首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
稻秸对土壤细菌群落分子多态性的影响   总被引:8,自引:0,他引:8       下载免费PDF全文
卜元卿  黄为一 《土壤学报》2005,42(2):270-277
模拟稻秸原位还田条件,分别在水稻土和红壤中添加水稻秸秆培养70d ,第0、5、2 5、4 5、70天采集土样。采用非机械破壁法直接提取水稻土和红壤细菌总DNA ,水稻土细菌总DNA经过二次纯化;红壤细菌总DNA经过一次纯化后,PCR扩增其16SrDNAV3可变区,均可获得清晰的目的条带,对扩增产物进行DGGE分析,结果显示:水稻土和红壤样品的DGGE条带增加,说明稻秸能够增加土壤细菌群落分子多态性的丰富度,随着培养期的延长,施有稻秸的处理中土壤细菌群落多态性的变化远远复杂于空白对照土壤中的细菌群落变化;同时发现在稻秸刺激下不同土壤细菌群落多态性高峰期出现时间不同  相似文献   

2.
由于西北土壤理化性质的复杂性和真菌特殊性,所以从土壤中提取真菌基因组DNA就相对细菌更困难。在2种常用的土壤微生物基因组DNA提取方法与在传统提取方法的基础上,结合了一种专门适用于真菌的提取方法进行了比较,并且利用真菌28SrDNA通用引物U1/U2进行扩增。三种提取方法比较结果表明:SDS法提取的DNA纯度最低,传统CTAB-SDS的DNA产量最低,实验室的提取方法既可以提高DNA产量又可以保证DNA的片段完整性,并且本实验室的提取方法扩增效果最好,可广泛应用于西北地区土壤真菌的分子生物学研究。  相似文献   

3.
国内首次运用FastPrep○R 核酸快速提取系统提取了重金属复合污染农田土壤的DNA ,并对其进行了聚合酶链反应—变性梯度凝胶电泳 (PCR DGGE)分析。结果表明 ,FastPrep○R核酸提取仪与相应的FastD NASPINKitforSoil试剂盒联用时 ,能有效地分离到纯度较高的重金属污染农田土壤的DNA。PCR DGGE电泳图谱表明 ,PCR产物经DGGE检测后得到的电泳条带清晰且分离效果好 ,可以明显反映出重金属复合污染导致了农田土壤微生物在基因上的损伤 ,影响到农田土壤生态系统的细菌丰富度 ,改变了土壤环境的优势菌群 ,从而使农田土壤微生物群落结构多样性发生变化。可见 ,FastPrep○R核酸提取系统同样适用于重金属污染农田土壤环境中微生物基因组DNA的快速分离和纯化 ,得到的DNA可直接用于PCR DGGE分析。  相似文献   

4.
杨瑞红  赵成义  王新军  马亚丽 《土壤》2016,48(6):1120-1130
直接从沙漠土壤中提取混合微生物DNA,利用Illuminamiseq测序平台,对16S r DNA进行测序和分析。结果表明:1荒漠植被土壤微生物数量很少,生物活性极弱,DNA提取难度大;2沙漠植被土壤细菌多样性丰富,所有测得细菌分属到23个门和316个属,其中还存在一定数量的微生物新种,部分测得代表新属和种的序列提交Gen Bank,获得序列号(KT984242~KT984249);3不同沙漠土壤样品微生物群落有相似性,但也有较明显的差异,其差异与土壤理化因子等因素有关:如土壤含水量与酸杆菌和变形菌的分布相关;相对于空地,梭梭和柽柳群落土壤独有的迷踪菌门(Elusimicrobia)与固氮菌密切相关;梭梭的土壤环境p H明显高于柽柳土壤环境这决定了它们不同的优势种;土壤微生物生物量碳的大小不能反映微生物量的种类多少,但可以反映微生物数量的多少。  相似文献   

5.
根际土壤中微生物DNA的有效提取是土壤微生物变性梯度凝胶电泳(DGGE)分析的基础.研究对比了十二烷基硫酸钠(SDS)高盐抽提法、十六烷基三甲基溴化铵(CTAB)法和预洗处理的聚乙烯吡咯烷酮(PVP)法3种DNA提取方法对4个栽培地块草莓(Fragaria ananassa Duch.)根际土壤微生物总DNA提取的效果.结果表明,SDS高盐抽提法和预洗处理的PVP法从不同土样中提取的微生物总DNA片段长度大于23 kb,DNA均量分别达到32.94和43.06 靏/g;其中预洗处理的PVP法提取DNA的A260/A280和A260/A230比值平均为1.1623和0.8135,比SDS高盐抽提法(1.1238和0.5901)分别高出0.0385和0.2234,对土壤样品中蛋白质和腐植酸的去除效果较好;CTAB法提取的总DNA非常少.纯化后的DNA,分别采用细菌F341/R534和真菌FR1/FF390引物进行PCR扩增,成功获得细菌16S rDNAV3区和真菌18S rDNA目的片段,对其PCR扩增产物进行DGGE分析,4个土壤样品均得到清晰的DGGE图谱.草莓根际土壤微生物DGGE分析中DNA模板制备采用预洗处理的PVP法和SDS高盐抽提法均可成功获得,预洗处理的PVP法效果最好,而CTAB法制备效果较差.  相似文献   

