共查询到19条相似文献,搜索用时 46 毫秒
1.
[目的]对用不同方法检测水产品副溶血性弧菌的不同增菌条件进行比较,以期寻找一种快速高效的增菌条件,为提高检测效率提供聋考依据。[方法]采用FDA、ISO、GB/T4789.7-2003、GB/T4789.7-2008、SN0173等方法中的培养基配方,时副溶血性弧菌进行杂种培养,并通过生长曲线测定方法比较验证使用培6-基的增菌效果。[结果]结果表明,含3%NaCl的碱性蛋白胨具有最好的增菌茵效果。[结论]该结果对于检测水产品中副溶血性弧菌具有重要的指导意义。 相似文献
2.
副溶血性弧菌的检测研究 总被引:1,自引:0,他引:1
[目的]对toxR进行副溶血性弧菌特异性检测,探讨toxR靶基因能否准确检测副溶血性弧菌,从而消除其他研究者对该基因特异性的疑虑。[方法]采用SN/T1870—2016中副溶血性弧菌toxR的引物探针对副溶血性弧菌和其亲缘关系接近的弧菌标准菌株进行检测。[结果]采用实时荧光PCR方法证实该引物探针只能扩增出副溶血性弧菌,其他弧菌诸如溶藻弧菌、创伤弧菌、霍乱弧菌等未得到扩增。[结论]证实SN/T1870—2016中toxR的引物探针特异性高。该研究可为各检测机构提供数据支持,为副溶血性弧菌的检测与研究奠定更为坚实的基础。 相似文献
3.
4.
运用电子扫描显微镜和胞外聚合物分析法研究副溶血弧菌在最适生长温度(37℃)条件下在鱼鳞表面形成生物被膜的动态过程、不同温度条件下在鱼鳞表面形成生物被膜的情况以及酸性电解水对其清除效果。结果表明:(1)在37℃条件下,12~60 h时间段内,细菌由初始的单细胞吸附发展成为具有明显三维立体网状结构的成熟生物被膜,60~72 h时间段内生物被膜表面产生裂痕。生物被膜的量在形成的动态过程中出现变化,12~60 h时间段内生物被膜的量不断增加,60~72 h时间段内生物被膜的量出现了轻微的减少;(2)副溶血弧菌在4、10、15、25、37和40℃条件下于鱼鳞表面生长60 h后均可以形成生物被膜,其形成生物被膜的量由高到低的次序是:37℃25℃40℃15℃10℃4℃;(3)酸性电解水对所有温度条件下形成的生物被膜均有良好的清除效果,处理后生物被膜变得稀疏,三维立体网状结构被破坏,连续处理10 min对胞外多糖和胞外蛋白的清除率分别达到64.54%和61.42%。 相似文献
5.
副溶血性弧菌间接ELISA检测试剂盒的主要组成部件,应用试验结果表明该试剂盒检测低限达104 cfu/g,具有良好的稳定性和特异性;检测时间为8 h,大大缩短了检测时间,提高了检测效率,该试剂盒具有一定的实际应用价值. 相似文献
6.
采用肠细菌基因外重复回文序列扩增(REP-PCR)和肠道细菌基因间重复序列扩增(ERIC-PCR)2种方法,对从3种不同样品中分离得到的副溶血性弧菌进行分型分析;通过REP和ERIC-PCR指纹图谱扩增,利用NT-SYS-pc软件,并采用Dice系数对指纹图谱进行聚类分析.结果显示:55株副溶血性弧菌REP-PCR指纹图聚谱共分为3大类,其中底泥中的优势谱型为Ⅰ类型,海水中的优势谱型为Ⅱ类型,虾样品中的优势谱型为Ⅰ类型;ERIC-PCR指纹谱型也聚类为3大类,在海水和底泥中的优势谱型均为Ⅰ类型,但底泥中副溶血性弧菌多样性较海水中丰富,虾样品中副溶血性弧菌优势谱型为Ⅱ类型.表明不同样品中副溶血性弧菌优势型不同,进而推测不同类型谱型的菌株耐冷特性不同. 相似文献
7.
