首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Because of its high content of polyphenolic compounds, the dietary inclusion of grape pomace (GP) in ruminant diets can reduce reactive nitrogen (N) and methane emissions and enhance the shelf life and beneficial fatty acids (FAs) content of meat. However, the dietary inclusion of GP beyond a threshold that is still to be determined for feedlot cattle can also compromise nutrient supply and, thus, growth performance. This study investigated the optimum proportion of GP in finishing cattle diets. Nutrient intake and apparent total tract digestion, ruminal pH and fermentation, estimated microbial protein synthesis, route of N excretion, and blood metabolites were measured. Six ruminally fistulated crossbred beef heifers (mean initial body weight ± SD: 714 ± 50.7 kg) were used in a replicated 3 × 3 Latin square with 21-d periods. Dietary treatments were 0%, 15%, and 30% of dietary dry matter (DM) as GP, with diets containing 84%, 69%, and 54% dry-rolled barley grain, respectively. There was a linear increase (P = 0.07) in DM intake and quadratic change (P ≤ 0.01) in neutral detergent fiber (NDF) intake. There was a quadratic change (P ≤ 0.04) in apparent total tract DM, NDF, and crude protein digestibility as dietary GP content increased. However, there were no treatment effects (P ≥ 0.18) on total ruminal short-chain FA concentration and duration and area pH < 6.2, 5.8, and 5.5. Although N intake did not differ (269, 262, 253 g/d; P = 0.33) across dietary treatments, feeding GP led to a tendency for a quadratic change (P ≤ 0.07) in ruminal ammonia-N and plasma urea-N concentrations. Total N excretion also changed (quadratic, P = 0.03) because of changes (quadratic, P = 0.02) in fecal N excretion as urinary excretion of N and urea-N did not differ (P ≥ 0.15) across treatments. Feeding GP led to quadratic changes (P ≤ 0.01) in fecal excretion of fiber-bound N. Microbial N flow and apparent N retention also changed (quadratic, P ≤ 0.04) as dietary GP proportion increased. In conclusion, responses to dietary GP proportion were mostly quadratic with indications that nutrient supply as reflected by changes in apparent total tract nutrient digestibility, microbial N supply, and apparent N retention could be compromised beyond a 15% dietary inclusion level.  相似文献   

2.
The individual and combined effects of 3-nitrooxypropanol (3-NOP) and canola oil (OIL) supplementation on enteric methane (CH4) and hydrogen (H2) emissions, rumen fermentation and biohydrogenation, and total tract nutrient digestibility were investigated in beef cattle. Eight beef heifers (mean body weight ± SD, 732 ± 43 kg) with ruminal fistulas were used in a replicated 4 × 4 Latin square with a 2 (with and without 3-NOP) × 2 (with and without OIL) arrangement of treatments and 28-d periods (13 d adaption and 15 d measurements). The four treatments were: control (no 3-NOP, no OIL), 3-NOP (200 mg/kg dry matter [DM]), OIL (50 g/kg DM), and 3-NOP (200 mg/kg DM) plus OIL (50 g/kg DM). Animals were fed restrictively (7.6 kg DM/d) a basal diet of 900 g/kg DM barley silage and 100 g/kg DM supplement. 3-NOP and OIL decreased (P < 0.01) CH4 yield (g/kg DM intake) by 31.6% and 27.4%, respectively, with no 3-NOP × OIL interaction (P = 0.85). Feeding 3-NOP plus OIL decreased CH4 yield by 51% compared with control. There was a 3-NOP × OIL interaction (P = 0.02) for H2 yield (g/kg DM intake); the increase in H2 yield (P < 0.01) due to 3-NOP was less when it was combined with OIL. There were 3-NOP × OIL interactions for molar percentages of acetate and propionate (P < 0.01); individually, 3-NOP and OIL decreased acetate and increased propionate percentages with no further effect when supplemented together. 3-NOP slightly increased crude protein (P = 0.02) and starch (P = 0.01) digestibilities, while OIL decreased the digestibilities of DM (P < 0.01) and neutral detergent fiber (P < 0.01) with no interactions (P = 0.15 and 0.10, respectively). 3-NOP and OIL increased (P = 0.04 and P < 0.01, respectively) saturated fatty acid concentration in rumen fluid, with no interaction effect. Interactions for ruminal trans-monounsaturated fatty acids (t-MUFA) concentration and percentage were observed (P = 0.02 and P < 0.01); 3-NOP had no effect on t-MUFA concentration and percentage, while OIL increased the concentration (P < 0.01) and percentage (P < 0.01) of t-MUFA but to a lesser extent when combined with 3-NOP. In conclusion, the CH4-mitigating effects of 3-NOP and OIL were independent and incremental. Supplementing ruminant diets with a combination of 3-NOP and OIL may help mitigate CH4 emissions, but the decrease in total tract digestibility due to OIL may decrease animal performance and needs further investigation.  相似文献   

