首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the genome of a Japanese field isolate of the rice blast fungus, Magnaporthe oryzae, we newly identified Inago1 and Inago2 LTR retrotransposons. Both elements were found to be Ty3/gypsy-like elements whose copies were dispersed within the genome of Magnaporthe spp. isolates infecting rice and other monocot plants. Southern hybridization patterns of nine re-isolates derived from conidia of the strain Ina168 produced after a methyl viologen treatment were not changed, indicating that the insertion pattern of Inago elements is relatively stable.  相似文献   

2.
Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) is an exotic species native to the USA, damaging cotton and other plant families. The feeding potential of different development stages of Cryptolaemus montrouzieri Mulsant, a biological control agent against mealybugs, was investigated on different development stages of P. solenopsis. Fourth instar grubs and adults of C. montrouzieri were the most voracious feeders on different instars of mealybug. The number of 1st instar nymphs of mealybug consumed by 1st, 2nd, 3rd and 4th instar larvae and adult beetles of C. montrouzieri was 15.56, 41.01, 125.38, 162.69 and 1613.81, respectively. The respective numbers of 2nd and 3rd instar nymphs of mealybug consumed were 11.15 and 1.80, 26.35 and 6.36, 73.66 and 13.32, 76.04 and 21.16, 787.95 and 114.66. The corresponding figures for adult female mealybugs were 0.94, 3.23, 8.47, 12.71 and 73.40, respectively. The results indicate that C. montrouzieri has the potential to be exploited as a biocontrol agent in North India; inoculative releases of 4th instar larvae and adults may provide instant control of P. solenopsis. Field experiments should be conducted to determine the efficiency of the ladybird on this mealybug.  相似文献   

3.
Streptomyces griseorubens E44G is a chitinolytic bacterium isolated from cultivated soil in Saudi Arabia (a hot, arid climatic region). In vitro, antifungal potential of S. griseorubens E44G was assessed against the phytopathogenic fungus, Fusarium oxysporum f. sp. lycopersici (the causative agent of the Fusarium wilt disease of tomato). An inhibition zone of 24 mm was recorded. The chitinolytic activity of S. griseorubens E44G was proved when the colloidal chitin agar plate method was used. A thermostable chitinase enzyme of 45 kDa molecular weight was purified using gel filtration chromatography. The optimum activity was obtained at 60 °C and pH 5.5. The purified enzyme has shown a very pronounced activity against the phytopathogenic fungus, F. oxysporum. The molecular characterization of the chitinase gene indicated that it consists of 1218 bp encoding 407 amino acids. The phylogentic analysis based on the nucleotide DNA sequence and the deduced amino acids sequence showed high similarity percentages with other chitinases isolated from different Streptomyces species. In the field evaluation, application of both S. griseorubens E44G treatments significantly increased all tested growth and yield parameters and decreased the disease severity compared with the infected-untreated tomato plants suggesting potential as a biocontrol agent.  相似文献   

4.
The greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) is occasionally found in beehives and is a major pest of stored wax. Entomopathogenic fungi have recently received attention as possible biocontrol elements for certain insect pests. In this study, 90 isolates of Beauveria bassiana and 15 isolates of Metarhizium anisopliae were screened for proteases and lipases production. The results showed significant variations in the enzymatic action between the isolates. In the bioassay, the selected isolates evinced high virulence against the 4th instar of the G. mellonella larvae. The isolates BbaAUMC3076, BbaAUMC3263 and ManAUMC3085 realized 100% mortality at concentrations of 5.5 × 106 conidia ml−1, 5.86 × 105 conidia ml−1, and 4.8 × 106 conidia ml−1, respectively. Strong enzymatic activities in vitro did not necessarily indicate high virulence against the tested insect pest. The cuticle of the infected larvae became dark and black-spotted, indicating direct attack of fungus on the defense system of the insects. The LC50 values were 1.43 × 103, 1.04 × 105 and 5.06 × 104 for Bba3263AUMC, Bba3076AUMC and Man3085AUMC, respectively, and their slopes were determined by computerized probit analysis program as 0.738 ± 0.008, 0.635 ± 0.007 and 1.120 ± 0.024, respectively.  相似文献   

