface of branches to the central crown parts of the beech trees.  相似文献   

7.
A greenhouse rhizobox experiment was carried out to investigate the fate and turnover of 13C‐ and 15N‐labeled rhizodeposits within a rhizosphere gradient from 0–8 mm distance to the roots of wheat. Rhizosphere soil layers from 0–1, 1–2, 2–3, 3–4, 4–6, and 6–8 mm distance to separated roots were investigated in an incubation experiment (42 d, 15°C) for changes in total C and N and that derived from rhizodeposition in total soil, in soil microbial biomass, and in the 0.05 M K2SO4–extractable soil fraction. CO2‐C respiration in total and that derived from rhizodeposition were measured from the incubated rhizosphere soil samples. Rhizodeposition C was detected in rhizosphere soil up to 4–6 mm distance from the separated roots. Rhizodeposition N was only detected in the rhizosphere soils up to 3–4 mm distance from the roots. Microbial biomass C and N was increased with increasing proximity to the separated roots. Beside 13C and 15N derived from rhizodeposits, unlabeled soil C and N (native SOM) were incorporated into the growing microbial biomass towards the roots, indicating a distinct acceleration of soil organic matter (SOM) decomposition and N immobilization into the growing microbial biomass, even under the competition of plant growth. During the soil incubation, microbial biomass C and N decreased in all samples. Any decrease in microbial biomass C and N in the incubated rhizosphere soil layers is attributed mainly to a decrease of unlabeled (native) C and N, whereas the main portion of previously incorporated rhizodeposition C and N during the plant growth period remained immobilized in the microbial biomass during the incubation. Mineralization of native SOM C and N was enhanced within the entire investigated rhizosphere gradient. The results indicate complex interactions between substrate input derived from rhizodeposition, microbial growth, and accelerated C and N turnover, including the decomposition of native SOM (i.e., rhizosphere priming effects) at a high spatial resolution from the roots.  相似文献   

8.
Fifteen plants species were grown in the greenhouse on the same soil and sampled at flowering to obtain rhizosphere soil and root material. In both fractions, the data on fungal and bacterial tissue obtained by amino sugar analysis were compared with the total microbial biomass based on fumigation-extraction and ergosterol data. The available literature on glucosamine concentrations in fungi and on muramic acid concentrations in bacteria was reviewed to prove the possibility of generating conversion values for general use in root material. All microbial properties analysed revealed strong species-specific differences in microbial colonisation of plant roots. The root material contained considerable amounts of microbial biomass C and biomass N, reaching mean levels of 10.9 and 1.4 mg g−1 dry weight, respectively. However, the majority of CHCl3 labile C and N, i.e. 89 and 55% was root derived. The average amount of ergosterol was 13 μg g−1 dry weight and varied between 0.0 for Phacelia roots and 45.5 μg g−1 dry weight for Vicia roots. The ergosterol content in root material of mycorrhizal and non-mycorrhizal plant species did not differ significantly. Fungal glucosamine was converted to fungal C by multiplication by 9 giving a range of 7.1-25.9 mg g−1 dry weight in the root material. Fungal C and ergosterol were significantly correlated. Bacterial C was calculated by multiplying muramic acid by 45 giving a range from 1.7 to 21.6 mg g−1 dry weight in the root material. In the root material of the 15 plant species, the ratio of fungal C-to-bacterial C ranged from 1.0 in mycorrhizal Trifolium roots to 9.5 in non-mycorrhizal Lupinus roots and it was on average 3.1. These figures mean that the microbial tissue in the root material consists on average of 76% fungal C and 24% bacterial C. The differences in microbial colonisation of the roots were reflected by differences in microbial indices found in the rhizosphere soil, most strongly for microbial biomass C and ergosterol, but to some extent also for glucosamine and muramic acid.  相似文献   