3.
Twelve Angus steers (BW 452.8 ± 6.1 kg) fitted with ruminal cannulae were used to determine the impact of trace mineral (TM) source on digestibility, ruminal volatile fatty acid (VFA) composition, ruminal soluble concentrations of Cu, Zn, and Mn, and relative binding strength of trace minerals located in the rumen insoluble digesta fraction. Steers were fed a medium-quality grass hay diet (DM basis: 10.8% CP, 63.1% neutral detergent fiber [NDF], 6.9 mg Cu/kg, 65.5 mg Mn/kg, and 39.4 mg Zn/kg) supplemented with protein for 21 d. Treatments consisted of either sulfate (STM) or hydroxy (HTM) sources (n = 6 steers/treatment) to provide 20, 40, and 60 mg supplemental Cu, Mn, and Zn/kg DM, respectively. Following a 21-d adaptation period, total fecal output was collected for 5 d. Dry matter (P < 0.07) and CP (P < 0.06) digestibility tended to be reduced, and NDF (P < 0.04) and acid detergent fiber (ADF) (P < 0.05) digestibility were reduced in STM- vs. HTM-supplemented steers. On day 6, ruminal fluid was collected at 0, 2, and 4 h post-feeding and analyzed for VFA. There were no treatment x time interactions for VFA. Steers receiving HTM had less (P < 0.02) molar proportions of butyric acid and greater (P < 0.05) total VFA concentrations than STM-supplemented steers. Steers were then fed the same diet without supplemental Cu, Zn, or Mn for 14 d. On day 15 steers received a pulse dose of 20 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either STM or HTM (n = 6 steers/treatment). Ruminal samples were obtained at 2-h intervals starting at −4 and ending at 24 h relative to dosing. There was a treatment x time interaction (P < 0.03) for ruminal soluble Cu, Mn, and Zn concentrations. Ruminal soluble mineral concentrations were greater (P < 0.05) for Cu at 4, 6, 8, 10, 12, and 14 h; for Mn at 4 and 6 h; and for Zn at 4, 6, and 8 h post-dosing in STM compared with HTM-supplemented steers. Copper concentrations were greater (P < 0.05) at 12 and 24 h and Zn concentrations in ruminal solid digesta were greater at 24 h in HTM-supplemented steers. Upon dialysis against Tris-EDTA, the percent Zn released from digesta was greater (P < 0.05) at 12 h (P < 0.03) and 24 h (P < 0.05), and the percent Cu released was greater (P < 0.02) at 24 h post-dosing in HTM steers when compared with STM-supplemented steers. Results indicate that Cu and Zn from HTM have low solubility in the rumen and appear to be less tightly bound to ruminal solid digesta than Cu and Zn from STM. The lower ruminal soluble concentrations of Cu and Zn in steers given HTM were associated with greater fiber digestibility.  相似文献   

4.
This experiment evaluated the influence of protein supplementation frequency (SF) and amount offered on intake, nutrient digestibility, and ruminal fermentation by rumen-fistulated beef steers consuming low-quality [2.9% crude protein (CP); dry matter (DM) basis], cool-season forage. Seven Angus × Hereford steers (300 ± 27 kg) fitted with ruminal cannulas were randomly assigned to 1 of 7 treatments in an incomplete 7 × 4 Latin square. Treatments, in a 2 × 3 factorial design plus a non-supplemented control (CON), consisted of 2 levels of supplemental soybean meal, 100% (F) or 50% (H) of the estimated rumen-degradable protein requirement, provided daily (D), once every 5 d (5D), or once every 10 d (10D). Experimental periods were 30 d and dry matter intake (DMI) was measured from days 19 to 28. On days 21 (all supplements provided) and 30 (only daily supplements provided; day immediately prior to supplementation for 5D and 10D treatments) ruminal fluid was collected for ruminal pH, ammonia-N (NH3), volatile fatty acids (VFA), and determination of ruminal fermentation variables. Forage and total DM, organic matter (OM), and nitrogen (N) intake increased with supplementation (P ≤ 0.04). However, a linear effect of SF × amount of supplement interaction was observed for forage and total DM, OM, and N intake (P ≤ 0.04), with each variable decreasing as SF decreased, but the decrease being greater with F vs. H. Apparent total tract DM, OM, and neutral detergent fiber digestibility was not affected by supplementation or amount of supplement provided (P ≥ 0.10). In contrast, N digestibility increased with supplementation and for F vs. H (P < 0.01). Digestibility of DM, OM, and N increased linearly as SF decreased (P ≤ 0.03). When all supplements were provided, ruminal NH3, total VFA, and molar proportions of all individual VFA increased with supplementation (P ≤ 0.04), whereas acetate:propionate ratio decreased (P < 0.01). When only daily supplements were provided, none of the aforementioned fermentation parameters were affected (P ≥ 0.09). In summary, reducing the amount of supplemental CP provided to ruminants consuming low-quality forages, when supplementation intervals are >5 d, can be a management tool to maintain acceptable levels of DMI, nutrient digestibility, and ruminal fermentation while reducing supplementation cost.  相似文献   

