首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has recently been shown that the antibody response to glycoprotein I (gI) of Aujeszky's disease virus can be used to distinguish infected from vaccinated pigs. To examine whether pigs exposed to low doses of a mildly virulent strain of Aujeszky's disease virus produce antibody to gI four groups of four pigs were inoculated intranasally with 10, 10(2), 10(3) or 10(4) plaque forming units (PFU) of the Sterksel strain. Two unvaccinated pigs and two pigs vaccinated intranasally with Bartha's K strain, a gI-negative vaccine, were placed in contact with each group. The pigs given 10 PFU and the in-contact pigs in this group did not become infected. The inoculated and the unvaccinated in-contact pigs in the other groups developed mild signs of illness and produced antibody to gI. Four of six vaccinated in-contact pigs that became infected showed neither clinical signs nor virus shedding and still produced antibody to gI. The other two vaccinated pigs appeared to be resistant to contact-challenge. The antibody response to gI persisted for at least seven months. These results support the idea that Aujeszky's disease virus may be eradicated by a programme based on vaccination with gI-negative vaccines, in conjunction with the detection and subsequent removal of gI-antibody positive, infected, pigs.  相似文献   

2.
This study was performed to determine whether electroporation can be used to enhance the efficacy of a DNA vaccine against pseudorabies virus (PrV) in pigs. Immune responses to PrV were measured in pigs following a single intramuscular injection of plasmids encoding PrV glycoprotein B, with or without electroporation. Plasmid injection coupled with electroporation increased production of specific antibodies against PrV and peripheral blood mononuclear cells proliferated in response to stimulation with PrV glycoproteins. These results show that electroporation can improve the performance of a DNA vaccine against PrV in pigs. However, additional work is required to maximise the effectiveness of the vaccination protocol.  相似文献   

3.
Sequential changes in the humoral immune response of pigs to pseudorabies virus (PRV) after each of several exposures to the virus were evaluated by determining virus neutralization (VN) and radioimmunoprecipitation (RIP) activities of sera collected at selected intervals. Pigs were vaccinated intramuscularly with live attenuated virus (6 pigs), inactivated attenuated virus (6 pigs), or inactivated virulent virus (6 pigs). All pigs were challenged oronasally with virulent virus 3 weeks later and 12 (4 pigs of each vaccine group) were subsequently treated with dexamethasone in an attempt to reactivate latent virus. The relatively low serum titers of VN antibody that were raised by vaccination (titers ranged from 2 to 32) increased markedly (at least 16-fold) for all pigs after exposure to virulent virus. After dexamethasone treatment, the VN titers of 2 pigs increased 16-fold, whereas those of the other 10 dexamethasone-treated pigs and the 6 nontreated pigs either remained the same or increased only minimally (i.e., no more than 2-fold). The results of RIP using 35S-methionine-labeled viral proteins were initially similar to those of VN in that the low levels of serum RIP activity detected after vaccination increased markedly after subsequent exposure to virulent virus. In contrast to VN, however, most pigs (11 of 12) treated with dexamethasone had a clear increase in serum RIP activity. The increase was particularly striking for viral proteins of relatively low (less than 46K) molecular weight. Precipitating activity for 14C-glucosamine-labeled viral glycoproteins was not detected until after pigs were exposed to virulent virus. The increase in RIP activity detected after dexamethasone treatment was likely due to an additional antigenic stimulus associated with virus reactivation. However, virus was isolated from nasal swabs of only 4 of the 12 treated pigs. None of the results appeared to be affected appreciably by the type of vaccine used for initial immunization.  相似文献   

4.
The prevalence and quantity of latent pseudorabies virus (PrV) in nervous tissues of pigs exposed to field strain in Korea was investigated by nested and real-time PCR. Nervous tissues including trigeminal ganglion (TG), olfactory bulb (OB), and brain stem (BS) were collected from 94 seropositive pigs. PrV latent infection in nervous tissues was initially investigated by nested PCR targeting three glycoprotein genes (gB, gE, and gG). Based on the obtained result, latent infection was detected in 95.7% of screened animals. Furthermore, it was revealed that the examined tissues harbored different copy numbers of latent PrV genome ranging from <10(2.0) to 10(7.1) copies per microgram of genomic DNA in real-time PCR analysis. These results show that under normal conditions, levels of latent PrV in the nervous tissues of pigs can vary across a wide range. Therefore, the data presented here provides information regarding control of the endemic state of PrV in Korea.  相似文献   