5.
6.
Trichoderma harzianum is an effective biocontrol agent against the devastating plant pathogen Rhizoctonia solani. Despite its wide application in agriculture, the mechanisms of biocontrol are not yet fully understood. Mycoparasitism and antibiosis are suggested, but may not be sole cause of disease reduction. In the present study, we investigated the role of oxidant-antioxidant metabolites in the root apoplast of sunflower challenged by R. solani in the presence/absence of T. harzianum NBRI-1055. Analysis of oxidative stress response revealed a reduction in hydroxyl radical concentration (OH; 3.6 times) at 9 days after pathogen inoculation (dapi), superoxide anion radical concentration (O2•−; 4.1 times) at 8 dapi and hydrogen peroxide concentration (H2O2; 2.7 times) levels at 7 dapi in plants treated with spent maize-cob formulation of T. harzianum NBRI-1055 (MCFT), as compared to pathogen-inoculated plants. The protection afforded by the biocontrol agent was associated with the accumulation of the ROS gene network: the catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and ascorbate peroxidase (APx), maximum activity of CAT (11.0 times) was observed at 8 dapi, SOD (7.0 times) at 7 dapi, GPx (5.4 times) and APx (8.1 times) at 7 dapi in MCFT-treated plants challenged with the pathogen. This was further supported by the inhibition of lipid and protein oxidation in Trichoderma-inoculated plants. MCFT stimulated the accumulation of secondary metabolites of phenolic nature that increased up to five-fold and also exhibited strong antioxidant activity at 8 dapi, eventually leading to the systemic accumulation of phytoalexins. These results suggest that T. harzianum–mediated biocontrol may be related to alleviating R. solani-induced oxidative stress.  相似文献   

7.
8.
We selected a reduced-pathogenicity mutant of Fusarium oxysporum f. sp. lycopersici, a tomato wilt pathogen, from the transformants generated by restriction enzyme-mediated integration (REMI) transformation. The gene tagged with the plasmid in the mutant was predicted to encode a protein of 321 amino acids and was designated FPD1. Homology search showed its partial similarity to a chloride conductance regulatory protein of Xenopus, suggesting that FPD1 is a transmembrane protein. Although the function of FPD1 has not been identified, it does participate in the pathogenicity of F. oxysporum f. sp. lycopersici because FPD1-deficient mutants reproduced the reduced pathogenicity on tomato.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession number AB110097  相似文献   

9.
The vascular wilt pathogen Fusarium oxysporum f. sp. melonis causes worldwide yield losses of muskmelon. In this study, we characterized a UV-induced non-pathogenic mutant (strain 4/4) of F. oxysporum f. sp. melonis, previously identified as a potential biological control agent. During comparative analysis of vegetative growth parameters using different carbon sources, mutant strain 4/4 showed a delay in development and secretion of extracellular enzymes, compared to the wild type strain. Amendments of the growth medium with yeast extract, adenine or hypoxanthine, but not guanine, complemented the growth defect of strain 4/4, as well as secretion and partial activity of cellulases and endopolygalacturonases, indicating that the strain is an adenine auxotroph. Incubation of strain 4/4 conidia in adenine solution, prior to inoculation of muskmelon plants, partially restored pathogenicity to the mutant strain.  相似文献   

10.
In some areas of Japan, yellow spots with white pustules on leaves, stems, petioles, peduncles and calyces were found on Ipomoea nil, I. triloba, I. lacunosa and I. hederacea var. integriuscula. We demonstrated that the diseases on I. nil, I. triloba and I. lacunosa were caused by host-specific strains of Albugo ipomoeae-panduratae and defined three forma speciales of the fungus, respectively, for the three Ipomoea species: “f. sp. nile”, “f. sp. trilobae” and “f. sp. lacunosae”. Because the diseases were new to Japan, we coined the Japanese name “shirosabi-byo”, which means white rust. We also showed that the disease on I. hederacea var. integriuscula was caused by A. ipomoeae-hardwickii. We named this new disease “white rust (shirosabi-byo in Japanese)”.  相似文献   

11.
The present study was conducted to determine if there is specificity in the host-pathogen relationship between the isolates of Xanthomonas oryzae pv. oryzae, the causal bacterium for rice blight and Leersia grasses, the alternative weed hosts of the disease. Plants of three species of Leersia, namely, L. sayanuka, L. oryzoides and L. japonica, were collected from various parts of Japan and were inoculated with the X. oryzae pv. oryzae isolates obtained from various locations in Japan and from 11 Asian countries. Four L. sayanuka plants were found susceptible to all Race II isolates and some Race I isolates, but were resistant to all Race III isolates. Race III is known to have a wider range pathogenicity to rice cultivar groups compared with Race I and II. Although the reactions of two L. oryzoides plants to Race I and II isolates were similar to that of L. sayanuka, the L. oryzoides plant collected from Niigata Prefecture showed a susceptible reaction to some Race III isolates. On the other hand, L. japonica plants gave reactions different those of L. sayanuka and L. oryzoides, with two plants of L. japonica found to be resistant to all test isolates collected from Japan. The Asian isolates exhibited a wide host range against the international differential rice cultivars, but almost all of them were avirulent to Leersia plants. These results indicate that the relationship between the pathogenicity of the causal bacterium and the resistance of host plants is very complex, and suggest that pathogenic diversity of X. oryzae pv. oryzae might be related to the resistance of Leersia spp.  相似文献   