5.
The objective of this study was to evaluate the effects of substituting wheat dried distillers grains with solubles (DDGS) for barley grain and barley silage on intake, digestibility, and ruminal fermentation in feedlot beef cattle. Eight ruminally cannulated Angus heifers (initial BW 455 ± 10.8 kg) were assigned to a replicated 4 × 4 Latin square design with 4 treatments: control, low (25%), medium (30%), and high (35%) wheat DDGS (DM basis). The diets consisted of barley silage, barley concentrate, and wheat DDGS in ratios of 15:85:0 (CON), 10:65:25 (25DDGS), 5:65:30 (30DDGS), and 0:65:35 (35DDGS; DM basis), respectively. The diets were formulated such that wheat DDGS was substituted for both barley grain and barley silage to evaluate whether wheat DDGS can be fed as a source of both energy (grain) and fiber in feedlot finishing diets. Intakes (kg/d) of DM and OM were not different, whereas those of CP, NDF, ADF, and ether extract (EE) were greater (P < 0.01) and intake of starch was less (P < 0.01) for the 25DDGS compared with the CON diet. The digestibilities of CP, NDF, ADF, and EE in the total digestive tract were greater (P < 0.05) for 25DDGS vs. CON. Ruminal pH and total VFA concentrations were not different (P > 0.15) between 25DDGS and CON diets. Replacing barley silage with increasing amounts of wheat DDGS (i.e., from 25DDGS to 35DDGS) linearly reduced (P < 0.05) intakes of DM and other nutrients without altering (P=0.40) CP intake. In contrast, digestibilities of DM and other nutrients in the total digestive tract linearly increased (P < 0.05) with increasing wheat DDGS except for that of EE. Additionally, with increasing amounts of wheat DDGS, mean ruminal pH tended (P=0.10) to linearly decrease, and ruminal pH status decreased with longer (P=0.04) duration of pH <5.5 and <5.2, and greater (P=0.01) curve area under pH <5.8 and <5.5 without altering (P > 0.19) ruminal VFA and NH(3)-N concentrations. Results indicated that wheat DDGS can be effectively used to replace both barley grain and silage at a moderate amount to meet energy and fiber requirements of finishing cattle. However, when silage content of the diet is low (<10%), wheat DDGS is not an effective fiber source, so replacing forage fiber with wheat DDGS in finishing diets decreases overall ruminal pH status even though the rapidly fermentable starch content of the diet is considerably reduced.  相似文献   

6.
Effects of dried distillers grains plus solubles (DDGS) on ruminal fermentation, degradation kinetics, and feeding behavior of steers offered annual (Eragrostis tef; TEFF) or perennial (Bothriochloa bladhii; OWB) grass hay were evaluated. Ruminally cannulated Angus crossbred steers (n = 6; body weight [BW] = 304 ± 11 kg) were assigned to a 4 × 6 unbalanced Latin square design with four treatments arranged as a 2 × 2 factorial: hay type (OWB or TEFF) and DDGS supplementation (0% or 0.5% BW [dry matter {DM} basis]). Steers had ad libitum access to hay. Periods consisted of a 14-d adaptation followed by 7 d of collection. Residues from the in situ incubations (0, 3, 6, 12, 24, 36, 48, 72, and 96 h post-feeding) were fitted to a first-order kinetics model using the NLIN procedure of SAS. The DDGS decreased (P < 0.01) TEFF DM intake (DMI) by 11.3%, while not affecting DMI of OWB. The greatest DMI was observed for steers supplemented with DDGS, regardless of forage, and least in steers consuming OWB without DDGS (hay type × DDGS; P = 0.03). Non-supplemented steers spent more (P < 0.01) time eating hay. Digestibility of DM tended (P = 0.06) to increase with DDGS supplementation. A hay type × DDGS interaction was observed (P ≤ 0.05) on ruminal effective degradable fractions. The rate of degradation, soluble fraction, and the potentially degradable fraction of organic matter (OM), neutral detergent fiber, and acid detergent fiber (ADF) increased (P ≤ 0.05), while the undegradable fraction of all components decreased (P ≤ 0.01) when steers were offered TEFF compared to OWB. Ruminal DM, OM, and ADF degradation lag-time increased (P ≤ 0.02) in steers offered OWB. Ruminal degradation kinetics were not (P ≥ 0.17) independently affected by DDGS supplementation. Average ruminal pH of steers offered TEFF (P < 0.01) and those offered DDGS (P < 0.01) were lower than OWB and non-supplemented steers. Total concentration of VFA tended (P = 0.09) to increase when DDGS was provided with OWB, while decreasing when TEFF was offered. The acetate:propionate increased (P < 0.01) with DDGS supplementation due to a decrease (P = 0.03) in propionate. Ruminal NH3-N was greater (P = 0.03) in steers offered TEFF compared to OWB, and those supplemented with DDGS (P = 0.03). An annual, in place of a conventional, perennial hay improved intake and digestion of nutrients, without affecting feeding behavior. The supplementation with DDGS appears to affect forage intake, ruminal degradation, and feeding behavior, although not independent of forage quality.  相似文献   

7.
The objective of this study was to determine the influence of biochar obtained from exothermic production of lodgepole pine (Pinus contorta) and quaking aspen (Populus tremuloides) on sheep performance and diet digestibility and on preference for a ration enriched with this carbon-based material. Twenty-four lambs were housed in individual pens and assigned to one of three treatment groups (eight animals per group), where they received: 1) a 60:40 ration of alfalfa:barley (Control), 2) an isoenergetic and isonitrogenous ration with alfalfa, barley, and 2% biochar (BC), and 3) a simultaneous offer of the Control and BC rations (Choice). Lambs were exposed to two consecutive feeding periods (Period 1: 13 d and Period 2: 21 d), representing time intervals where the evolution of intake, animal performance, and rumen parameters were assessed; in vivo digestibility was determined during the last 5 d of the study. Ration intake did not differ among groups of lambs (P > 0.10), although during some days in Period 2, intake was greater for the BC and Choice groups than for the Control group (P < 0.05). Lambs in Choice had a lower preference for BC than for the Control ration (Period 1: P < 0.05; Period 2: P < 0.10), although they incorporated a substantial amount of BC (39 and 40%, for Periods 1 and 2, respectively) into their diets. No differences in body weight gains (ADG) or gain-to-feed ratios were found among groups of animals (P > 0.10), although dry matter digestibility and digestible dry matter intake was greater for lambs in the BC group than for lambs in Control group (P < 0.05). The ruminal concentration of the volatile acid acetate in Period 2 was greater for BC than for Choice (P < 0.05). During the same period, the concentration of valerate and ruminal pH values were greater in BC than in Control (P < 0.05). Thus, the addition of biochar to grain-based diets enhanced diet digestibility and influenced some ruminal parameters in lambs. Nevertheless, these positive effects were not reflected in significant improvements on ADG or feed conversion efficiencies. Lambs offered choices between Control and BC rations formed a diet with concentrations of biochar of ~1.2%, suggesting that these animals would tolerate such levels without reductions in ration palatability.  相似文献   