6.
一种土壤微生物总DNA的高效提取方法   总被引:21,自引:0,他引:21  
黄婷婷  曹慧  王兴祥  崔中利 《土壤》2004,36(6):662-666
获得高浓度、大片段、多样性程度高的土壤微生物总DNA 是研究土壤微生物群落结构的分子生态学基础。本文采用间接法(菌体细胞回收法)提取红壤地区两种土壤类型的土壤微生物总DNA,定量计算其回收率,并与直接法(细胞原位裂解法)比较了提取效率和纯度。结果表明:红壤地区2种土壤每克干土的总DNA提取量,间接法约为0.34和0.53礸/g干土,直接法约为13.62和24.32礸/g干土;间接法的提取效率低于直接法,但所得DNA片段较大,且Sau 3AⅠ 酶切和16 S rDNA通用引物PCR扩增结果显示,间接法比直接法更能有效地去除土壤中的某些抑制剂,所得总DNA的纯度更高,有利于后续操作。  相似文献   

7.
氨氧化细菌是参与土壤氮素循环的重要微生物类群之一,其基因组DNA提取质量的准确分析,可直接影响后续分子实验的可行性和精确性。本试验针对3株异养氨氧化细菌的纯培养菌株,应用琼脂糖凝胶电泳、微量紫外分光光度计和Qubit荧光计分别检测不同提取方法获得的基因组DNA的浓度,同时结合细菌通用引物扩增16S r DNA全长来判定提取DNA的质量,进而筛选出可用于检测可培养氨氧化细菌基因组DNA浓度的方法。研究结果表明,针对不同浓度的DNA样品,尽管3种检测方法获得的结果表现出明显差异,但在16S r DNA-PCR中均仍能获得良好的扩增结果。与微量紫外分光光度法相比,Qubit方法对基因组DNA浓度的检测结果更为精确,特别在低浓度DNA检测中,能够较真实的反映基因组DNA的实际情况。  相似文献   

8.
比较分析中国东部不同季风气候区中海伦黑土(HL)、封丘潮土(FQ)和鹰潭红壤(YT)3种土壤氨氧化细菌amoA基因多样性。采用非培养方法直接从土壤中提取微生物总DNA,用氨氧化细菌amoA基因特异引物扩增总DNA,构建了3种土壤amoA基因文库,并对文库进行限制性长度多态性(RFLP)分析。HL、FQ和YT的amoA基因文库克隆数量分别为49、50和48个,相应的RFLP类型数为10、10和14个OTUs,其中有4个OTUs为三种土壤共有;YT中氨氧化细菌amoA基因多样性指数最高,FQ最低;HL和FQ群落的相似为70%,HL与YT的相似度为50%,而FQ和YT之间仅为42%,说明氨氧化细菌具有地理分布的规律:17个amoA基因序列可以被聚成6个cluster,分属Nitrosospira和Nitrosomonas两个属。三种农田土壤中均存在丰富的氨氧化细菌,表明氨氧化细菌在农田土壤氮素循环中具有重要作用。  相似文献   

9.
土壤微生物总DNA提取方法的比较   总被引:26,自引:0,他引:26  
采用4种土壤DNA提取方法提取了5种类型土壤的微生物总DNA,并对4种提取方法的DNA提取效果进行综合分析,进一步通过PCR—DGGE扩增提取DNA中的细菌16S rDNA片段,并对扩增产物进行DGGE电泳分析。结果表明,SDS-高盐缓冲液法抽提的DNA得率最高,SDS-酚氯仿抽提法的DNA得率最低。DNA的纯度,以BIO-101 DNA Extraction Kit试剂盒法最高,改进试剂盒法纯度最低。通过PCR-DGGE分析土壤微生物多样性结果表明,BIO-101 DNA Extraction Kit试剂盒法提取的DNA代表的微生物多样性最全,而SDS酚氯仿法抽提的DNA代表性最差。  相似文献   