采用7种不同方法对副溶血性弧菌的保藏效果进行研究,以菌种的保藏时间、存活率、生物学特性及毒力指标比较保藏效果.结果表明:保藏时间由长到短依次为:冷冻真空干燥保藏法>-20℃脱脂牛奶保藏法>室温液体石蜡保藏法>4℃液体石蜡保藏法>-20℃甘油保藏法>室温斜面保藏法>4℃斜面保藏法.7种方法保藏前后,副溶血性弧菌革兰氏染色,氧化酶,0 NaCl、4% NaCl及10% NaCl盐度生长试验,TCBS培养基上生长性状及溶血性试验等基本生物学特性均无影响.冷冻真空干燥法毒力稳定,其他保藏方法超过12个月后毒力出现不同程度的下降.采用室温斜面法保藏2个月,菌种生物学特性和毒力均稳定,操作最简便,适宜短期保藏;采用冷冻真空干燥法保藏24个月以上,或采用-20℃脱脂牛奶法保藏20个月,菌种生物学特性均稳定,这2种方法适宜长期保藏. 相似文献
8.
9.
在我国,副溶血性弧菌被认为是海产品衍生疾病的主要因素,因此急需一种能快速、灵敏、特异、准确地检测食品中副溶血性弧菌的方法。传统培养法一直是检测的金标准,但是其检测周期较长;分子生物学方法如聚合酶链式反应(PCR)、实时荧光定量PCR(qPCR)、环介导等温扩增技术(LAMP)已被广泛用于食品中副溶血性弧菌的检测,但是这些方法不能区分死菌和活菌的DNA,容易造成假阳性。而叠氮溴化丙锭(propidium monoazide,简称PMA)等核酸染料的使用可以有效地消除这一弊端。研究者们将PMA处理与PCR(qPCR)结合,应用于食品中多种食源性致病菌活菌的检测,但是关于PMA在副溶血性弧菌检测中应用的报道并不多见。因此,拟对PMA应用于食品中副溶血性弧菌检测的可行性进行分析,以便为进一步开展相关研究提供参考。 相似文献
10.
[目的]为进一步确定致病性副溶弧菌共有的特异性抗原和保护性抗原奠定基础。[方法]通过小鼠毒力试验研究5株副溶血性弧菌菌株对小鼠的致病性,比较在不同培养基和培养时间下所提取的外膜蛋白的SDS-PAGE图谱并通过Western blotting分析研究副溶血性弧菌菌株的免疫原性。[结果]5株临床分离的副溶血性弧菌菌株明显对小鼠具有不同的致病性,同时能在兔血平板上形成明显的溶血圈,为TDH阳性菌株。通过菌体免疫获得的多克隆抗体,与除副溶血性弧菌外的其他试验菌株均无交叉反应。Western blotting分析显示该多克隆抗体与5株致病性副溶血弧菌菌株可发生程度不等的阳性反应,提取的外膜蛋白具有较好的免疫原性。[结论]该研究为制备有效预防副溶血性弧菌引起的疾病的菌苗提供了理论基础。 相似文献
11.
Electrolyzed water (EW) can be produced by electrolysis of a dilute salt solution. Slightly acidic electrolyzed water (SAEW, pH 5.0–6.5) and neutral electrolyzed water (NEW, pH 6.5–8.5) are considered healthy and environmentally friendly because no hazardous chemicals are added in its production, there is reduced corrosion of surfaces and it minimizes the potential for damage to animal and human health. Over the last decade, EW has become increasingly popular as an alternative disinfectant for decontamination in animal houses. However, there have been some issues related to EW that are not well known, including different mechanisms for generation of SAEW and NEW, and the antimicrobial mechanism of EW. This review covers the definitions of SAEW and NEW, different generation systems for SAEW and NEW, the antimicrobial mecha- nism of EW, and recent developments related to the application of SAEW and NEW in animal houses. 相似文献
12.