8.
Residual expressions of enteric emissions favor a more equitable identification of an animal’s methanogenic potential compared with traditional measures of enteric emissions. The objective of this study was to investigate the effect of divergently ranking beef cattle for residual methane emissions (RME) on animal productivity, enteric emissions, and rumen fermentation. Dry matter intake (DMI), growth, feed efficiency, carcass output, and enteric emissions (GreenFeed emissions monitoring system) were recorded on 294 crossbred beef cattle (steers = 135 and heifers = 159; mean age 441 d (SD = 49); initial body weight (BW) of 476 kg (SD = 67)) at the Irish national beef cattle performance test center. Animals were offered a total mixed ration (77% concentrate and 23% forage; 12.6 MJ ME/kg of DM and 12% CP) ad libitum with emissions estimated for 21 d over a mean feed intake measurement period of 91 d. Animals had a mean daily methane emissions (DME) of 229.18 g/d (SD = 45.96), methane yield (MY) of 22.07 g/kg of DMI (SD = 4.06), methane intensity (MI) 0.70 g/kg of carcass weight (SD = 0.15), and RME 0.00 g/d (SD = 0.34). RME was computed as the residuals from a multiple regression model regressing DME on DMI and BW (R2 = 0.45). Animals were ranked into three groups namely high RME (>0.5 SD above the mean), medium RME (±0.5 SD above/below the mean), and low RME (>0.5 SD below the mean). Low RME animals produced 17.6% and 30.4% less (P < 0.05) DME compared with medium and high RME animals, respectively. A ~30% reduction in MY and MI was detected in low versus high RME animals. Positive correlations were apparent among all methane traits with RME most highly associated with (r = 0.86) DME. MY and MI were correlated (P < 0.05) with DMI, growth, feed efficiency, and carcass output. High RME had lower (P < 0.05) ruminal propionate compared with low RME animals and increased (P < 0.05) butyrate compared with medium and low RME animals. Propionate was negatively associated (P < 0.05) with all methane traits. Greater acetate:propionate ratio was associated with higher RME (r = 0.18; P < 0.05). Under the ad libitum feeding regime deployed here, RME was the best predictor of DME and only methane trait independent of animal productivity. Ranking animals on RME presents the opportunity to exploit interanimal variation in enteric emissions as well as providing a more equitable index of the methanogenic potential of an animal on which to investigate the underlying biological regulatory mechanisms.  相似文献   

9.
This study was carried out aiming to evaluate the effects of yeast or monensin supplementation on dry matter intake, nutrients digestibility, ruminal volatile fatty acids profile, ruminal pH and ammonia concentration, microbial protein synthesis, and the balance of nitrogen compounds of cattle fed high concentrate diet (80 % dry matter (DM) basis) with two different levels of starch. Eight crossbred beef steers fitted with rumen cannula were assigned to two simultaneous 4?×?4 Latin squares arranged in a 4?×?2 factorial design. Two different starch levels (23 and 38 % of DM) were assigned to each Latin square, independently. Within each Latin square, four treatments were randomly assigned to the experimental animals (control; monensin; 1-g yeast [1 g/100 kg body weight (BW)/day] treatment; and 2.5-g yeast [2.5 g/100 kg BW/day] treatment). Feed additives did not influence ruminal pH (P?>?0.05). Total ruminal volatile fatty acids (VFA) concentration was greater (P?<?0.05) in the diet with the lowest starch level. Similarly, monensin and 1-g yeast treatments resulted in greater (P?<?0.05) VFA concentration in the rumen. Monensin inclusion in the diet with the highest starch level led to a decrease (P?<?0.05) in lactate concentration in the rumen. However, acetate levels were increased (P?<?0.05) by the inclusion of 1 g of yeast in the diet with lowest starch level. Ruminal concentrations of propionate and butyrate, and ammonia-N were not influenced (P?>?0.05) by none of the additives evaluated. However, propionate concentration was greater (P?<?0.05) in the low-starch diets. Low-starch diets resulted in lower ruminal ammonia-N concentration and greater neutral detergent fiber digestibility (P?<?0.05). The excretion of urinary nitrogenous compounds, purine derivatives, synthesis of microbial protein, microbial efficiency, and balance of nitrogenous compounds were not affected by treatments evaluated (P?>?0.05). Monensin or yeast inclusion in high concentrate beef cattle diets in tropical regions as in Brazil is not justified by do not alter nutrient digestibility, nitrogen balance, and main ruminal parameters.  相似文献   

