首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
戴璐  肖浩楠 《林产工业》2020,57(1):29-36
基于Abaqus有限元分析,对不同榫长的实木榫卯连接梁柱节点和榫长为75 mm的不同层数的正交胶合木(CLT)榫卯连接梁柱节点进行数值模拟,分析其受力状态并提取荷载-位移曲线,与使用金属连接件连接的梁柱节点承载力进行对比,探究将榫卯连接应用在现代木结构中的理论依据。研究表明:竖向荷载作用下,榫长75 mm的榫卯连接梁柱节点承载能力处于M8和M10螺栓连接梁柱节点的理论承载力之间;当榫长增大时,节点的最大承载力逐渐提高,榫长150 mm的榫卯节点承载力已经略微超过M12螺栓连接时的理论承载强度,说明榫卯连接梁柱节点在承载能力上可以满足现代木结构建筑的使用要求。由于榫卯节点的承载力主要受到顺纹抗压强度的影响,因此相比于实木连接榫卯节点,CLT榫卯节点的承载力无显著提高。  相似文献   

2.
This study was conducted to analyze the effect of joint type, and numbers and types of dovetail keys on diagonal tension and compression performance of corner joints in a furniture frame. Joint members were cut from white fir lumber. Butted and mitered joints were constructed with one and two dovetail key(s) with butterfly and H shapes. Joints were glued by polyvinyl acetate (PVAc) and cynoacrylate (CA). Compression capacity of joints was higher than diagonal tension. Mitered joints were stronger than butted ones. Butterfly dovetail keys were superior to H shape keys. Double keys performed better than single key. Experimental joints glued with PVAc were stronger than those glued with CA glue and control specimens. In terms of strength, butterfly dovetailed joints were comparable with doweled joints.  相似文献   

3.
In this study, an experimental study was conducted on the nailed timber–plywood–timber joints extended from the standard wall–floor joints of wooden light frame constructions, where the bottom plates of shear walls are nailed to the floors consisting of joists and floor sheathings nailed to them. The principal conclusions are as follows: The allowable lateral resistance of the nailed timber–plywood–timber joints can roundly be estimated by neglecting the plywood panels if their densities are higher than those of the timber main-members and they are fastened effectively onto the timber main-members. The stiffness of the timber–plywood–timber joints is less than that of the control timber–timber joints, which is improved by increasing the number of nails used to fasten the plywood panels onto the timber main-members. The stiffness of the joints whose floor sheathings are glued onto the joists is equivalent to the control timber–timber joints. The timber–plywood–timber joints with appropriate specifications have greater energy capacity until the failure than that of the control timber–timber joints. This ensures their energy capacity, which is important in dynamic resistance, to be equivalent to the control timber–timber joints.  相似文献   

4.
Shear tests were conducted on nailed joints in wood that were loaded perpendicular to the grain; these joints had 21 specifications depending on different combinations of wood species, nail dimensions, number of nails, and edge distances of the main members, and their effects on the shear resistance of the nailed joints were also investigated. The nailed joints with CN75 nails had higher initial stiffness than the joints with CN50 nails, provided the initial stiffness of nailed joints connected with 3 or 5 nails was not always a simple product of the number of nails and the initial stiffness of nailed joints connected with a nail, and instead depended on the combination of wood species of the main member and nail dimensions. When the edge distance decreased, the maximum load and energy capacity decreased, thereby affecting the energy capacity. The maximum load of the nailed joints with CN75 nails may be smaller than those with CN50 nails depending on the combination of wood species and nail dimensions. When the edge distance of the nailed joints was less than 26 mm, the energy capacity of the nailed joints with CN75 nails was less than or similar to those with CN50 nails.  相似文献   

5.
We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose tenon length (30, 45, 60, and 90 mm) and loose tenon thickness (6 and 8 mm) on bending moment capacity of M&LT joints constructed with polyvinyl acetate (PVAc) adhesive. Stress and strain distributions in joint elements were then estimated for each joint using ANSYS finite element (FE) software. The bending moment capacity of joints increased significantly with thickness and length of the tenon. Based on the FE analysis results, under uniaxial bending, the highest shear stress values were obtained in the middle parts of the tenon, while the highest shear elastic strain values were estimated in glue lines between the tenon sur-faces and walls of the mortise. Shear stress and shear elastic strain values in joint elements generally increased with tenon dimensions and corre-sponding bending moment capacities. There was consistency between predicted maximum shear stress values and failure modes of the joints.  相似文献   