为了研究牡蛎养殖过程中副溶血弧菌与水质因子之间的关系,2009年3月到11月从广东阳西某牡蛎养殖场采集牡蛎样品检测其副溶血弧菌的感染情况,并检测水体温度、盐度、pH和溶解氧。实验结果表明:副溶血弧菌总量的检出率为94.38%。水温和副溶血弧菌总量呈正相关,盐度和副溶血弧菌总量呈负相关,pH和溶解氧与副溶血弧菌总量的相关性不明显。对水温和盐度与副溶血弧菌总量的对数进行回归分析,水温和副溶血弧菌浓度的拟合回归方程为:lgVP= 0.093?T-0.685(R2=0.336);盐度和副溶血弧菌浓度的拟合回归方程为:lgVP=1.199 0.116?S-0.004?S2(R2=0.217);水温和盐度对副溶血弧菌浓度的拟合回归方程为:lgVP=-1.941 0.116?T 0.058?S-0.001?S2(R2=0.414)。研究结果可为牡蛎养殖过程中副溶血弧菌的风险分析提供参考依据。 相似文献
13.
为了研究牡蛎养殖过程中副溶血弧菌与水质因子之间的关系,2009年3月到11月从广东阳西某牡蛎养殖场采集牡蛎样品检测其副溶血弧菌的感染情况,并检测水体温度、盐度、pH和溶解氧。实验结果表明:副溶血弧菌总量的检出率为94.38%。水温和副溶血弧菌总量呈正相关,盐度和副溶血弧菌总量呈负相关,pH和溶解氧与副溶血弧菌总量的相关性不明显。对水温和盐度与副溶血弧菌总量的对数进行回归分析,水温和副溶血弧菌浓度的拟合回归方程为:lgVP= 0.093×T-0.685(R2=0.336);盐度和副溶血弧菌浓度的拟合回归方程为:lgVP=1.199+0.116×S-0.004×S2(R2=0.217);水温和盐度对副溶血弧菌浓度的拟合回归方程为:lgVP=-1.941 0.116×T 0.058×S-0.001×S2(R2=0.414)。研究结果可为牡蛎养殖过程中副溶血弧菌的风险分析提供参考依据。 相似文献
14.
为了研究牡蛎养殖过程中副溶血弧菌与水质因子之间的关系,2009年3月到11月从广东阳西某牡蛎养殖场采集牡蛎样品检测其副溶血弧菌的感染情况,并检测水体温度、盐度、pH和溶解氧。实验结果表明:副溶血弧菌总量的检出率为94.38%。水温和副溶血弧菌总量呈正相关,盐度和副溶血弧菌总量呈负相关,pH和溶解氧与副溶血弧菌总量的相关性不明显。对水温和盐度与副溶血弧菌总量的对数进行回归分析,水温和副溶血弧菌浓度的拟合回归方程为:lgVP= 0.093?T-0.685(R2=0.336);盐度和副溶血弧菌浓度的拟合回归方程为:lgVP=1.199 0.116?S-0.004?S2(R2=0.217);水温和盐度对副溶血弧菌浓度的拟合回归方程为:lgVP=-1.941 0.116?T 0.058?S-0.001?S2(R2=0.414)。研究结果可为牡蛎养殖过程中副溶血弧菌的风险分析提供参考依据。 相似文献
15.
