首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-four bitches which had been in labour for less than 12 hours were randomly divided into four groups of six. They all received 0.5 mg/kg of chlorpromazine intravenously as premedication, followed 15 minutes later by either 8 mg/kg of thiopentone intravenously (group 1), 2 mg/kg of ketamine and 0.5 mg/kg of midazolam intravenously (group 2), 5 mg/kg of propofol intravenously (group 3), or 2.5 mg/kg of 2 per cent lidocaine with adrenaline and 0.625 mg/kg of 0.5 per cent bupivacaine with adrenaline epidurally (group 4). Except for group 4, the bitches were intubated and anaesthesia was maintained with enflurane. The puppies' heart and respiratory rates and their pain, sucking, anogenital, magnum and flexion reflexes were measured as they were removed from the uterus. The puppies' respiratory rate was higher after epidural anaesthesia. In general the puppies' neurological reflexes were most depressed after midazolam/ketamine, followed by thiopentone, propofol and epidural anaesthesia.  相似文献   

2.
Guaifenesin was administered alone and in combination with ketamine or sodium pentobarbital to adult New Zealand white rabbits. A solution of 5% guaifenesin in 5% dextrose given intravenously at a dosage of 200 mg/kg, abolished the pedal, palpebral and corneal reflexes for up to 15 minutes with little influence on cardiopulmonary function. Guaifenesin (200 mg/kg, intravenously) and ketamine (50 mg/kg, intramuscularly) produced effective and safe surgical anesthesia for over 30 minutes. This combination mildly depressed respiratory rate but heart rate and arterial blood pressure were not significantly affected. Guaifenesin (200 mg/kg, intravenously) was combined with sodium pentobarbital (20 mg/kg, intravenously) to produce surgical anesthesia for a period of more than 30 minutes. This combination depressed respiratory rate, produced a tachycardia and decreased arterial blood pressure.  相似文献   

3.
Forty-eight horses subjected to elective surgery were randomly assigned to three groups of 16 horses. After premedication with 0.1 mg/kg acepromazine intramuscularly and 0.6 mg/kg xylazine intravenously, anaesthesia was induced either with 2 g thiopentone in 500 ml of a 10 per cent guaifenesin solution, given intravenously at a dose of 1 ml/kg (group TG), or with 100 mg/kg guaifenesin and 2.2 mg/kg ketamine given intravenously (group KG), or with 0.06 mg/kg midazolam, and 2.2 mg/kg ketamine given intravenously (group KM). Anaesthesia was maintained with isoflurane. The mean (sd) end tidal isoflurane concentration (per cent) needed to maintain a light surgical anaesthesia (stage III, plane 2) was significantly lower in group KM (0.91 [0.03]) than in groups TG (1.11 [0.03]) and KG (1.14 [0.03]). The mean (sd) arterial pressure (mmHg) was significantly lower in group KG (67.4 [2.07]) than in groups TC (75.6 [2.23]) and KM (81.0 [2.16]). There were no significant differences in the logarithm of the heart rate, recovery time or quality of recovery between the three induction groups. However, pronounced ataxia was observed in the horses of group KM, especially after periods of anaesthesia lasting less than 75 minutes.  相似文献   

4.
The anesthetic and cardiopulmonary effects of midazolam, ketamine and medetomidine for total intravenous anesthesia (MKM-TIVA) were evaluated in 14 horses. Horses were administered medetomidine 5 microg/kg intravenously as pre-anesthetic medication and anesthetized with an intravenous injection of ketamine 2.5 mg/kg and midazolam 0.04 mg/kg followed by the infusion of MKM-drug combination (midazolam 0.8 mg/ml-ketamine 40 mg/ml-medetomidine 0.1 mg/ml). Nine stallions (3 thoroughbred and 6 draft horses) were castrated during infusion of MKM-drug combination. The average duration of anesthesia was 38 +/- 8 min and infusion rate of MKM-drug combination was 0.091 +/- 0.021 ml/kg/hr. Time to standing after discontinuing MKM-TIVA was 33 +/- 13 min. The quality of recovery from anesthesia was satisfactory in 3 horses and good in 6 horses. An additional 5 healthy thoroughbred horses were anesthetized with MKM- TIVA in order to assess cardiopulmonary effects. These 5 horses were anesthetized for 60 min and administered MKM-drug combination at 0.1 ml/kg/hr. Cardiac output and cardiac index decreased to 70-80%, stroke volume increased to 110% and systemic vascular resistance increased to 130% of baseline value. The partial pressure of arterial blood carbon dioxide was maintained at approximately 50 mmHg while the arterial partial pressure of oxygen pressure decreased to 50-60 mmHg. MKM-TIVA provides clinically acceptable general anesthesia with mild cardiopulmonary depression in horses. Inspired air should be supplemented with oxygen to prevent hypoxemia during MKM-TIVA.  相似文献   