6.
The research focuses on the assessment of the performances of glued laminated wood corner joints for outdoor window profiles applications, proposing a methodology to appreciate the strength of 90° tenon mortise corner joints. The rationale relies on the potential damage (i.e. breaking of the frame) that can be caused by poor glueing processes and/or typology of adhesives. There is a number of standards for assessment of wood-adhesive bonds for outdoor windows; however, there is a lack of specific standards related to glueing assessment for outdoor wood frames, which can take into account all the factors influencing the glueing quality. The proposed methodology was tested on red oak window profiles. A commercially available polyvinyl acetate-based adhesive was used for corner joints. Bending strength of 90° tenon mortise corner joints was measured and compared with maximum admissible loads on the frame to limit its deformations within admissible ranges. The test results show that the 90° tenon mortise corner joints strength exceeds the admissible load to preserve the functionality of the frame. In order to appreciate the influence of conditioning processes on adhesion, shear strength tests of the flatwise glued joint samples (bond lines of lamellae) were carried out after different conditioning processes.  相似文献   

7.
为了探讨界面滑移效应对钢-竹组合楼板变形的影响,进行6块组合楼板受弯性能试验.试件共分为2组,一组为冷弯薄壁型钢与竹胶板界面仅周结构胶复合,另一组则在胶粘基础上用自攻螺钉强化,对组合楼板破坏形态、承载能力、跨中变形、界面相对滑移等进行研究.分析表明:第一组试件考虑滑移效应的跨中变形计算值与实测值吻合较好,因考虑了跨中附加挠度的影响,理论计算结果与换算截面法相比,其精度大约提高5%,更符合实际情况;第二组由于自攻螺钉的强化作用,整体性能提高很多,材料进入塑形阶段,所建理论模型不符合试验情况,有待进一步研究.  相似文献   

8.
Prediction of the load carrying capacity of bolted timber joints   总被引:1,自引:0,他引:1  
Failure of bolted timber joints is analyzed experimentally and numerically. In this study, the prediction of the load-carrying capacity of dowel-type joints with one dowel under static loading is based on the analysis of fracture in wood contrarily to most engineering methods that are based on the yield theory. Mechanical joints consist of glued laminated spruce members and steel dowels. In the different analyzed tests, the bolt loads the wood parallel or perpendicular to the grain. The wood member thickness is chosen sufficiently thin to avoid the fastener from presenting plastic hinges. The influences of different structural parameters such as the dowel diameter, the edge- and end-distances are investigated. The fracture propagation analysis is carried out with the Finite Element (FE) method in the framework of Linear Elastic Fracture Mechanics (LEFM). The only identified parameter is the critical energy release rate in mode I (GIc). The comparison between experimental and numerical results shows that the fracture must be considered for a correct prediction of the ultimate load and that LEFM can help to improve design codes. Received 11 August 1997  相似文献   

9.
We determined the effects of the penetration depth and spline material and composite material type as well as joining method on bending moment resistance under diagonal compression and tension in common wood panel structures. Composite materials were laminated medium density fiberboard (MDF) and particle board. Joining methods were buttand miter types. Spline materials were high density fiber board (HDF).The penetration depths of plywood, wood (Carpinus betolus) and splinewere 8, 11 and 14 mm. The results showed that in both diagonal compression and tension, MDF joints are stronger than particle board joints,and the bending moment resistance under compression is higher compared with that in tension. The highest bending moment resistance under tension was shown in MDF, butt joined using plywood spline with 8 mm penetration depth, whereas under compression bending moment resistance was seen in MDF, miter joined with the HDF spline of 14 mm penetration depth.  相似文献   

10.
胶合木结构建筑中,柱作为轴心受压构件,需要对其承载能力进行强度和稳定性验算。对空心柱进行理论设计计算,从而确定一定尺寸、规格下柱能承受的最大载荷。由于没有专用设备进行实验论证,本研究仅对不同规格的空心木柱和实心木柱进行对比,得出了在保证空心木柱强度与实心木柱相当时,空心木柱的外围直径与实心木柱相比均有一定程度扩大的结论,从而使胶合木结构中的胶合木柱达到了美观与结构的双向要求。同时提供了几种具体空心木柱的外观设计。  相似文献   

