首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations have resolved the satellite Charon from its parent planet Pluto, giving separate spectra of the two objects from 1.0 to 2.5 micrometers. The spectrum of Charon is found to be different from that of Pluto, with water ice in crystalline form covering most of the surface of the satellite. In addition, an absorption feature in Charon's spectrum suggests the presence of ammonia ices. Ammonia ice-water ice mixtures have been proposed as the cause of flowlike features observed on the surfaces of many icy satellites. The existence of such ices on Charon may indicate geological activity in the satellite's past.  相似文献   

2.
Thermal continuum emission from the Pluto-Charon system has been detected at wavelents of 800 and 1300 micrometers, and significant upper limits have been obtained at 450 and 1100 micrometers. After the subtraction of emission from Charon, the deduced surface temperature of much of Pluto is between 30 and 44 kein, probably near 35 to 37 kelvin. This range is significantly cooler than what radiative equilibrium models have suged and cooler than the surface temperature derived by the Infrared Astronomy Satellite. The low temperature indicates that methane cannot be present at the microbar pressure levels indicated by the 1988 stellar occultation measurements and that the methane features in Pluto's spectrum are from solid, not gas-phase, absorptions. This result is evidence that Pluto's atmosphere is dominated by nitrogen or carbon monoxide rather than methane.  相似文献   

3.
On 16 August 1983 the Infrared Astronomical Satellite made two separate pointed observations of Pluto and its moon Charon. Because of the small angular displacement of the system between the times of measurement, the Pluto-Charon system was identified as a source in the Serendipitous Survey (SSC 14029+0518). Detections were made at 60 and 100 micrometers with color-corrected flux densities of 581 +/- 58 and 721 +/- 123 millijanskys, respectively. Pluto is best described as having a dark equatorial band, and brighter polar caps of methane ice extending to +/-45 degrees latitude, at most. An upper limit of approximately 9 meter-amagats is placed on the column abundance of a methane atmosphere on Pluto, which is comparable to recent upper limits based on independent ground-based spectroscopy.  相似文献   

4.
Binzel RP 《Science (New York, N.Y.)》1988,241(4869):1070-1072
Time-resolved multicolor photometric observations of Pluto-Charon mutual events have been used to derive individual colors for these two bodies and to investigate the degree of color differences between their synchronous facing and opposite hemispheres. Pluto is significantly redder than Charon, where direct measurements of the anti-Charon hemisphere of Pluto and the Pluto-facing hemisphere of Charon yield B-V magnitudes of 0.867 +/- 0.008 and 0.700 +/- 0.010, respectively. Both Pluto and Charon are found to have relatively uniform longitudinal color distributions with lsigma upper limits of 2% and 5%, respectively, for any large-scale hemispherical color asymmetries. Thus, a previous suspicion of a significant color asymmetry on Charon is not confirmed. Instead the data may be attributed to a direct detection of polar caps on Pluto.  相似文献   

5.
Time-resolved spectra of the 3 March and 4 April 1987 mutual events of Pluto and its satellite Charon were obtained with spectral coverage from 5,500 to 10,000 angstroms with 25 angstrom spectral resolution. Since both events were total occultations of Charon by Pluto, spectra were obtained of the anti-Charon-facing hemisphere of Pluto, with no contribution from Charon during totality. On 4 April, a combined spectrum of Pluto and Charon immediately before first contact was also obtained. The spectrum of the Pluto-facing hemisphere of Charon was extracted by differencing the pre-event and totality spectra. The spectra were reduced to reflectances by ratioing them to spectra of solar analog stars. Charon has a featureless reflectance spectrum, with no evidence of methane absorption. Charon's reflectance appears neutral in color and corresponds to a geometric albedo of approximately 0.37 at 6000 angstroms. The Pluto reflectance spectrum displays methane absorption bands at 7300, 7900, 8400, 8600, and 8900 angstroms and is red in color, with a geometric albedo of approximately 0.56 at 6000 angstroms. The signal-to-noise ratios of the eclipse spectra were not high enough to unambiguously identify the weaker methane band at 6200 angstroms.  相似文献   

6.
Pluto and its moon, Charon, are the most prominent members of the Kuiper belt, and their existence holds clues to outer solar system formation processes. Here, hydrodynamic simulations are used to demonstrate that the formation of Pluto-Charon by means of a large collision is quite plausible. I show that such an impact probably produced an intact Charon, although it is possible that a disk of material orbited Pluto from which Charon later accumulated. These findings suggest that collisions between 1000-kilometer-class objects occurred in the early inner Kuiper belt.  相似文献   