5.
The cardiorespiratory parameters, the depth of anaesthesia and the quality of recovery were evaluated in six spontaneously breathing dogs that had been premedicated with medetomidine (40 microg/kg, supplemented with 20 microg/kg an hour later), administered with either propofol (1 mg/kg followed by 0.15 mg/kg/minute, intravenously), or with ketamine (1 mg/kg followed by 2 mg/kg/hour, intravenously) and propofol (0.5 mg/kg followed by 0.075 mg/kg/minute, intravenously). The dogs' heart rate and mean arterial blood pressure were higher and their minute volume of respiration and temperature were lower when they were anaesthetised with propofol plus ketamine, and a progressive hypercapnia leading to respiratory acidosis was more pronounced. When the dogs were anaesthetised with propofol/ketamine they recovered more quickly, but suffered some unwanted side effects. When the dogs were anaesthetised with propofol alone they recovered more slowly but uneventfully.  相似文献   

6.
Dogs were given medetomidine (10 microg/kg body weight, intramuscularly) followed in 10 minutes by either ketamine (4 mg/kg body weight, intravenously) or isoflurane mask induction and maintained on isoflurane for 30 minutes. Medetomidine induced lateral recumbency in all dogs. Endotracheal intubation was faster and smoother when dogs were given ketamine than when induced with isoflurane. Analgesia was excellent in all groups. Respiratory depression was more profound when dogs were given ketamine. Recovery quality was smooth and similar among all groups. Medetomidine-premedicated dogs could be induced with either ketamine or isoflurane and maintained on 1.3% isoflurane to achieve good analgesia with smooth recovery from anesthesia.  相似文献   

7.
The competence of the laryngeal closure reflexes of cats anesthetized with ketamine was assessed. Radiographic evaluations of the respiratory and digestive tracts were made after colloidal barium suspension was instilled into the pharynges of conscious and ketamine-anesthetized cats. There was a significant ketamine dose-related response of spread of contrast medium into the supraglottic laryngeal area and into the stomach 2 minutes after contrast medium was instilled into the pharynx (P less than 0.05). Cats did not aspirate contrast medium into the lower respiratory tract. Three ketamine-anesthetized cats aspirated contrast medium into the subglottic area of the larynx, and 2 of these cats also aspirated the material into the cranial part of the trachea. This material was coughed up and swallowed within 5 minutes. Transit time of contrast medium into the stomach seemed to be increased in 11 of the 15 cats given the larger dosages of ketamine (24, 36, 48 mg/kg of body weight), compared with that in conscious cats and those given ketamine at 12 mg/kg. Competent laryngeal protective reflexes in cats can be maintained with ketamine anesthesia. Contrast radiography could be used as a diagnostic aid in ketamine-anesthetized cats suspected of laryngeal reflex abnormalities.  相似文献   

8.
The tested anaesthesia through a permanent infusion of a xylazine, ketamine and guaifenezine (XKG) mixture was used in ten experimental dogs without clinical signs of a disease and in fifty two patients during different surgical interventions. After joint i.m. atropine (0.05 mg/kg) and xylazine (2 mg/kg) premedication, anaesthesia in dogs was induced by an i.v. administration of 1% ketamine at a dose of 2 mg/kg, and the XKG was infused instantly after the previous treatment. The mixture contained 2.0 ml of 5% ketamine and 1.25 ml of 2% xylazine added to 100 ml of 5% guaifenezine. The infusion was applied at a rate of 3.3 ml/kg for the first five minutes and then it was maintained at constant values of 2.2 ml/kg during the whole surgical intervention (Tab. I). The induction and course of anaesthesia, and waking up and recovery from anaesthesia were evaluated in all dogs, and the trias values were also followed. These additional parameters were followed in the test group: breathing volumes, ECG values and acid-base balance parameters were determined from the collected blood samples. The observation of measurable parameters (Figs. 1 to 5) and ECG analysis did not demonstrate any large departures from the starting values, and the changes in the acid-base balance (Tab. II) suggest the partly compensated respiratory acidosis. On the basis of our results, we can recommend this tested method for general anaesthesia particularly of dogs of larger breeds and for longer-lasting operations. This method is suitable to be used first of all in the veterinary establishments where inhalation anaesthesia is not practicable.  相似文献   