11.
Previous experimental studies reported that bolt pretensioning greatly increases the initial stiffness and load-carrying capacity of bolted joints. It is also a matter of great importance to structural designers to understand the effect of pretension on the load-carrying capacities of bolted joints, and this study presents an extended yield model that considers the fastener’s pretension force. In the extended yield model, the load-carrying capacity was defined as the load at a slip of 15 mm. The ultimate fastener bending angle at the yielded cross section equivalent to this joint slip, which was affected by the fastener’s axial force, was iteratively evaluated in numerical analyses. The introduction of bolt pretensioning largely increased the joint slip resistance at initial loading, but it decreased the ultimate fastener bending angle. This decrease of fastener bending angle resulted in a relatively low stiffness hardening (or secondary stiffness), which is caused by secondary axial forces associated with embedment of steel plates into the wood member. Prediction was verified by the tests of 36 steel-to-timber joints under three different pretension forces and two loading directions relative to the grain. Some of the observed load-carrying capacities of the joints, particularly in loading perpendicular to the grain, however, were not as high as those expected by the numerical analyses considering the given pretension forces.  相似文献   

12.

The aim of this study was to ascertain whether it might be possible to use seeds (Pinus sylvestris L.) as biosensors for determining seedbed moisture conditions by repeatedly weighing them during inhibition and desiccation. To make the seeds manageable, they were glued on to a Nylon thread. Tests were conducted in the laboratory under different moisture regimes (close to 75% and 100% air humidity with and without a wet substrate) to determine whether water uptake or water loss was influenced by this gluing. In a very moist environment (resulting in 40-50% seed weight change), the increase in seed weight was a few percentage units lower for glued seeds than for non - glued ones. However, gluing had no significant effect when seeds were exposed to air humidity only (10% and 20% seed weight change). It was concluded that it is possible to use seeds as biosensors for the determination of moisture conditions.  相似文献   

13.
A study was undertaken to evaluate the effect of glue application and placement of butt-joints on the compressive and tensile properties in a butt-jointed lamination. The aim was to provide background information for producing butt-jointed, glued, laminated timber. Three butt-jointed lamination models were prepared from spruce-pine-fir (S-P-F) dimension lumber with glued and nonglued butt joints, with different placements of the butt joints in the models. The axial stiffness and strength properties were assessed using both compressive and tensile tests. The results of the study indicated that for the compressive lamination model the application of glue at the butt joint gave more stiffness than the nonglued butt joint. Neither glue application nor placement of the joint had a statistically significant effect on the compressive strength. There were no significant differences between the glued and nonglued butt joint for either tensile strength or stiffness.  相似文献   

14.
Shaking table tests of the wall-floor joints of wooden light-frame constructions under forced harmonic vibrations are conducted in this study so as to observe the dynamic responsive characteristics. The principal results are as follows: The responsive characteristics of timber constructions under strong earthquakes cannot be directly correlated with their resonant frequencies under free or forced vibrations with low input accelerations, because they behave as continuous bodies when the input accelerations are less than the apparent frictional limits of structural joints. The apparent frictional limits are reduced by periodic fluctuation of the effective vertical loads as a result of the vertical motion of the specimens. The characteristic dynamic responses of wall-floor joints depend clearly upon the frequency and input accelerations of forced vibrations. These dependencies arise from the nonlinear load-slip relationship of the wall-floor joints. The equivalent stiffness in their successive transient phases decreases as joint slip increases, which gradually changes the resonant frequencies of the wall-floor joints. This indicates that the frequency components dominant to ultimate or safety-limit resistance should be distinguished from those dominant to allowable or serviceability-limit resistance.  相似文献   

15.
This paper presents research on plywood frame corners jointed to glulam beams and columns by means of glued-in hardwood dowels. The frame corner was made of a solid block of ordinary plywood of the same width as the glulam beams and with plies parallel to the plane of the frame to avoid splitting due to stress perpendicular to the grain. Hardwood dowels with a diameter of 12mm and a maximum glued-in length of 120mm were glued into drilled holes in the plywood corner and glulam beam ends parallel to the grain direction of the beams to form a momentresisting joint. Static bending tests were conducted of frame corners with 100 X 200mm2 and 120 X 420mm2 beam cross sections. Bending capacities of the joints corresponding to a modulus of rupture of the jointed glulam beams of about 30MPa were obtained for both closing and opening moments for the small cross sections, and about 22MPa was obtained for the large cross sections. Simple design models for calculation of joint strength and rotational stiffness are also presented.  相似文献   