10.
猪粪施于土壤可能会对土壤微生物多样性造成影响,为选用同一种DNA提取方法用于土壤和猪粪微生物DNA的提取,该文采用了化学裂解法和试剂盒法同时从土壤和猪粪样品中提取微生物DNA,并对这两种方法的提取DNA的效果进行了比较。结果表明,试剂盒法不能用于提取土壤中的微生物DNA;可以从猪粪中提取到DNA,PCR扩增能得到目的产物,但重复性不高。化学裂解法提取的土壤微生物DNA浓度高但纯度低,纯化后纯度增加,但DNA有所损失,用于PCR扩增时结果不理想;处理猪粪样品,提取的DNA浓度较低但纯度较高,PCR扩增结果比较理想。由此可见,化学裂解法用来提取猪粪样品中的微生物DNA是可行的,但需寻求更好的土壤样品微生物DNA的提取方法。  相似文献   

11.
Since Mycobacterium chlorophenolicum strain PCP-1 is not detectable in soil by selective plating, a specific tracking method was based on the polymerase chain reaction (PCR) using soil DNA as a target. A direct extraction protocol based on bead beating was adapted and used to obtain PCR-amplifiable DNA from five different soils. In one soil, the disruption of cells of PCP-1, of Pseudomonas fluorescens R2f and of Paenibacillus azotofixans P3L5, as well as of the indigenous bacteria increased with increasing bead beating times. After 4.5 min, lysis efficiency was about 90% or more in all cases. Total DNA yields varied between soils, from 2 to 35 μg g–1. The purification steps needed to obtain amplifiable DNA were different per soil. To detect target DNA specifically in bacterial cells, a new indirect extraction protocol was developed, which efficiently dislodged bacterial cells from the soil matrix, and produced amplifiable DNA with high yield. To detect strain PCP-1 in soil, 16S ribosomal gene-based PCR combined with oligonucleotide hybridization was applied using a most-probable-number (MPN) set-up, whereas immunofluorescence was used for calibration. Strain PCP-1 was detected shortly after introduction into three soils at about the inoculum levels, as evidenced by both approaches. Both the direct and indirect DNA extraction methods yielded similar MPN estimates. The dynamics of M. chlorophenolicum PCP-1 was estimated in two soils over 14 days via MPN-PCR/oligonucleotide probing. PCP-1 showed good survival in both soils, and results obtained by MPN-PCR with directly and indirectly extracted DNA were internally consistent. Immunofluorescence cell enumerations supported the gross stability of PCP-1 in these two as well as in two additional soils. Received: 8 February 1996  相似文献   

12.
 We used polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) to compare bacterial community patterns obtained with target DNA extracted from a soil by direct and indirect methods. For this purpose, two direct extraction methods, i.e. cell lysis by bead beating and cell disruption by grinding in liquid N, and two indirect methods, i.e. cell extraction followed by DNA extraction, and combined RNA/DNA extraction from the bacterial cell fraction, were performed. Crude extracts were purified and amplified using universal bacterial primers. PCR products were then analysed by DGGE, and similarity between the profiles obtained was determined by unweighted pair group with mathematical averages clustering. The results showed clear profiles that presumably represented the dominant bacterial fractions in the samples. The profiles generated by all four methods were similar, indicating that the methods were of approximately equal efficiency in the extraction of target DNA representative of the soil bacterial community. However, the patterns of clustering also indicated that different populations of bacteria could be detected in the same soil using different soil DNA extraction methods. The application of two dilution levels of DNA in PCR-DGGE showed that the most stable profile of the soil bacterial community could be generated by the direct methods. The indirect methods gave clustered profiles at both dilution levels. It is likely that these methods extracted DNA from a major, easily desorbed, bacterial fraction, consisting of low-density populations. PCR-DGGE was found to be a suitable technique with which to assess differences in methods for DNA extraction from soil, which can be further used for the determination of microbial community diversity at the molecular level. Received: 22 June 1999  相似文献   

13.
Plant residues are often used as soil amendments in laboratory experiments, but they can reportedly release compounds interfering with soil DNA extraction and subsequent molecular biological analyses. Theoretically, for accurate comparison of microbial community composition in soils with and without added plant residues after a period of incubation, no significant difference at the beginning of the experiment is required between the amended and unamended control soils. We mixed plant residue into soil and immediately (within 10 min) commenced DNA extraction, and then performed 16S rRNA gene sequencing and quantitative PCR (qPCR) to determine bacterial community composition and abundance. Soil without plant residue addition served as a control. Five commonly used DNA extraction kits, 16S rRNA gene primer pairs, and soils, and two types (rice straw and alfalfa shoots) and three addition rates (2%, 4%, and 6%; w/w) of plant residue, were tested. In all cases, we found no significant difference in measured bacterial community composition or abundance between the treatments with and without added plant residue.  相似文献   