10.
The objective of this study was to examine the conservation process and feed value of total mixed ration (TMR) silages. In exp. 1, we evaluated the fermentation pattern and aerobic stability of TMR silages containing different protein and lipid supplementations. In exp. 2, we compared the performance of finishing beef heifers fed those TMR silages. In both experiments, treatments were as follows: ensiled TMR with urea (U); ensiled TMR without a protein supplement at ensiling, but soybean meal supplemented at feeding to balance diet crude protein (CP) in exp. 2 (SMnf; where the acronym nf indicates nonfermented); ensiled TMR with soybean meal (SM); and ensiled TMR with rolled soybean grain (SG). Thirty-two Nellore heifers (313 ± 8.8 kg shrunk body weight [SBW]) were blocked by initial SBW, housed in individual pens, and enrolled in exp. 2 for 82 d. In exp. 1, treatment without a protein supplement (SMnf) had a lower content of CP, soluble CP, NH3-N, pH, and Clostridium count compared with U (P ≤ 0.03). Lactic acid concentrations tended to be reduced for SMnf compared with U (P = 0.09). Ethanol concentration was reduced in SG compared with SM (P < 0.01). 1,2-Propanediol concentration was increased in SMnf compared with U (P < 0.01), reduced in SM compared with SMnf (P = 0.02), and increased in SG compared with SM (P = 0.02). Dry matter (DM) loss during fermentation was low and similar among treatments (~3.7%). All silages remained stable during 10 d of aerobic exposure after feed out. Considering fermentation traits, such as pH (≤4.72), NH3-N (<10% of N, except for U treatment), butyric acid (<0.05 % DM), and DM losses (<3.70% DM), all silages can be considered well conserved. In exp. 2, diets were isonitrogenous because soybean meal was added to SMnf before feeding. Compared with SM, cattle fed SG made more meals per day (P = 0.04) and tended to have a decreased intermeal interval (P = 0.09). DM intake, average daily gain, final SBW, hot carcass weight, Biceps femoris fat thickness, and serum levels of triglycerides and cholesterol were increased for SG compared with SM (P ≤ 0.05). In brief, TMR silages exhibited an adequate fermentation pattern and high aerobic stability. The supplementation of true protein did not improve animal performance, whereas the addition of soybean grain as a lipid source improved the performance of finishing cattle fed TMR silages.  相似文献   

11.
The addition of natural plant secondary compounds to ruminant feed has been extensively studied because of their ability to modify digestive and metabolic functions, resulting in a potential reduction in greenhouse gas emissions, among other benefits. Condensed tannin (CT) supplementation may alter ruminal fermentation and mitigate methane (CH4) emissions. This study’s objective was to determine the effect of quebracho CT extract [QT; Schinopsis quebracho-colorado (Schltdl.) F.A. Barkley & T. Meyer] within a roughage-based diet on ruminal digestibility and kinetic parameters by using the in situ and in vitro gas production techniques, in addition to blood urea nitrogen (BUN) and ruminal (volatile fatty acid [VFA], NH3-N, and protozoa count) parameters. Twenty rumen-cannulated steers were randomly assigned to four dietary treatments: QT at 0%, 1%, 2%, and 3% of dry matter (DM; QT0: 0% CT, QT1: 0.70% CT, QT2: 1.41% CT, and QT3: 2.13% CT). The in situ DM digestibility increased linearly (P = 0.048) as QT inclusion increased, whereas in situ neutral detergent fiber digestibility (NDFD) was not altered among treatments (P = 0.980). Neither total VFA concentration nor acetate-to-propionate ratio differed among dietary treatments (P = 0.470 and P = 0.873, respectively). However, QT3 had lower isovalerate and isobutyrate concentrations compared with QT0 (P ≤ 0.025). Ruminal NH3 and BUN tended to decline (P ≤ 0.075) in a linear fashion as QT inclusion increased, suggesting decreased deamination of feed protein. Ruminal protozoa count was reduced in quadratic fashion (P = 0.005) as QT inclusion increased, where QT1 and QT2 were lower compared with QT0 and QT3. Urinary N excretion tended to reduce in a linear fashion (P = 0.080) as QT increased. There was a treatment (TRT) × Day interaction for in vitro total gas production and fractional rate of gas production (P = 0.013 and P = 0.007, respectively), and in vitro NDFD tended to be greater for QT treatments compared with no QT inclusion (P = 0.077). There was a TRT × Day interaction (P = 0.001) on CH4 production, with QT3 having less CH4 production relative to QT0 on day 0 and QT2 on days 7 and 28. Feeding QT up to 3% of the dietary DM in a roughage-based diet did not sacrifice the overall DM digestibility and ruminal parameters over time. Still, it is unclear why QT2 did not follow the same pattern as in vitro gas parameters. Detailed evaluations of amino acid degradation might be required to fully define CT influences on ruminal fermentation parameters and CH4 production.  相似文献   