9.
OBJECTIVES: To determine if ketamine administered to bitches at the end of a mastectomy, followed by a six-hour constant rate infusion (CRI), improved postoperative opioid analgesia and feeding behaviour. METHODS: The bitches were randomised into three groups: the placebo group received 0.09 ml/kg isotonic saline intravenously followed by a six-hour CRI of 0.5 ml/kg/hour, the low-dose ketamine received 150 microg/kg ketamine intravenously followed by a six-hour CRI of 2 microg/kg/minute and the high-dose ketamine group received 700 microg/kg ketamine intravenously followed by a six-hour CRI of 10 microg/kg/minute. Any additional opioids given were recorded at the time of extubation and at intervals after extubation. Food intake was evaluated eight (T8) and 20 (T20) hours after extubation by measuring the per cent coverage of basal energy requirements (BER). RESULTS: No significant difference was observed for opioid requirements between the three groups. The mean percentages of BER coverage did not differ significantly at T8 but the difference between the high-dose and low-dose ketamine groups (P=0.014), and the high-dose ketamine and placebo groups (P=0.038) was significant at T20. CLINICAL SIGNIFICANCE: This study demonstrated that 700 microg/kg ketamine given intravenously postoperatively followed by a six-hour ketamine CRI of 10 microg/kg/minute improved patient feeding behaviour.  相似文献   

10.
The quality of induction of general anesthesia produced by ketamine and propofol, 2 of the most commonly used anaesthetic agents in cats, was assessed. Eighteen cats admitted for elective procedures were randomly assigned to 3 groups and then premedicated with xylazine 0.75 mg/kg intramuscularly before anaesthesia was induced with ketamine 15 mg/kg intramuscularly (KetIM group), ketamine 10 mg/kg intravenously (KetIV group) or propofol 4 mg/kg intravenously (PropIV group). Quality of induction of general anaesthesia was determined by scoring ease of intubation, degree of struggling, and vocalisation during the induction period. The quality of induction of anaesthesia of intramuscularly administered ketamine was inferior to that of intravenously administered ketamine, while intravenously administered propofol showed little difference in quality of induction from ketamine administered by both the intramuscular and intravenous routes. There were no significant differences between groups in the ease of intubation scores, while vocalisation and struggling were more common in cats that received ketamine intramuscularly than in those that received intravenously administered ketamine or propofol for induction of anaesthesia. Laryngospasms occurred in 2 cats that received propofol. The heart rates and respiratory rates decreased after xylazine premedication and either remained the same or decreased further after induction for all 3 groups, but remained within normal acceptable limits. This study indicates that the 3 regimens are associated with acceptable induction characteristics, but administration of ketamine intravenously is superior to its administration intramuscularly and laryngeal desensitisation is recommended to avoid laryngospasms.  相似文献   

11.
The effects of propofol alone or propofol and ketamine for the induction of anaesthesia in dogs were compared. Thirty healthy dogs were premedicated with acepromazine and pethidine, then randomly allocated to either treatment. Anaesthesia was induced with propofol (4 mg/kg bodyweight intravenously) (group 1), or propofol and ketamine (2 mg/kg bodyweight of each intravenously) (group 2). Anaesthesia was maintained with halothane, delivered in a mixture of oxygen and nitrous oxide (1:2) via a non-rebreathing Bain circuit. Various cardiorespiratory parameters were monitored at two, five, 10, 15, 20, 25 and 30 minutes after induction, and the animals were observed during anaesthesia and recovery, and any adverse effects were recorded. During anaesthesia, the heart rate, but not the systolic arterial pressure, was consistently higher in group 2 (range 95 to 102 beats per minute) than in group 1 (range 73 to 90 beats per minute). Post-induction apnoea was more common in group 2 (11 of 15) than in group 1 (six of 15). Muscle twitching was observed in three dogs in each group. Recovery times were similar in both groups. Propofol followed by ketamine was comparable with propofol alone for the induction of anaesthesia in healthy dogs.  相似文献   