12.
Seed treatments with essential oils (from savory and thyme) and biocontrol agents (Pseudomonas spp. and Fusarium oxysporum) have been evaluated in vivo after dry hot air treatments against Fusarium oxysporum f. sp. basilici on basil seeds. The savory and thyme essential oils showed a significant pathogen control activity because of their innate antifungal activity and because of the seed application method, but the dry hot pre-treatment did not show any obvious effect on the performance of the essential oil treatments. The dry heat treatment improved the Pseudomonas seed dressing effect against F.oxysporum f. sp. basilici, and showed important reductions in plant infection and the disease index on the treated seed plants, without any negative effect on seed germination. However, the pathogen control provided by the heat treatments combined with the application of the biocontrol agents never reached the same performance as the chemical treatments considered as the reference. Thus, short dry heat treatments on basil seeds have been shown to be a valid but complementary seed disinfection method against Fusarium wilt.  相似文献   

13.
A qPCR approach was developed to specifically monitor in soils Fusarium graminearum, the main agent responsible for Fusarium Head Blight, and the biocontrol agent Gliocladium catenulatum J1446 (Prestop®). For both fungi, the amplification efficacy of standard curves obtained by mixing pure fungal DNA and soil background DNA was high (qPCR efficacy>96% with R2?>?0.97) with a linear range from 10?3 ng to 10 ng/μL. Our qPCR method allowed quantifying down to 1 μg of F. graminearum and G. catenulatum J1446 mycelium per g of soil. The strong correlation observed between fungal biomass and quantified DNA (R2?=?0.9927 and 0.9356 for F. graminearum and G. catenulatum J1446, respectively) supported the use of the primers to monitor both fungi in soils. Under our experimental conditions, the ability of Prestop® to reduce F. graminearum growth was significantly higher in autoclaved soil compared to living soils, suggesting that there is an antagonistic effect of the soil microbial communities. In contrast, G. catenulatum J1446 growth was mostly not affected by the presence of F. graminearum and was able to persist in both autoclaved and living soils after 15 days of incubation. These results indicate that our qPCR approach may be used to assess the success of soil colonization by a biocontrol agent and its control efficacy by monitoring the dynamics of the BCA and the targeted pathogen in soil.  相似文献   

14.
Sixteen isolates belonging to 11 species of Trichoderma (T. asperellum, T. ceramicum, T. andinensis, T. orientalis, T. atroviride, T. viridescens, T. brevicompactum, T. harzianum, T. virens, T. koningii and T. koningiopsis) were evaluated for biological control of potato (Solanum tuberosum) stem rot caused by Sclerotinia sclerotiorum. In dual culture tests, all antagonists significantly reduced sclerotia formation, and were able to inhibit radial growth of the pathogen. Growth inhibition by production of volatile and non-volatile inhibitors was also measured in in vitro tests. In screening the most efficient species of Trichoderma, establishment of mycelium on sclerotia and sclerotia lysis were also considered as important biocontrol qualities. Excluding T. asperellum, T. brevicompactum, T. andinensis and T. harzianum, all tested Trichoderma species were able to lyse sclerotia. The sclerotia-destroying species of Trichoderma and one isolate of Talaromyces flavus were tested in greenhouse tests and during 2 years of field experimentation during the 2007 and 2008 cropping seasons. After one aerial application of spore suspension in greenhouse trials, T. koningii, T. virens, T. ceramicum and T. viridescens were the most effective bio-agents and reduced significantly disease severity, and the least biocontrol efficacy was observed in T. flavus. Under field conditions and after five soil and foliar applications of spore suspension, all tested antagonists reduced significantly disease incidence. T. viridescens followed by T. ceramicum showed the best results. T. flavus and T. orientalis were less effective than other tested antagonists in both field trials.  相似文献   

15.
The biocontrol agent Pythium oligandrum (PO) can suppress bacterial wilt caused by Ralstonia solanacearum (RS) in tomato. To understand the primary biocontrol mechanisms of bacterial wilt by PO, we pretreated tomato plants with sterile distilled water or preinoculated them with PO, followed by inoculation with RS, then observed PO and RS in fixed sections of tomato tissues using a confocal laser-scanning microscope and fluorescence labeling until 14 days after the inoculation with RS. Horizontal and vertical movement of RS bacteria was frequently observed in the xylem vessels of roots and stems of tomato plants (cv. Micro-Tom) that had not been inoculated with PO. In plants that were preinoculated with PO, the movement of RS was suppressed, and bacteria appeared to be restricted to the pit of vessels, a reaction similar to that observed in resistant rootstocks. PO colonization was mainly observed at the surfaces of taproots, the junctions between taproots and lateral roots, and the middle sections of the lateral roots. PO was not observed near wound sites or root tips where RS tended to colonize. However, RS colonization was significantly repressed at these sites in PO preinoculated plants. These observations suggest that the induction of plant defense reactions is the main mechanism for the control of tomato bacterial wilt by PO, not direct competition for infection sites.  相似文献   