9.
Our previous studies showed that, under P-limiting conditions, growth and P uptake were lower in the wheat genotype Janz than in three Brassica genotypes when grown in monoculture. The present study was conducted to answer the question if P mobilised by the Brassicas is available to wheat; leading to improved growth of wheat when intercropped with Brassicas compared to monocropped wheat. To assess if the interactions between the crops depend on soil type, the wheat genotype Janz and three Brassica genotypes (two canolas and one mustard) were grown for 6 weeks in monoculture or wheat intercropped with each Brassica genotype in an acidic and an alkaline soil with low P availability (with two plants per pot). Wheat grew equally well in the two soils, but the Brassicas grew better in the acidic than in the alkaline soil. In the acidic soil, monocropped Brassicas had a 3 to 4 fold greater plant dry weight (dw) and P uptake than wheat; plant dw and P uptake in wheat were decreased or not affected by intercropping and increased in the Brassicas. In the alkaline soil, dw and P uptake of the Brassicas was twice as high as in wheat, with intercropping having no effect on these parameters. The contribution of wheat to the total shoot dw and P uptake per pot was 4-21% and 32-40% in acidic and alkaline soil, respectively. Mycorrhizal colonisation was low in all genotypes in the acidic soil (1-6%). In the alkaline soil, mycorrhizal colonisation of monocropped wheat was 62%, but only 43-47% in intercropped wheat. Intercropping decreased P availability in the rhizosphere of wheat in the acidic soil but had no effect on rhizosphere P availability in the alkaline soil. Intercropping had a variable effect on rhizosphere microbial community composition (assessed by fatty acid methylester analysis (FAME) and ribosomal intergenic spacer amplification (RISA)), ranging from intercropping having no effect on the rhizosphere communities to intercropping resulting in a new and similar rhizosphere community composition in both genotypes. The results of this study show that intercropping with Brassicas does not improve growth and P uptake of wheat; thus there is no indication that P mobilised by the Brassicas is available to wheat.  相似文献   

10.
The addition of leaf litter to soil influences both the nutrients and polyphenols of soil. It is likely that contrasting nutrient and polyphenolic composition of different plant litters may affect plant growth, mycorrhizal and soil arthropod communities. We report results from a microcosm experiment of effects of incorporation of three single leaf litter species and a mixture of all three on pitch pine seedling growth, their ectomycorrhizal community and soil arthropod community. The three litter species (pine, oak and huckleberry) represent co-dominant species within the New Jersey pine barrens ecosystem. We show that the leaf litters have different composition of nutrients and polyphenols, with rooting matrix containing pine litter having lower inorganic nitrogen content (1.6 μg g−1) than oak (19.9 μg g−1) and huckleberry (4.4 μg g−1), but oak litter having the highest extractable phosphorus (13.3 cf. 0-0.08 μg g−1) and total phenol content and lowest condensed tannin content. These differences were imparted to rooting matrix of homogenized humic (Oa) layer of pine barrens soil to which milled leaf litter was added and used in the microcosms. Pitch pine seedlings grew significantly better in un-amended rooting matrix (0.33±0.02 g) than any of the litter treatments (0.15±0.02-0.17±0.01 g) and tissue P concentrations tracked phosphate concentrations in the rooting matrix. Total P accumulation into plant tissue was higher in oak than control, attributable to a significantly higher (P<0.05) accumulation in roots (3.3±0.19 mg g−1) compared to other species (1.1±0.04-2.3±0.08 mg g−1). No relationship was seen between tissue N concentration and soil N, but seedlings growing in huckleberry litter amended soil accumulated less N than control. The effect of leaf litters on the ectomycorrhizal community composition were determined by PCA (first two axes accounted for 81% of the variance) and stepwise multiple regression analysis. These analyses showed that huckleberry leaf litter had a significant impact on mycorrhizal community composition with morphotypes Cg and DB being more abundant in the presence of huckleberry litter (178±13 cf. 68±15-106±15 for Cg and 141±11 cf. 88±23-111±18 for DB) and its influence of elevating nitrate nitrogen, organic nitrogen, total phenols and protein precipitation content of the rooting matrix. Mycorrhizal morphotypes BS and SB were significantly more abundant in the community where these soil factors were low in the absence of leaf litter addition. Total ectomycorrhizal abundance was negatively related to hydrolysable tannin concentration in the rooting matrix (r2=0.132, P<0.05). There was no influence of leaf litter type on mite density (dominated by non-burrowing phthiracarids), but collembolan density (dominated by Folsomia spp) showed a greater than threefold reduction in population density in the presence of leaf litter (F=6.47, P<0.05). Collembolan density was positively correlated with mycorrhizal morphotypes GS and SB (P<0.05) and negatively related to morphotypes DB (P<0.05) and soil extractable NH4-N (P<0.05), suggesting a possible selection of fungal species in their diet and a relationship between collembola and nitrification.  相似文献   