12.
The cardiovascular changes associated with anesthesia induced and maintained with romifidine/ketamine versus xylazine/ ketamine were compared using 6 horses in a cross over design. Anesthesia was induced and maintained with romifidine (100 microg/kg, IV)/ketamine (2.0 mg/kg, IV) and ketamine (0.1 mg/kg/min, IV), respectively, in horses assigned to the romifidine/ ketamine group. Horses assigned to the xylazine/ketamine group had anesthesia induced and maintained with xylazine (1.0 mg/kg, IV)/ketamine (2.0 mg/kg, IV) and a combination of xylazine (0.05 mg/kg/min, IV) and ketamine (0.1 mg/kg/min, IV), respectively. Cardiopulmonary variables were measured at intervals up to 40 min after induction. All horses showed effective sedation following intravenous romifidine or xylazine and achieved recumbency after ketamine administration. There were no significant differences between groups in heart rate, arterial oxygen partial pressures, arterial carbon dioxide partial pressures, cardiac index, stroke index, oxygen delivery, oxygen utilization, systemic vascular resistance, left ventricular work, or any of the measured systemic arterial blood pressures. Cardiac index and left ventricular work fell significantly from baseline while systemic vascular resistance increased from baseline in both groups. The oxygen utilization ratio was higher in the xylazine group at 5 and 15 min after induction. In conclusion, the combination of romifidine/ketamine results in similar cardiopulmonary alterations as a xylazine/ketamine regime, and is a suitable alternative for clinical anesthesia of the horse from a cardiopulmonary viewpoint.  相似文献   

13.
OBJECTIVE: To compare the cardiopulmonary effects of anesthesia maintained by continuous infusion of ketamine and propofol with anesthesia maintained by inhalation of sevoflurane in goats undergoing magnetic resonance imaging. ANIMALS: 8 Saanen goats. PROCEDURES: Goats were anesthetized twice (1-month interval) following sedation with midazolam (0.4 mg/kg, IV). Anesthesia was induced via IV administration of ketamine (3 mg/kg) and propofol (1 mg/kg) and maintained with an IV infusion of ketamine (0.03 mg/kg/min) and propofol (0.3 mg/kg/min) and 100% inspired oxygen (K-P treatment) or induced via IV administration of propofol (4 mg/kg) and maintained via inhalation of sevoflurane in oxygen (end-expired concentration, 2.3%; 1X minimum alveolar concentration; SEVO treatment). Cardiopulmonary and blood gas variables were assessed at intervals after induction of anesthesia. RESULTS: Mean +/- SD end-expired sevoflurane was 2.24 +/- 0.2%; ketamine and propofol were infused at rates of 0.03 +/- 0.002 mg/kg/min and 0.29 +/- 0.02 mg/kg/min, respectively. Overall, administration of ketamine and propofol for total IV anesthesia was associated with a degree of immobility and effects on cardiopulmonary parameters that were comparable to those associated with anesthesia maintained by inhalation of sevoflurane. Compared with the K-P treatment group, mean and diastolic blood pressure values in the SEVO treatment group were significantly lower at most or all time points after induction of anesthesia. After both treatments, recovery from anesthesia was good or excellent. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that ketamine-propofol total IV anesthesia in goats breathing 100% oxygen is practical and safe for performance of magnetic resonance imaging procedures.  相似文献   

14.
Effect of yohimbine on xylazine-ketamine anesthesia in cats   总被引:3,自引:0,他引:3  
Xylazine and ketamine are an anesthetic combination used in feline practice for routine surgical procedures. In a controlled study, we evaluated the effects of yohimbine, an antagonist of xylazine, on the anesthesia induced by this anesthetic combination in cats. Two intramuscular doses of xylazine and ketamine (2.2 mg of xylazine/kg plus 6.6 mg of ketamine/kg and 4.4 mg of xylazine/kg plus 6.6 mg of ketamine/kg) caused approximately 60 and 100 minutes of anesthesia, respectively, in control cats. When yohimbine (0.1 mg/kg) was given intravenously 45 minutes after ketamine administration, the cats regained consciousness within 3 minutes. They were ambulatory 1 to 2 minutes after regaining consciousness. Yohimbine also reversed the bradycardia and respiratory depression elicited by xylazine-ketamine. The results indicated that yohimbine may be useful for controlling the duration of xylazine-ketamine anesthesia in cats.  相似文献   