为了研究牡蛎养殖过程中副溶血弧菌与水质因子之间的关系,2009年3月到11月从广东阳西某牡蛎养殖场采集牡蛎样品检测其副溶血弧菌的感染情况,并检测水体温度、盐度、pH和溶解氧。实验结果表明:副溶血弧菌总量的检出率为94.38%。水温和副溶血弧菌总量呈正相关,盐度和副溶血弧菌总量呈负相关,pH和溶解氧与副溶血弧菌总量的相关性不明显。对水温和盐度与副溶血弧菌总量的对数进行回归分析,水温和副溶血弧菌浓度的拟合回归方程为:lgVP= 0.093×T-0.685(R2=0.336);盐度和副溶血弧菌浓度的拟合回归方程为:lgVP=1.199+0.116×S-0.004×S2(R2=0.217);水温和盐度对副溶血弧菌浓度的拟合回归方程为:lgVP=-1.941 0.116×T 0.058×S-0.001×S2(R2=0.414)。研究结果可为牡蛎养殖过程中副溶血弧菌的风险分析提供参考依据。 相似文献
16.
【目的】探讨微酸性电解水猪场消毒应用的适宜质量浓度,评估其使用过程中的安全性和有效性,为微酸性电解水在养殖业环境消毒中的推广应用提供依据。【方法】采用单因子试验设计,于2018年1月19日至3月18日,在河南驻马店某规模化养猪场,利用有效氯(ACC)质量浓度为20,40,60,80,100,120,150 mg/L的微酸性电解水,分别对猪舍、人员通道消毒间和运输车辆进行喷雾消毒,确定猪场微酸性电解水消毒适宜的质量浓度。利用确定的微酸性电解水消毒适宜有效氯质量浓度,与0.2%消毒灵和0.2%聚维酮碘溶液进行对比消毒试验,比较不同消毒剂对猪舍、人员通道消毒间和运输车辆的消毒效果,以及对猪场养殖设施常见金属材料的腐蚀情况。【结果】在喷雾消毒方式下,有效氯质量浓度为100 mg/L的微酸性电解水可有效抑制猪舍空气、车厢空气及其表面微生物的生长,灭菌率分别高达89.5%,87.5%和90.5%,显著高于0.2%消毒灵和0.2%聚维酮碘溶液(P0.05)。在喷雾4 min,消毒作用5 min后采样的情况下,使用有效氯质量浓度为80 mg/L的微酸性电解水对人员通道消毒间空气以及人体衣服表面的消毒效果最佳,灭菌率分别为92.2%和84.7%,显著高于有效氯质量浓度为20,40和60 mg/L的微酸性电解水(P0.05),但与有效氯质量浓度为100,120,150 mg/L的微酸性电解水无显著差异(P0.05)。微酸性电解水可显著减少猪舍内地面、栏杆和墙体表面的微生物数量,其灭菌效果显著高于0.2%消毒灵和0.2%聚维酮碘溶液(P0.05)。【结论】猪舍和车辆消毒时所需微酸性电解水的适宜有效氯质量浓度为100 mg/L,人员通道消毒间和人员消毒时所需微酸性电解水的适宜有效氯质量浓度为80 mg/L,在喷雾消毒过程中参试人员对微酸性电解水无不良反应,且制作简便,对猪场设施常见金属无腐蚀作用。 相似文献
17.
水产品中副溶血性弧菌、溶藻弧菌、创伤弧菌均是食源性致病菌,对这些菌种灵敏、快速的检测方法对水产品安全以及保护人类健康极为重要.主要综述了水产品中副溶血性弧菌、溶藻弧菌、创伤弧菌的分子生物学检测研究进展. 相似文献
18.
以感官评定、菌落总数、pH值、挥发性盐基氮与2-硫代巴比妥酸作为评价指标,测定不同组带鱼样品冷藏期间的品质变化.结果表明,酸性电解水瞬时杀菌力强,能在短时间内抑制微生物的生长繁殖,明显减缓挥发性盐基氮的升高,使带鱼的冷藏货架期延长2-3 d;溶菌酶保鲜液则能延缓带鱼感官品质的下降,抑制鱼体内脂肪的氧化酸败,使冷藏带鱼的保鲜期延长3-4 d. 相似文献
19.