11.
ABSTRACT

Arbuscular mycorrhizal (AM) fungi can improve plant phosphorus (P) uptake; however, information about how AM fungi affect rhizosphere organic acid and microbial activity to alleviate citrus low P stress is limited. Here, a pot experiment was conducted to evaluate the effect of AM fungi (Rhizophagus intraradices, Ri) inoculation on rhizosphere organic acid content, microbial biomass (MB) and enzyme activity of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings grown under three low P conditions. The results showed that mycorrhizal seedlings all recorded higher P concentrations, plant biomass and better root morphology with more lateral and fine roots, but lower root mass ratios, irrespective of P conditions. Mycorrhizal P absorption contribution did not differ significantly among three P conditions. Mycorrhizal seedling rhizosphere soil exhibited lower organic acid content, soil organic P content and ratio of MB-carbon (C)/MB-P, but higher MB and enzyme activity. Additionally, the main organic acids showed a negative relationship with mycorrhizal colonization rate and hyphal length; however, phosphatase and phytase activity had a significantly positive relationship with MB. Therefore, the results suggest that AM fungi inoculation may help citrus to efficiently utilize organic P source by improving microbial activity under low available P conditions.  相似文献   

12.
A greenhouse rhizobox experiment was carried out to quantify the incorporation of 13C- and 15N-labelled rhizodeposits into different soil pools, especially into the rhizosphere microbial biomass, with increasing distances to the root surface of Lolium perenne. Five layers were analysed over 0-4.2 mm distance to an artificial root surface. C and N derived from rhizodeposition were 4.2% of total C and 2.8% of total N in soil at 0-1.0 mm distance and decreased rapidly with increasing distance. Microbial biomass C and N increased significantly towards the roots. At 0-1.0 mm distance microbial biomass C and N accounted for 66% and 29% of C and N derived from rhizodeposition, respectively. These percentages declined with increasing distance to the roots, but were still traceable up to 4.2 mm distance. Only small amounts of root released C and N were found in the 0.05 M K2SO4-extractable fraction. Extractable C and N derived from rhizodeposition varied around means of 4% of total C and N derived from rhizodeposition and increased only marginally with increasing distance to the roots. C derived from rhizodeposition in the non-extractable soil organic matter increased from 65 to 89% of total C derived from rhizodeposition at 0-3.4 mm distance. Conversely, microbial biomass C derived from rhizodeposition decreased from 33 to 4%. N derived from rhizodeposition in the non-extractable soil organic matter increased from 61 to 79% of total N derived from rhizodeposition at 0-2.6 mm distance, followed by a decline to roughly 55% in the two outer layers. Microbial biomass N decreased from 37 to 16% at 0-2.6 mm distance, followed by an increase to roughly 41% in the two outer layers. The C/N ratio of total C and N derived from rhizodeposition as well as that of extractable C and N derived from rhizodeposition increased with increasing distance to the roots to values above 30. In contrast, the C/N ratio of incorporated rhizodeposition C and N into the microbial biomass decreased to values less than 5 at 2.6-4.2 mm distance. The data indicate differential microbial response to C and N derived from rhizodeposition at a high spatial resolution from the root surface. The turnover of C and N derived from rhizodeposition in the rhizosphere as a function of the distance to the root surface is discussed.  相似文献   

13.
Several ectomycorrhizal fungi, including Hebeloma cylindrosporum, actively release large quantities of phosphatase enzymes into their growth medium. We fractionated the phosphatase activity of the ectomycorrhizal association between H. cylindrosporum and its host plant, Pinus pinaster, with the aim to quantify its spatial and temporal variation in response to contrasting soil phosphorus conditions. Seedlings were grown in mini-rhizoboxes and the phosphomonoesterase activity of rhizosphere soil, released by roots, surface-bound to roots or mycelium was determined spectrophotometrically with the p-nitrophenyl phosphate method or microscopically with the ELF-method as a function of culture time. We showed that acid phosphatase activity of the soil and the root increased with mycorrhizal association. We also observed that the phosphatase activity associated with ectomycorrhizal plants was related to soil type. All phosphatase fractions decreased over culture time, except the proportion of hyphae exhibiting phosphatase activity in the extramatrical mycelium, which increased over time. The specific fractions of phosphatase activity associated with the mycorrhizal plants were clearly related to the soil phosphorus type and content. Soils showed an increase in acid phosphomonoesterase activity with mycorrhizal association, supporting a role for this enzyme in the degradation of soil bound phosphorus. The gradually increasing proportion of hyphae in the extramatrical mycelium exhibiting alkaline phosphatase activity, particularly under low phosphorus conditions, indicates an induction of alkaline phosphatase activity by phosphorus limitation.  相似文献   