16.
Sclerotinia sclerotiorum is a worldwide ascomycete fungal plant pathogen, which causes enormous yield losses on major economic crops such as crucifers, grain legumes and several other plant families. The objective of this research was to isolate and characterise some bioactive products from cultures of fungi associated with the marine sponge Axinella sp. In total, nine fungal isolates were obtained from the marine sponge Axinella sp. collected from the South China Sea. A group of test strains, including two G+ strains (Bacillus subtilis and Staphylococcus aureus), two G strains (Escherichia coli and Pseudomonas aeruginosa) and three fungi including two plant pathogenic fungi Sclerotinia sclerotiorum and Magnaporthe grisea and Saccharomyces cerevisiae, were employed as the indicator organisms for bioactivity screening. Using antagonistic tests and bioactive screening of the ethyl acetate (EtOAc) extracts of the corresponding cultures, fungal isolate JS9 showed the stronger efficacy against the test indicator strains, especially the indicator fungal pathogens. Isolate JS9 was further identified as Myrothecium sp. by a combination of morphological features and 18S rDNA BLAST on GenBank. Two macrocyclic trichothecenes, roridin A (compound 1) and roridin D (compound 2) were purified by tracking the activity of the EtOAc extract fractions and characterised with spectral analyses including MS, 1H-NMR, 13C-NMR and disortionless enhancement by polarization transfer (DEPT). In vitro antifungal tests showed that the two macrocyclic trichothecenes were bioactive against S. cerevisiae, M. grisea and S. sclerotiorum with minimal inhibitory concentrations of 31.25, 125 and 31.25 μg ml−1 for roridin A, and 62.5, 250 and 31.25 μg ml−1 for roridin D, respectively. The present investigation demonstrated that two antifungal trichothecenes including roridin A and roridin D produced by the fungus Myrothecium sp. isolated from the marine sponge Axinella sp. could be potential inhibitors against the plant pathogen S. sclerotiorum. Lian Wu Xie and Shu Mei Jiang contributed equally to this work.  相似文献   

17.
Forty-one strains of Rhizobium vitis, either tumorigenic (Ti) or nonpathogenic, were characterized using multilocus sequence analysis (MLSA) of the partial nucleotide sequences of pyrG, recA, and rpoD. The strains separated into seven clades. Rhizobium vitis (Ti) strains isolated from Japan were divided into five genetic groups (A to E), and nonpathogenic R. vitis strains were divided into two genetic groups (F and G). This result suggests that there are new genetic groups of R. vitis in Japan. Among these groups, members of A and B groups are widely distributed throughout Japan.  相似文献   

18.
The tomato pathotype of Alternaria alternata (A. arborescens) produces the dark brown to black pigment melanin, which accumulates in the cell walls of hyphae and conidia. Melanin has been implicated as a pathogenicity factor in some phytopathogenic fungi. Here, two genes of the tomato pathotype for melanin biosynthesis, ALM1 and BRM2-1, which encode a polyketide synthetase and a 1,3,8-trihydroxynaphthalene (THN) reductase, respectively, have been cloned and disrupted in the pathogen. The gene-disrupted mutants, alm1 and brm2-1, had albino and brown phenotypes, respectively. The wild-type and the mutants caused the same necrotic lesions on the leaves after inoculation with spores. These results suggest that melanin is unlikely to play a direct role in pathogenicity in the tomato pathotype A. alternata. Scanning electron microscopy revealed that the conidia of both mutants have much smoother surfaces in comparison to the wild-type. The conidia of those mutants were more sensitive to UV light than those of the wild-type, demonstrating that melanin confers UV tolerance.  相似文献   

19.
A member of plant growth-promoting rhizobacteria, Bacillus megaterium YMF3.25, was demonstrated to be an efficient biocontrol agent (BCA) against root-knot nematode Meloidogyne incognita. Results from three-compartmented Petri dish tests and a pot experiment indicated that the bacterial culture could significantly inhibit the hatch of eggs and reduce infection of the nematode through production of nematicidal volatiles. After analysis by gas chromatograph/mass spectrometer and confirmation with commercial pure compounds, the nematicidal volatiles produced by the bacterium were characterised to include mainly the benzeneacetaldehyde, 2-nonanone, decanal, 2-undecanone and dimethyl disulphide, which were active against to both juveniles and eggs at the concentration of 0.5 mmol. Six compounds (phenyl ethanone, nonane, phenol, 3,5-dimethoxy-toluene, 2,3-dimethyl- butanedinitrile and 1-ethenyl-4-methoxy- benzene) with nematicidal activityies of 30%–63% also contributed to nematicidal efficacy of the bacterium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号