12.
The objective of this experiment was to investigate the relationship between residual feed intake (RFI) and parameters associated with reproductive efficiency in growing beef heifers. One hundred and seventy-nine replacement beef heifers (Bos taurus and Bos indicus-influenced) were enrolled in a retrospective cohort design. Heifers were assigned to a 70-d feed efficiency test, and results were utilized to retrospectively classify heifers into low (n = 51), medium (n = 66), or high (n = 62) RFI groups based on their individual RFI values. Blood samples were collected weekly throughout the feed efficiency test and breeding season, which were analyzed for plasma concentration of progesterone to determine age at puberty (PUB). By design, residual feed intake differed among RFI groups where high (1.21 ± 0.08 kg/d) had greater (P < 0.01) RFI than medium (0.00 ± 0.08 kg/d) and low RFI groups (–1.49 ± 0.09 kg/d), and medium had greater (P < 0.01) RFI than low RFI heifers. Yet, no differences were observed between breed types for RFI (P = 0.53). Average daily gain (ADG) differed between breed types where Bos taurus heifers had greater ADG (P = 0.02) than B. indicus-influenced heifers. Furthermore, ADG tended (P = 0.08) to differ among RFI groups, where medium RFI heifers tended to have reduced ADG compared with low and high RFI heifers. No differences were determined between breed types for gain-to-feed ratio (G:F; P = 0.20; however, G:F differed among RFI groups and was greater (P < 0.01) in low vs. high, and low vs. medium RFI heifers. The percentage of cycling heifers by the start of the breeding season differed (P = 0.03) by RFI group, where a greater percentage of low RFI heifers were cycling compared with high RFI heifers. A difference was determined on PUB between breed types (P = 0.03), where Bos taurus (393.40 ± 4.64 d) heifers had a reduced PUB compared with B. indicus-influenced (406.90 ± 5.07 d) heifers. In addition, PUB differed by RFI group where low (385.96 ± 6.20 d; P < 0.01) and medium (398.47 ± 5.47 d; P = 0.02) RFI heifers had a reduced PUB compared with High RFI heifers (416.03 ± 5.58 d). In conclusion, more feed efficient heifers attained PUB earlier than less feed efficient heifers. Therefore, selection of heifers for feed efficiency may positively impact reproductive performance of replacement beef heifers.  相似文献   

13.
Eighty continental crossbred beef heifers (414.9 ± 37.9 kg of BW), 16 of which were ruminally cannulated, were used in a 52-d experiment with a generalized randomized block design, to assess if self-selection of dietary ingredients modulates ruminal pH and improves rumen function of feedlot finishing cattle. Treatments were total mixed ration [TMR; 85% barley grain (BG), 10% corn silage (CS), 5% supplement]; or free-choice (self-selection; FC) diets of barley grain and corn silage (BGCS), barley grain and wheat distillers grain (BGDG), or corn silage and wheat distillers grain (CSDG). Heifers were housed in groups of 10 in 8 pens equipped with the GrowSafe System (Airdrie, AB, Canada) enabling feed intake and feeding behavior to be continuously monitored. Two cannulated heifers were randomly assigned to each pen and equipped with indwelling pH probes for continuous measurement of ruminal pH during 4 periods (d 1 to 4, d 7 to 14, d 21 to 28, and d 42 to 49). Rumen fluid samples were collected from cannulated heifers on d 7 and 42 before feed delivery, and on d 4 and 49 at 2 h post-feed delivery for determination of VFA. Heifers fed the TMR had shorter (P = 0.01) and smaller (P = 0.03) meals than those fed the FC diets. Cattle fed BGCS and BGDG increased (P < 0.01) intake of BG over time by up to 80 and 70%, respectively. Increased consumption of BG arose from an increase (P < 0.01) in eating rate over the same (P > 0.10) feeding time, which was accompanied by an increase (P < 0.05) in eating rate but a decrease (P < 0.05) in feeding time of either CS or DG. Even with increased BG consumption, ruminal pH and VFA profiles were not different (P > 0.10) among FC diets or compared with the TMR. Cattle fed FC CSDG consumed DG at 60% of dietary DM over the trial, resulting in greater (P < 0.05) mean ruminal pH and acetate-to-propionate ratio and less (P < 0.05) area under the curve than those given the other FC diets or the TMR. Finishing feedlot cattle fed FC diets containing BG self-regulate intake of diets that have a similar composition, intake level, and ruminal fermentation profile to those fed a TMR.  相似文献   

14.
Fermentation of cereal grains may degrade myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) thereby increasing nutrient digestibility. Effects of chemical acidification or fermentation with Limosilactobacillus (L.) reuteri with or without phytase of high β-glucan hull-less barley grain on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients and gross energy (GE), standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AAs), and standardized total tract digestibility (STTD) of P were assessed in growing pigs. Pigs were fed four mash barley-based diets balanced for water content: 1) unfermented barley (Control); 2) chemically acidified barley (ACD) with lactic acid and acidic acid (0.019 L/kg barley grain at a ratio of 4:1 [vol/vol]); 3) barley fermented with L. reuteri TMW 1.656 (Fermented without phytase); and 4) barley fermented with L. reuteri TMW 1.656 and phytase (Fermented with phytase; 500 FYT/kg barley grain). The acidification and fermentation treatments occurred for 24 h at 37 °C in a water bath. The four diets were fed to eight ileal-cannulated barrows (initial body weight [BW], 17.4 kg) for four 11-d periods in a double 4 × 4 Latin square. Barley grain InsP6 content of Control, ACD, Fermented without phytase, or Fermented with phytase was 1.12%, 0.59%, 0.52% dry matter (DM), or not detectable, respectively. Diet ATTD of DM, CP, Ca, and GE, digestible energy (DE), predicted net energy (NE) value, and urinary excretion of P were greater (P < 0.05) for ACD than Control. Diet ATTD of DM, CP, Ca, GE, DE and predicted NE value, urinary excretion of P was greater (P < 0.05), and diet AID of Ca and ATTD and STTD of P tended to be greater (P < 0.10) for Fermented without phytase than Control. Diet ATTD of GE was lower (P < 0.05) and diet ATTD and STTD of P, AID and ATTD of Ca was greater (P < 0.05) for Fermented with phytase than Fermented without phytase. Acidification or fermentation with/without phytase did not affect diet SID of CP and AA. In conclusion, ACD or Fermented without phytase partially degraded InsP6 in barley grain and increased diet ATTD of DM, CP, and GE, but not SID of CP and most AA in growing pigs. Fermentation with phytase entirely degraded InsP6 in barley grain and maximized P and Ca digestibility, thereby reducing the need to provide inorganic dietary P to meet P requirements of growing pigs.  相似文献   