7.
Ward WR  Canup RM 《Science (New York, N.Y.)》2006,313(5790):1107-1109
Two small moons of Pluto have been discovered in low-eccentricity orbits exterior to Pluto's large satellite, Charon. All three satellite orbits are nearly coplanar, implying a common origin. It has been argued that Charon formed as a result of a giant impact with primordial Pluto. The orbital periods of the two new moons are nearly integer multiples of Charon's period, suggesting that they were driven outward by resonant interactions with Charon during its tidal orbital expansion. This could have been accomplished if Charon's orbit was eccentric during most of this orbital evolution, with the small moons originating as debris from the collision that produced Charon.  相似文献   

8.
Analysis of the observations of several Pluto-Charon occultation and transit events in 1985 and 1986 has provided a more detailed knowledge of the system. The sum of the radii of Pluto and Charon is 1786 +/- 19 kilometers, but the individual radii are somewhat more poorly determined; Pluto is 1145 +/- 46 kilometers in radius and Charon is 642 +/- 34 kilometers in radius. The mean density of the system is 1.84 +/- 0.19 grams per cubic centimeter, implying that more than half of the mass is due to rock. Charon appears to have hemispheres of two different colors, the Plutofacing side being neutral in color and the opposite hemisphere being a reddish color similar to Pluto.  相似文献   

9.
《Science (New York, N.Y.)》1976,194(4267):835-837
Infrared photometry (1.2 to 2.2 micrometers) of Pluto provides evidence for frozen methane on the surface of the planet. This appears to be the first observational indication of this ice in the solar system. Its presence on Pluto suggests that the planet's albedo (reflectance) may be >/= 0.4 and that its diameter may be less than that of the moon.  相似文献   

10.
The first eclipses between Pluto and its satellite ("Charon") were detected in January and February 1985, confirming the satellite's existence. Eclipses lasting a few hours will now occur at 3.2-day intervals for the next 5 to 6 years and then will cease for about 120 years. Careful observations of these eclipses will allow greatly improved determinations to be made of several physical parameters for the Pluto-Charon system: the diameters of the planet and satellite, the surface albedo distribution on one hemisphere of the planet, the orbit of the satellite, and the mass of the planet and hence its density. Knowledge of the density will provide a constraint on models of Pluto's bulk composition.  相似文献   

11.
Twelve rock chips and two samples of fines all have electronic absorption bands in diffuse reflected light between 0.32 and 2.5 micrometers. Major bands occur between 0.94 and 1.00 micrometer and at 2.0 micrometers, and arise from Fe(2+) in clinopyroxene and to a lesser extent in olivine. A band at 0.95 micrometer and other details of curve slope and shape for the lunar surface fines match McCord's telescopic curve for an 18-kilometer area that includes the Apollo-il site. Results confirm mineralogical predictions based on telescopic data and support the feasibility of obtaining mineralogical information by remote and in glass content. reflectivity measurements.  相似文献   

12.
We report the direct detection of solid water ice deposits exposed on the surface of comet 9P/Tempel 1, as observed by the Deep Impact mission. Three anomalously colored areas are shown to include water ice on the basis of their near-infrared spectra, which include diagnostic water ice absorptions at wavelengths of 1.5 and 2.0 micrometers. These absorptions are well modeled as a mixture of nearby non-ice regions and 3 to 6% water ice particles 10 to 50 micrometers in diameter. These particle sizes are larger than those ejected during the impact experiment, which suggests that the surface deposits are loose aggregates. The total area of exposed water ice is substantially less than that required to support the observed ambient outgassing from the comet, which likely has additional source regions below the surface.  相似文献   

13.
Laboratory spectra of the first overtone band (2.1480 micrometers, 4655.4 reciprocal centimeters) of solid nitrogen show additional structure at 2.1618 micrometers (4625.8 reciprocal centimeters) over a limited temperature range. The spectrum of Neptune's satellite Triton shows the nitrogen overtone band as well as the temperature-sensitive component. The temperature dependence of this band may be used in conjunction with ground-based observations of Triton as an independent means of determining the temperature of surface deposits of nitrogen ice. The surface temperature of Triton is found to be 38.0(+2.0)(-1.0) K, in agreement with previous temperature estimates and measurements. There is no spectral evidenceforthe presence of alpha-nitrogen on Triton's surface, indicating thatthere is less than 10 percent carbon monoxide in solid solution with the nitrogen on the surface.  相似文献   