16.
Finger joints are commonly used to produce engineered wood products like glued laminated timber beams. Although comprehensive research has been conducted on the structural behaviour of finger joints at ambient temperature, there is very little information about the structural behaviour at elevated temperature. A comprehensive research project on the fire resistance of bonded timber elements is currently ongoing at the ETH Zurich. The aim of the research project is the development of simplified design models for the fire resistance of bonded structural timber elements taking into account the behaviour of the adhesive used at elevated temperature. The paper presents the results of a first series of tensile and bending tests on specimens with finger joints pre-heated in an oven. The tests were carried out with different adhesives that fulfil current approval criteria for the use in load-bearing timber components. The results showed substantial differences in temperature dependant strength reduction and failure between the different adhesives tested. Thus, the structural behaviour of finger joints at elevated temperature is strongly influenced by the behaviour of the adhesive used for bonding and may govern the fire design of engineered wood products like glued laminated timber beams.  相似文献   

17.
We determined the effects of adhesive type and loose tenon dimensions (length and thickness) on bending strength of T-shaped mor- tise and loose-tenon joints. Polyvinyl acetate (PVAc) and two-component polyurethane (PU) adhesives were used to construct joint specimens. The bending moment capacity of joints increased significantly with increased length and thickness of the loose tenon. Bending moment capacity of joints constructed with PU adhesive was approximately 13% higher than for joints constructed with PVAc adhesive. We developed a predictive equation as a function of adhesive type and loose tenon dimensions to estimate the strength of the joints constructed of oriental beech (Fagus orientalis L.) under uniaxial bending load.  相似文献   

18.
The aim of the current study is to improve the thermal stability of one-component moisture-curing polyurethane adhesives. The approach here tends to add suitable filler materials to the adhesive and to study the resulting effects. The investigation covers mechanical tests to determine the shear strength of the glued wood joints according to EN 302-1 (2004). Furthermore, the distribution of the filler material within the adhesive is shown by means of environmental scanning electron microscopy combined with energy-dispersive X-ray spectroscopy analysis. The thermal stability of the glued wood joints could be significantly improved by adding chalk with a volume fraction of 30% to the adhesive.  相似文献   

19.
In past years high priority was given to developing a seismic design for wood structures, including research on the response of wood structures to earthquakes. In this study a new type of portal frame with relatively large span was developed for the traditional Japanese wooden houses with large openings at the front to strengthen the structure. Stainless steel plates coated with zinc and glued with epoxy adhesives on laminated veneer lumber (LVL) members, composed of Douglas fir veneer and bonded with phenolformaldehyde resin, were used. The connection between the frame's beam and columns and between the columns and groundsills was mechanical, with bolts. The subject of this research was to analyze strength properties and failure behavior of glued LVL metal joints used as structural components and to evaluate the response of LVL portal frames under cyclic lateral loading. The results show that portal frames using glued LVL metal plates have a good multiplier for the shear walls and may be applied to traditional Japanese structures. The equivalent viscous damping provided good energy dissipation in the frames. The joints displayed good mechanical behavior during tests; moreover, the structures demonstrated high strength, stiffness, and ductility, which are necessary for a seismic design.Part of this paper was presented at the 47th annual meeting of the Japan Wood Research Society, Kouchi, April 1997; and at the 5th world conference on timber engineering. Montreux, Switzerland, August 1998  相似文献   

20.
为准确评价斜螺钉连接钢 木节点的剪切性能,探明其受力机理,以云杉胶合木、钢板和自攻螺钉作为研究材料,测试不同荷载方向与受力情况下斜螺钉连接节点的承载性能,将试验数据与国外规范中的计算模型进行对比,提高了侧边钢板 胶合木(钢 木)斜螺钉连接节点承载性能的预测能力。结果表明:自攻螺钉与剪切面之间的角度变化对其在钢 木节点承受剪 压复合应力的承载力影响不明显,当偏转为剪 拉复合应力时,节点承载力明显增大,并在30°~45°获得最大值;剪 压复合应力时,现行EC5公式计算剪 压节点的极限承载力非常不安全;EC5的刚度预测结果在剪 压复合应力区和垂直剪切面钉入时,与试验值吻合度很高,但对剪 拉区节点的滑移模量没有预测性;将Tomasi模型应用于斜螺钉连接钢 木节点滑移模量理论计算时,在45°~90°时与试验值吻合度极高。单颗自攻螺钉的抗拔刚度计算节点滑移模量的方法极为有效,具有较高的借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号