15.
This study was conducted to determine the effects of mixtures of liquid brewer’s yeast (LBY) and cassava pulp (CVP) with rice straw (RS) on feed intake, digestibility, rumen fermentation, and growth of dairy heifers. Sixteen Holstein crossbred heifers (13.8?±?1.6 months old, 210?±?23 kg body weight (BW)) were randomly allocated to four feeding treatments with four replications, which were 0:0:100 (RS), 0:70:30 (0%LBY), 20:50:30 (20%LBY), and 50:20:30 (50%LBY), respectively, for LBY/CVP/RS on a fresh matter basis. The heifers were offered conventional concentrate at 1.5% initial body weight daily and fed the treatment diets ad libitum. Average daily gain and feed intake were not significantly different among the treatments. The heifers fed 50%LBY had the highest crude protein (CP) intake and DM, OM, and CP digestibility (P?<?0.05). The ruminal pH did not differ significantly among treatments, while NH3-N was the highest (P?<?0.05) in 50%LBY. Total volatile fatty acid (VFA) concentrations and the molar proportion of each VFA were not significantly different among the treatments. Blood urea nitrogen concentrations of 50%LBY were the highest among the treatments (P?<?0.05). The results indicated that 50%LBY improved CP digestibility.  相似文献   

16.
Two experiments were conducted to investigate the effects of the addition of Zn to high quality diets on ruminal fermentation and hydrolysis of urea in vitro and in vivo. In Experiment 1, single effluent continuous culture fermentors were maintained on alfalfa hay-based diets with or without added Zn (400 ppm in total diet) for 4 d. On day 5, 2 g urea were added to the fermentors, and determination of concentrations of VFA and NH4+ in the fluid followed for 8 h. The addition of Zn did not affect concentrations of total VFA or NH4+ in the fluid from the fermentors. In Experiment 2, four non-lactating, Holstein cows previously fitted with ruminal cannulas were used in a switchback-designed experiment. Cows were fed the same diets used in the in vitro experiment at restricted (5.71 kg DM) intakes. The addition of Zn to these diets had no impact on ruminal NH4+ concentrations or concentrations of total VFA in ruminal fluid. However, the addition of Zn to diets did change proportions of individual VFA in ruminal fluid. The proportion of propi-onate tended to increase, and the proportion of butyrate tended to decrease, when Zn was added to the diets. These data indicate that supplemental Zn was ineffective in preventing urea hydrolysis when fed with high quality diets but was effective in altering the fermentation pattern.  相似文献   

17.

Background

The prevalence of subacute ruminal acidosis (SARA) in dairy cows is high with large impact on economy and welfare. Its current field diagnosis is based on point ruminal pH measurements by oral probe or rumenocentesis. These techniques are invasive and inaccurate, and better markers for the diagnosis of SARA are needed. The goal of this study was to evaluate clinical signs of SARA and to investigate the use of blood, faecal and urinary parameters as indicators of SARA. Six lactating, rumen cannulated, Danish Holstein cows were used in a cross-over study with three periods. The first and second periods included two cows on control diet and two cows on nutritional SARA challenge. The third period only included two cows on SARA challenge. Control diet was a conventional total mixed ration [45.5% dry matter (DM), 17.8% crude protein, 43.8% neutral detergent fibre, and 22.5% acid detergent fibre (DM basis)]. SARA challenge was conducted by substituting control diet with grain pellets (50% wheat/barley) over 3 days to reach 40% grain in the diet. Ruminal pH was measured continuously. Blood samples were collected once daily at 7 h after feeding. Samples of faeces and urine were collected at feeding, and at 7 and 12 h after feeding. Blood samples were analysed for pCO2, pO2, pH, electrolytes, lactate, glucose, packed cell volume (PCV), and total plasma protein concentration. Milk composition, ruminal VFA, and pH of faeces and urine were measured.

Results

SARA was associated with decreased (P < 0.05) minimum ruminal, faecal and urinary pH. Daily times and areas of ruminal pH below 5.8, and 5.6 were increased to levels representative for SARA. Significant differences were detected in milk composition and ruminal VFAs. Blood calcium concentration was decreased (P < 0.05), and pCO2 tended to be increased (P = 0.10). Significant differences were not detected in other parameters.