14.
Tuber melanosporum Vitt., Tuber magnatum Pico, and Tuber uncinatum Chat. can be differentiated by their morphological characters. Fraud problems have arisen recently with the importation to Europe of truffles from China. T. melanosporum is morphologically very close, but distinct from the Chinese species [Tuber indicum (Cooke and Massee) and T. himalayense BC (Zhang and Winter)]. We have optimized molecular tools to unequivocally identify T. melanosporum. DNA extraction from ascocarps of black truffles is not straightforward. Problems to obtain pure DNA are due to high contents of phenolic compounds, melanine, and various polymers (proteins, polysaccharides, etc). These compounds coprecipitate with the DNA during extraction and strongly inhibit the PCR reaction. We have developed an efficient and reliable protocol for DNA extraction from truffle ascocarps. It was used successfully for DNA extraction from mycorrhizal root tips as well as from canned preparations of T. melanosporum. Several approaches to identify T. melanosporum by PCR were developed. Two specific primers for T. melanosporum were designed after comparison of the ITS region of this species with those of three Chinese fungi. They proved to be efficient to specifically detect the presence of T. melanosporum by PCR. The mycorrhizal status of trees inoculated with T. melanosporum but unable to produce truffles was confirmed in a single-step PCR reaction. A multiplex PCR approach was also developed with three sets of primers (including a specific one for Chinese truffles) to detect, in one PCR reaction, the presence of any other Tuber species mixed with T. melanosporum ascocarps. This optimized protocol, in association with the specific primers we designed, is applicable to quality control in the truffle industry from the production stages to final commercial products.  相似文献   

15.
A comparative analysis of five methods of extraction and purification of soil DNA, including a modification of the authors, was performed for the further molecular investigation of various ammonium-oxidizing bacteria and archaea in soils. Experiments using soil samples from natural ecosystems and agroecosystems of the European area of Russia established that the amount of DNA extracted by different methods depended significantly on the type of soil. The subsequent molecular analysis (PCR-DGGE) of ribosomal (16S rRNA) and functional (amoA) genes demonstrated significant differences in the community structure of ammonium oxidizers depending on the method of DNA extraction. The best results were obtained for acidic soil (soddy-podzolic and gray forest soils) when using the method of Griffiths et al. [4] with our own modification. On the other hand, application of commercial DNA extraction kits was most efficient for soils with a high content of humus (black and chestnut soils). According to the results obtained, molecular analysis of soil microbe communities required selection of optimum conditions for DNA extraction, especially for soils with high contents of organic compounds and clay minerals at different pH levels.  相似文献   

16.
Dried soil samples from many sources have been stored in archives world-wide over the years, but there has been little research on their value for studying microbial populations. Samples collected since 1843 from the Broadbalk field experiment on crop nutrition at Rothamsted have been used to document changes in the structure and composition of soils as agricultural practices evolve, also offering an invaluable record of environmental changes from the pre- to post-industrial era in the UK. To date, the microbial communities of these soils have not been studied, in part due to the well-documented drop in bacterial culturability in dried soils. However, modern molecular methods based on PCR amplification of DNA extracted directly from soil do not require bacterial cells to be viable or intact and may allow investigations into the legacy of bacteria that were present at the time of sample collection.

In a preliminary study, to establish if dried soils can provide a historical record of bacterial communities, samples from the Broadbalk soil archive dating back to 1868 were investigated and plots treated with either farmyard manure (FYM) or inorganic fertilizer (NPK) were compared. As anticipated, the processes of air-drying and milling greatly reduced bacterial viability whilst DNA yields declined less and may be preserved by desiccation. A higher proportion of culturable bacteria survived the archiving process in the FYM soil, possibly protected by the increased soil organic matter. The majority of surviving bacteria were firmicutes, whether collected in 2003 or in 1914, but a wide range of genera was detected in DNA extracted from the samples using PCR and DGGE of 16S rRNA genes. Analysis of DGGE band profiles indicated that the two plots maintained divergent populations. Sequence analysis of bands excised from DGGE gels, from a sample collected in 1914, revealed DNA from - and β-proteobacteria as well as firmicutes. PCR using primers specific for ammonia oxidizing bacteria showed similar band profiles across the two treatments in recently collected samples, however older samples from the NPK plot showed greater divergence. Primers specific for the genus Pseudomonas were designed and used in real-time quantitative PCR to indicate that archived soil collected in 1868 contained 10-fold less pseudomonad DNA than fresh soil, representing around 105 genomes g−1 soil. Prior to milling, dramatically less pseudomonad DNA was extracted from recently collected air-dried soil from the NPK compared to the FYM plot; otherwise, the two plots followed similar trends. Overall bacterial abundance, diversity and survival during the archiving process differed in the two soils, possibly due to differences in clay and soil organic matter content. Nevertheless, the results demonstrate that air-dried soils can protect microbial DNA for more than 150 years and offer an invaluable resource for future research.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号