14.
Infrared observations of Io during the 1986 apparition of Jupiter indicate that a large eruptive event occurred on the leading side of Io on 7 August 1986, Universal Time. Measurements made at 4.8, 8.7, and 20 micrometers suggest that the source of the event was about 15 kilometers in radius with a model temperature of approximately 900 Kelvin. Together with previously reported events, these measurements indicate that high-temperature volcanic activity on the leading side of Io may be more frequent than previously thought. The inferred temperature is significantly above the boiling point of sulfur in a vacuum(715 Kelvin) and thus constitutes strong evidence for active silicate volcanism on the surface of Io.  相似文献   

15.
The smoggy stratosphere of Saturn's largest moon, Titan, veils its surface from view, except at narrow wavelengths centered at 0.83, 0.94, 1.07, 1.28, 1.58, 2.0, 2.9, and 5.0 micrometers. We derived a spectrum of Titan's surface within these "windows" and detected features characteristic of water ice. Therefore, despite the hundreds of meters of organic liquids and solids hypothesized to exist on Titan's surface, its icy bedrock lies extensively exposed.  相似文献   

16.
Dissolved organic carbon, carbohydrates, and adenosine triphosphate in the size fractions 0.2 to 3 micrometers and 3 to 1000 micrometers are significantly enriched in the upper 150-micrometer surface layer compared to subsurface water, mean enrichment factors being 1.6, 2.0, 2.5, and 3.1, respectively. When calculated as a 0.1-micrometer microlayer of wet surfactants, the mean concentration of organic matter was 2.9 grams per liter, of which carbohydrates accounted for 28 percent. The data for plant pigments and particulate adenosine triphosphate indicated that bacterioneuston was enriched at seven of nine stations while phagotrophic protists were enriched at five stations. Instances of enrichment and inhibition were verified by cultural data for bacteria and amoebas. The observations indicate that the surface microlayers are largely heterotrophic microcosms, which can be as rich as laboratory cultures, and that an appreciable part of the dissolved organic carbon is carbohydrate of phytoplankton origin, released and brought to the surface by migrating and excreting phagotrophic protists.  相似文献   

17.
Spectroscopic measurements of the thermal radiation from Jupiter between 12 and 24 micrometers (420 to 840 reciprocal centimeters) with a resolution of 4 reciprocal centimeters are used to infer the Jovian temperature structure in the pressure region 0.1 to 0.4 atmosphere. The brightness temperature spectrum is in good agreement with previous ground-based measurements between 11 and 13 micrometers and with airborne measurements between 18 and 25 micrometers. However, the integrated flux calculated for a filter window and viewing angle equivalent to those of the 20 micrometer channel of Pioneer 10 is 20 percent below that measured by the Pioneer infrared radiometer. The Q branch of the v(5) fundamental band of acetylene at 730 reciprocal centimeters appears in emission and leads to a mixing ratio estimate of 10(-6 +/- 0.5).  相似文献   

18.
Absorption lines in the v, band of water vapor at 6.3 micrometers have been fully resolved by using a tunable semiconductor laser. Three attnospheric water vapor lines near 5.32 micrometers were studied in detail and found to have linle widths two to four times narrower than the width calculated by Benedict and Kaplan.  相似文献   

19.
Mass of pluto     
Analysis of the observations of Neptune indicates a reciprocal mass of Pluto of 1,812,000 (0.18 Earth masses). If the density is the same as that of Earth, the diameter would be 7200 kilometers. If 6400 kilometers is accepted (from other sources) as the upper limit of the diameter, then Pluto must be at least 1.4 times as dense as Earth.  相似文献   

20.
The solar flux radiometer aboard the Pioneer Venus large probe operated successfully during its descent through the atmosphere of Venus. Upward, downward, and net fluxes from 0.4 to 1.0 micrometers were obtained at more than 390 levels between 185 millibars (at an altitude of approximately 61 kilometers) and the surface. Fluxes from 0.4 to 1.8 micrometers were also obtained between 185 millibars and about the level at which the pressure was 2 atmospheres. Data from 80 to 185 millibars should be available after additional decoding by the Deep Space Network. Upward and downward intensities in a narrower band from 0.59 to 0.66 micrometers were also obtained throughout the descent in order to constrain cloud properties. The measurements indicate three cloud regions above the 1.3-atmosphere level (at an altitude of approximately 49 kilometers) and a clear atmosphere beneath that level. At the 67 degrees solar zenith of the probe entry site, some 15 watts per square meter are absorbed at the surface by a dark ground, which implies that about 2 percent of the solar energy incident on the planet is absorbed at the ground.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号