14.
This study investigated the effects of inoculation with three individual ectomycorrhizal (ECM) fungal species on soil microbial biomass carbon and indigenous bacterial community functional diversity in the rhizosphere of Chinese pine (Pinus tabulaeformis Carr.) seedlings under field experimental conditions. The results showed that ECM fungal inoculation significantly increased the ectomycorrhizal colonization compared with non-inoculated seedlings. ECM fungal inoculations have higher soil microbial biomass carbon than that of control, ranging from 49.6 μg C g?1 dry soil in control to 134.02 μg C g?1 dry soil in treatment inoculated with Boletus luridus Schaeff ex Fr. Multivariate analyses (PCA) of BIOLOG data revealed that the application of ECM fungi significantly influenced bacterial functional diversity in the rhizosphere of P. tabulaeformis seedlings. The highest average well-color development (AWCD) and functional diversity indices were also observed in treatment inoculated with B. luridus. A wider range of sole carbon sources were utilized by the bacterial community in the rhizosphere of inoculated seedlings. The data gathered from this study provides important information for utilization of ECM fungi in forest restoration project in the Northwestern China. The present study will also significantly broaden our understanding of practical importance in the application of ECM fungal inoculum to promote soil microbial community diversity of soil.  相似文献   

15.
The interactions between soil P availability and mycorrhizal fungi could potentially impact the activity of soil microorganisms and enzymes involved in nutrient turnover and cycling, and subsequent plant growth. However, much remains to be known of the possible interactions among phosphorus availability and mycorrhizal fungi in the rhizosphere of berseem clover (Trifolium alexandrinum L.) grown in calcareous soils deficient in available P. The primary purpose of this study was to look at the interaction between P availability and an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) on the growth of berseem clover and on soil microbial activity associated with plant growth. Berseem clover was grown in P unfertilized soil (−P) and P fertilized soil (+P), inoculated (+M) and non-inoculated (−M) with the mycorrhizal fungus for 70 days under greenhouse conditions. We found an increased biomass production of shoot and root for AM fungus-inoculated berseem relative to uninoculated berseem grown at low P levels. AM fungus inoculation led to an improvement of P and N uptake. Soil respiration (SR) responded positively to P addition, but negatively to AM fungus inoculation, suggesting that P limitation may be responsible for stimulating effects on microbial activity by P fertilization. Results showed decreases in microbial respiration and biomass C in mycorrhizal treatments, implying that reduced availability of C may account for the suppressive effects of AM fungus inoculation on microbial activity. However, both AM fungus inoculation and P fertilization affected neither substrate-induced respiration (SIR) nor microbial metabolic quotients (qCO2). So, both P and C availability may concurrently limit the microbial activity in these calcareous P-fixing soils. On the contrary, the activities of alkaline phosphatase (ALP) and acid phosphatase (ACP) enzymes responded negatively to P addition, but positively to AM fungus inoculation, indicating that AM fungus may only contribute to plant P nutrition without a significant contribution from the total microbial activity in the rhizosphere. Therefore, the contrasting effects of P and AM fungus on the soil microbial activity and biomass C and enzymes may have a positive or negative feedback to C dynamics and decomposition, and subsequently to nutrient cycling in these calcareous soils. In conclusion, soil microbial activity depended on the addition of P and/or the presence of AM fungus, which could affect either P or C availability.  相似文献   

16.
《Applied soil ecology》2003,22(2):103-111
The re-establishment of native shrub species in the Mediterranean basin serves to restore the characteristic biodiversity and to prevent the processes of erosion and desertification in semiarid areas. A field experiment was carried out in an abandoned semiarid agricultural Mediterranean area to assess the effectiveness of mycorrhizal inoculation, with a mixture of native arbuscular mycorrhizal (AM) fungi or an allochthonous AM fungus (Glomus claroideum), on the establishment of Olea europaea subsp. sylvestris L., Pistacia lentiscus L., Retama sphaerocarpa (L.) Boissier and Rhamnus lycioides L. seedlings in this area. One year after planting, shoot biomass of inoculated O. europaea and P. lentiscus seedlings was greater, by about 630% and 300%, respectively, than that of non-inoculated plants. Shoot biomass of G. claroideum-colonised R. sphaerocarpa plants was significantly greater than that of seedlings inoculated with the mixed native AM fungi after 12 months. The increase of R. lycioides growth due to inoculation with native AM fungi was significantly greater than that of G. claroideum-colonised seedlings during the same growth period. Inoculation with a mix of native AM fungi was the most effective treatment for increasing shoot biomass and N, P and K contents in shoot tissues of R. lycioides seedlings. The mixture of native AM fungi was the most effective with respect to colonisation of the roots of O. europaea and R. lycioides, but the native AM fungi and G. claroideum achieved similar levels of colonisation in P. lentiscus and R. sphaerocarpa. The use of native mycorrhizal potential as a source of AM inoculum may be considered a preferential inoculation strategy to guarantee the successful re-establishment of native shrub species in a semiarid degraded soil.  相似文献   