15.
A dose of supplementary ketamine was used to evaluate the anaesthetic sparing effect of adding local anaesthesia to general anaesthesia in cats undergoing ovariectomy. Fifty-six healthy cats were randomly assigned to receive lidocaine 2% (group L) as skin infiltration (1 mg kg(-1)), topical application (splash block) on both the ovaries (2 mg kg(-1), each) and on abdominal muscular layers (1 mg kg(-1)), or an equal volume of NaCl 0.9% at the same sites (group S). Anaesthesia was induced with a mixture of 20 microg kg(-1) medetomidine and 5 mg kg(-1) ketamine administered intramuscularly. Rectal temperature, ECG, heart rate and respiratory rate were measured continuously. Ketamine supplemental boli (1 mg kg(-1), intravenously) were administered in response to movements during surgery. Local lidocaine significantly reduced the need for supplementary ketamine. All animals were returned to their owners without complications. With this protocol, local anaesthetics reduced the need for injectable anaesthetic during feline ovariectomy.  相似文献   

16.
Xylazine combined with ketamine successfully immobilized free-ranging and captive goitred gazelles (Gazella subgutterosa) and Arabian mountain gazelles (Gazella gazella). One hundred thirty immobilizations were performed on 58 individuals. When administered i.m. via dart to free-ranging gazelles, xylazine (125 mg/ml) combined with ketamine (100 mg/ml) produced smooth induction and recovery. Mountain gazelles required higher dosages (11.7-15.2 mg/kg xylazine and 9.3-12.2 mg/kg ketamine) than goitred gazelles (6.8-7.4 mg/kg xylazine and 5.4-5.9 mg/kg ketamine). For manually restrained captive gazelles of both species, i.v. xylazine (11 mg/ml) combined with i.v. ketamine (44 mg/ml) immobilized the gazelles at considerably lower doses (0.4-1.0 mg/kg xylazine and 1.4-3.9 mg/kg ketamine). These anesthetic combinations are useful alternatives to ultrapotent narcotics in these gazelle species.  相似文献   

17.
A combination of xylazine and ketamine was used to anesthetize 60 male rats, and then yohimbine was given to evaluate its reversing effect on xylazine-ketamine-induced anesthesia. In experiment A, xylazine (21 mg/kg of body weight) and ketamine (45 mg/kg) were admixed and administered IM to 12 Sprague-Dawley rats. Anesthesia lasted approximately 70 minutes. The xylazine-ketamine combination also induced polyuria, bradycardia, and bradypnea. When yohimbine (2.1 mg/kg) was given intraperitoneally 20 minutes after the xylazine-ketamine injection, the rats regained consciousness and righting reflexes within approximately 10 minutes. Yohimbine also reversed the bradycardia and bradypnea and appeared to reduce the polyuria induced by the xylazine-ketamine combination. In experiment B, xylazine (15.4 mg/kg) and ketamine (33 mg/kg) were admixed and given IM to 48 Holtzman rats. The combination induced surgical anesthesia for at least 30 minutes, during which a surgical procedure involving grafting a section of the sciatic nerve into the hypothalamus was performed. In rats in which yohimbine (1 mg/kg) was given intraperitoneally 45 to 60 minutes after xylazine-ketamine administration (before natural recovery from the anesthesia), the righting reflex was apparent in less than 10 minutes.  相似文献   