Conclusions

SARA challenge was associated with changes in faecal and urinary pH, blood calcium concentration and pCO2. These may be helpful as indicators of SARA. However changes were small, and diurnal variations were present. None of these parameters are able to stand alone as indicators of SARA.  相似文献   

18.
Rumen acidosis is a common metabolic disorder occurring when organic acid production exceeds clearance capacity, reducing ruminal pH. The occurrence of acidosis has been directly correlated to the ratio of concentrate to forage in the diet. However, rates of substrate fermentation and acid absorption vary at different locations in the reticulo-rumen. The objective of this study was to determine the pH and redox potential (Eh) in different locations of the reticulo-rumen using 16 ruminally cannulated steers (309 ± 43 kg) receiving different supplementation levels of quebracho extract (QT; Schinopsis balansae) within a grower type diet (CP: 13.4%; total digestible nutrients [TDN]: 70.4%; and ME: 2.55 Mcal/kg, dry matter [DM] basis). Animals were randomly assigned to one of four dietary treatments: QT at 0%, 1%, 2%, and 3% of DM (QT0, QT1, QT2, and QT3, respectively), containing about 0%, 0.7%, 1.4%, and 2.1% of condensed tannins (CT), DM basis, respectively. Animals were adapted to the basal diet for 12 d before being introduced to predetermined treatments for 4 weeks (wk), with diets provided twice daily to allow ad libitum intake. Weekly measurements of ruminal fluid pH and Eh were taken 4 h post-feeding using a portable pH meter with two probes (pH and redox) in four locations of the reticulo-rumen (reticulum, cranial sac, dorsal sac, and ventral sac). Data were analyzed using a random coefficients model with the pen as a random effect and wk as repeated measures, with DM intake included as a covariate. There was no interaction among treatments, location, and wk (P ≥ 0.882) on reticulo-ruminal pH. Overall, ruminal pH was lower for QT0 and QT1 compared to QT3 (P < 0.001). The pH in the reticulum was greater than those of the ventral and dorsal sacs (6.05 vs. 5.94, 5.89, respectively; P ≤ 0.001) but similar to cranial sac (6.00). Reticular pH was positively correlated with the ruminal locations (≥0.78; P < 0.001). The linear equation to estimate ruminal mean pH using reticulum pH had an intercept and slope different from zero (P ≤ 0.04), but CT (% DM) was not different from zero (P = 0.15), root mean square error of 0.15, and R2 of 0.778: 0.723 (±0.36) + 0.857 (±0.059) × reticulum pH + 0.033 (±0.023) × CT. The Eh was lower for QT0 in week 1 than all other treatments (P < 0.001). We concluded that reticulo-ruminal pH differs among locations in the rumen regardless of QT supplementation level and days on feed, with reticular pH being the highest.  相似文献   

19.
The objective of this study was using a wide range of dietary concentrate levels to investigate the major effects of limit‐feeding on heifers. Twenty‐four Holstein heifers were blocked into six groups and fed with one of four diets containing different levels of concentrate (20%, 40%, 60% and 80% on a dry matter (DM) basis) but with same intakes of metabolizable energy for 28 days. Increasing levels of dietary concentrate caused decreased ( 0.02) intakes of dry matter (DMI) and neutral detergent fiber and total rumination time, but increased (< 0.01) nonfiberous carbohydrates intake, ruminal concentrations of NH3‐N, propionate and butyrate, and digestibility of DM and crude protein. Dietary concentrate levels had no significant effect on most plasma concentrations and body measurements. The corrected average daily gain (CADG) and feed efficency (ADG/DMI, CFE) were linearly increased (< 0.01) with increasing dietary concentrate levels when gut fill impact was removed. In conclusion, heifers limit‐fed high concentrate diets increased most ruminal fermentation parameters, CADG and CFE with similar body growth and blood metabolites as heifers fed low concentrate diets, and had the potential to be used as an effective feeding strategy in dairy heifers.  相似文献   

20.
Objectives of this study were to evaluate apparent total tract nutrient digestibility and purine derivative (PD) excretion in dairy heifers limit-fed diets containing wet brewer’s grains (WBG) treated with salt. A 12-wk replicated 4 × 4 Latin square was conducted using 8 Holstein heifers of 224.5 ± 19.4 d of age, and body weight (BW) of 219.2 ± 28.1 kg (mean ± SD). Fresh WBG were treated with 0%, 0.8%, 1.6%, and 2.4% salt and stored for 4 d before being fed. Salt was added either to the WBG or separately to equalize the amount of salt in the diet. The diet contained 9% grass silage, 47% corn silage, 19% corn meal, 17.6% WBG and salt, 2% soybean meal, and 3% mineral mix. Diets were formulated to be limit-fed at 2.15% of BW, provide 14% crude protein (CP) and 2.27 Mcal metabolizable energy (ME)/kg of dry matter (DM). Heifers were adapted to diets for 14 d followed by a 7-d collection period. Dry matter intake (DMI) was recorded daily during the collection week while BW was recorded once a week. Urine and fecal samples were collected during the last 4 d of the collection period. Acid insoluble ash was used as an internal marker to determine apparent nutrient digestibility. Weight loss of WBG during storage was determined from days 1 to 11 and initial and final yeast and mold counts were determined. Final yeast counts were similar among treatments while final mold counts tended to be lesser (P = 0.07) for the 0.8% and 1.6% salt treatments. Urinary volume was similar among treatments while allantoin (P = 0.14), and uric acid (P < 0.01) and total PD excretion tended to increase (P = 0.13) quadratically. DMI was varied by treatment (linear, quadratic, and cubic effects P < 0.01). Heifers fed the 0.8% treatment had the least DMI. Nonfiber carbohydrate (NFC) digestibility linearly decreased (P < 0.04) as salt increased. Digestibilities of DM, and organic matter (OM), tended to decrease (P < 0.10) with increasing levels of salt added to WBG. Fat digestibility was quadratic with the greatest value for the 1.6% treatment. Treating WBG with salt reduced its deterioration based on lesser mold counts for the 0.8% and 1.6% treatments. These treatments had resulted in greater fat digestibility and tended to have increased PD excretion suggesting improved microbial protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号