17.
Wheat roots are susceptible to colonisation by soil-borne pathogens, such as Gaeumannomyces graminis var. tritici (Ggt), which causes the globally important disease take-all, and mutualistic arbuscular mycorrhizal fungi (AMF). Certain rhizosphere fluorescent Pseudomonas strains have received much attention as potential biocontrol agents given their ability to produce antibiotics, such as 2,4-diacetylphloroglucinol (DAPG), that confer a measure of plant protection. Here we show that Pseudomonas fluorescens only produced DAPG in the presence of soluble carbon from soil containing either Ggt or AMF, and production increased by two orders of magnitude in response to both AMF and Ggt. Encouragement of mycorrhizal colonisation may therefore offer a sustainable strategy for protection against take-all.  相似文献   

18.
Sorghum (S. bicolor L. Moench cv. Bok 8) plants were grown in soil or sand-perlite low in plant-available N and P. Plants were inoculated with a vesicular-arbuscular mycorrhizal (VAM) fungus, or a strain of Azospirillum brasilense or both endophytes together. Plants received a nutrient solution which did not contain N or P. Increases in plant dry weight, shoot-to-root ratios, and the N content of dually-infected plants could be accounted for by summing the VAM and Azospirillum effects. For sorghum inoculated with both endophytes, the presence of A. brasilense in the rhizosphere increased VAM colonization and biomass, while the N input due to Azospirillum decreased, possibly due to competition for carbohydrates.Comparisons between sorghum grown with or without VAM-fungal infection in four growth media showed that edaphic factors other than P availability determined the host response to VAM infection. The P-fixing capacity of the soil, rather than the amount of available (NaHCO3-extractable) P, influenced the balance between mutualistic and parasitic VAM-fungal growth.  相似文献   

19.
Arbuscular mycorrhizal (AM) development in different soil types, and the influence of AM fungal hyphae on their original soil were investigated. Plantago lanceolata, which can grow in soils of a very wide pH range, was grown in two closely related limestone soils and an acid soil from rock habitats. Plants were colonised by the indigenous AM fungal community. The use of compartmented systems allowed us to compare soil with and without mycorrhizal hyphae. Root colonisation of P. lanceolata was markedly higher in the limestone soils (30-60%) than in the acid soil (5-20%), both in the original habitat and in the experimental study. Growth of extraradical AM fungal hyphae was detected in the limestone soils, but not in the acid soil, using the signature fatty acid 16:1ω5 as biomass indicator. Analysis of signature fatty acids demonstrated an increased microbial biomass in the presence of AM fungal hyphae as judged for example from an increased amount of NLFA 16:0 with 30 nmol g−1 in one of the limestone soils. Bacterial activity, but not soil phosphatase activity, was increased by around 25% in the presence of mycorrhizal hyphae in the first harvest of limestone soils. AM fungal hyphae can thus stimulate microorganisms. However, no effect of AM hyphae was observed on the soil pH or organic matter content in the limestone soils and the available P was not depleted.  相似文献   

20.
Understanding soil organic matter (SOM) decomposition and its interaction with rhizosphere processes is a crucial topic in soil biology and ecology. Using a natural 13C tracer method to separately measure SOM-derived CO2 from root-derived CO2, this study aims to connect the level of rhizosphere-dependent SOM decomposition with the C and N balance of the whole plant–soil system, and to mechanistically link the rhizosphere priming effect to soil microbial turnover and evapotranspiration. Results indicated that the magnitude of the rhizosphere priming effect on SOM decomposition varied widely, from zero to more than 380% of the unplanted control, and was largely influenced by plant species and phenology. Balancing the extra soil C loss from the strong rhizosphere priming effect in the planted treatments with C inputs from rhizodeposits and root biomass, the whole plant–soil system remained with a net carbon gain at the end of the experiment. The increased soil microbial biomass turnover rate and the enhanced evapotranspiration rate in the planted treatments had clear positive relationships with the level of the rhizosphere priming effect. The rhizosphere enhancement of soil carbon mineralization in the planted treatments did not result in a proportional increase in net N mineralization, suggesting a possible de-coupling of C cycling with N cycling in the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号