18.
OBJECTIVE: To determine the minimum infusion rate (MIR50) for propofol alone and in combination with ketamine required to attenuate reflexes commonly used in the assessment of anesthetic depth in cats. ANIMALS: 6 cats. PROCEDURE: Propofol infusion started at 0.05 to 0.1 mg/kg/min for propofol alone or 0.025 mg/kg/min for propofol and ketamine (low-dose ILD] constant rate infusion [CRI] of 23 microg/kg/min or high-dose [HD] CRI of 46 microg/kg/min), and after 15 minutes, responses of different reflexes were tested. Following a response, the propofol dose was increased by 0.05 mg/kg/min for propofol alone or 0.025 mg/kg/min for propofol and ketamine, and after 15 minutes, reflexes were retested. RESULTS: The MIR50 for propofol alone required to attenuate blinking in response to touching the medial canthus or eyelashes; swallowing in response to placement of a finger or laryngoscope in the pharynx; and to toe pinch, tetanus, and tail-clamp stimuli were determined. Addition of LD ketamine to propofol significantly decreased MIR50, compared with propofol alone, for medial canthus, eyelash, finger, toe pinch, and tetanus stimuli but did not change those for laryngoscope or tail-clamp stimuli. Addition of HD ketamine to propofol significantly decreased MIR50, compared with propofol alone, for medial canthus, eyelash, toe pinch, tetanus, and tail-clamp stimuli but did not change finger or laryngoscope responses. CONCLUSIONS AND CLINICAL RELEVANCE: Propofol alone or combined with ketamine may be used for total IV anesthesia in healthy cats at the infusion rates determined in this study for attenuation of specific reflex activity.  相似文献   

19.
The minimum alveolar concentration of desflurane when combined with a continuous infusion of medetomidine at 3.5 microg/kg/hour was measured in seven ponies. Anaesthesia was induced with medetomidine (7 microg/kg intravenously) followed by ketamine (2 mg/kg intravenously) and maintained with desflurane in oxygen. The infusion of medetomidine was started 20 minutes after the induction of anaesthesia. The electrical test stimulus was applied at the coronary band (50 V, 10 ms bursts at 5 Hz for one minute), and heart rates and rhythms, arterial blood pressures, and arterial blood gas tensions were measured at intervals, just before the application of the stimulus. The mean (sd) minimum alveolar concentration of desflurane was 5.3 (1.04) per cent (range 3.2 to 6.4 per cent), 28 per cent less than the previously published value for desflurane alone after the induction of anaesthesia with xylazine and ketamine. The cardiopulmonary parameters remained stable throughout the period of anaesthesia. The mean (sd) time taken by the ponies to stand after the administration of desflurane ceased was 16.5 (6.17) (range 5.8 to 26) minutes, and the quality of recovery was good or excellent. However, one pony died shortly after standing; a postmortem examination revealed that it had chronic left atrial dilatation.  相似文献   

20.
OBJECTIVE: To determine anesthetic effects of ketamine and medetomidine in bonitos and mackerels and whether anesthesia could be reversed with atipamezole. DESIGN: Clinical trial. ANIMALS: 43 bonitos (Sarda chiliensis) and 47 Pacific mackerels (Scomber japonica). PROCEDURE: 28 bonitos were given doses of ketamine ranging from 1 to 8 mg/kg (0.5 to 3.6 mg/lb), i.m., and doses of medetomidine ranging from 0.2 to 1.6 mg/kg (0.1 to 0.7 mg/lb), i.m. (ratio of ketamine to medetomidine, 2.5:1 to 20:1). Doses of atipamezole equal to 1 or 5 times the dose of medetomidine were used. The remaining 15 bonitos were used to determine the anesthetic effects of ketamine at a dose of 4 mg/kg (1.8 mg/lb) and medetomidine at a dose of 0.4 mg/kg (0.2 mg/lb). The mackerels were given ketamine at doses ranging from 11 to 533 mg/kg (5 to 242 mg/lb) and medetomidine at doses ranging from 0.3 to 9.1 mg/kg (0.1 to 4.1 mg/lb; ratio of ketamine to medetomidine, 3:1 to 800:1). Doses of atipamezole equal to 5 times the dose of medetomidine were used. RESULTS: I.m. administration of ketamine at a dose of 4 mg/kg and medetomidine at a dose of 0.4 mg/kg in bonitos and ketamine at a dose of 53 to 228 mg/kg (24 to 104 mg/lb) and medetomidine at a dose of 0.6 to 4.2 mg/kg (0.3 to 1.9 mg/lb) in mackerels was safe and effective. For both species, administration of atipamezole at a dose 5 times the dose of medetomidine reversed the anesthetic effects. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that a combination of ketamine and medetomidine can safely be used for anesthesia of bonitos and mackerels and that anesthetic effects can be reversed with atipamezole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号