5.
12 Large-White-Landrace piglets were subdivided in four groups of 3 and housed in separate units. The piglets of three groups were inoculated with the 86/27V 6C2 thymidine kinase negative (TK-) mutant of pseudorabies virus (PRV), by different routes. A second inoculation with the same mutant was given to the pigs 21 days later. The animals of a fourth group were left as uninoculated controls. 21 days following the second inoculation with the TK- mutant all pigs were challenge infected with the virulent PRV. On post challenge day (PCD) 30 all pigs were killed and samples for virus detection and histology were taken from several organs. The inoculated TK- mutant of PRV did not induce any ill effects in the pigs except a transient febrile reaction in some animals. Virus was recovered from nasal swabbings from one pig 2 days after the first inoculation of the mutant. After challenge exposure with virulent PRV, the TK- mutant-inoculated pigs were apparently protected, whereas the control pigs all were severely affected and recovered very slowly over 3 weeks. Virus was isolated from the nasal swabbings from the TK- mutant-inoculated pigs on PCDs 2 and 4, whereas the nasal swabbings from the control piglets were all positive for virus from PCD 2 through PCD 10. DNA analysis of the virus recovered showed a pattern identical to that of the virulent PRV. Histologic lesions were found in the respiratory and the central nervous systems, however, the lesions in the TK- mutant-inoculated pigs were much milder compared to those registered for the control pigs. Virus was not isolated from any of the tissue samples that were tested, but viral DNA with sequences typical of PRV genome was detected by PCR in all samples of trigeminal ganglia from either the TK- mutant-inoculated pigs or from the controls.  相似文献   

6.
The antibody response to pseudorabies virus nucleocapsid proteins (NCP) was evaluated by the western immunoblot analysis before and after challenge of immunity by nasal inoculation of 10(2.3) plaque-forming units of virus in 10 pigs that had been vaccinated with pseudorabies virus envelope glycoproteins. Antibody to 5 NCP with molecular mass of 140, 63, 41, 34, and 23 kD was first detected in vaccinated and nonvaccinated pigs on day 14 after challenge of immunity. Antibody to 2 of the 5 NCP continued to be detected through day 113 in 9 of 10 vaccinated pigs. Beyond day 32, antibody to NCP was not detected in 1 vaccinated pig. The 23-, 34-, and 41-kD proteins were the most immunogenic. Antibody to each of these proteins was first detected on day 14 in 10, 10, and 8 pigs, respectively. Seven, 6, and 8 pigs, respectively, were antibody-positive for these proteins on day 113. The 140- and 63-kD proteins were the least immunogenic. Antibody to these proteins was detected in 8 and 9 pigs, respectively, on day 14, and in 4 and 5 pigs, respectively, on day 113. Chi-square analysis for dependency indicated that the antibody response to the 140- and 63-kD proteins was interdependent. These results suggested that combinations of NCP may be useful as nonvaccine diagnostic antigens.  相似文献   

7.
Pseudorabies virus (PRV) antibodies, detectable by indirect radioimmunoassay (IRIA), serum-virus neutralization test (NT), or microimmunodiffusion test (MIDT) were developed within 8 days after pigs were inoculated with virulent PRV or attenuated PRV vaccine. Indirect radioimmunoassay and NT titers in pigs inoculated with virulent PRV were developed at the same rate, with IRIA titers being higher than NT titers. Pigs inoculated with attenuated or inactivated PRV vaccine developed peak mean prechallenge NT antibody titers of 4 and 1 (reciprocals of serum dilutions), respectively. Pigs inoculated with attenuated PRV vaccine had peak mean prechallenge IRIA antibody titers of 6, whereas pigs inoculated with inactivated PRV vaccine had mean IRIA antibody titers of 64. Challenge exposure of swine inoculated with attenuated or inactivated PRV vaccine elicited quantitatively equivalent responses, as measured by IRIA or NT, which were higher than prechallenge titers. There were no false-positive IRIA, NT, or MIDT results obtained when sera from nonvaccinated, nonchallenge-exposed pigs were tested. It appears that the PRV infection status of a seropositive swine herd could be ascertained by serologically monitoring several representative animals from a herd, using the NT. If 2 or more tests of representative animals at 14-day intervals were done and the mean NT titer was 4 or less, it could be concluded that the herd was vaccinated against, but not infected with, virulent virus.  相似文献   

8.
The humoral antibody response of pseudorabies-immune pigs to reactivation of latent pseudorabies virus (PRV) was compared with the response following direct exposure to virulent PRV. Nine pigs that had been vaccinated for pseudorabies and later exposed to virulent virus to establish latent infection were given dexamethasone to reactivate latent virus (3 pigs), were exposed oronasally and parenterally to virulent virus (3 pigs), or were kept as nontreated controls (3 pigs). Sera collected from all 9 pigs just before and 3 weeks after treatment were tested by virus neutralization and radioimmunoprecipitation. The 3 pigs exposed directly to virulent virus and 2 of the 3 pigs given dexamethasone had a 4-fold or greater increase in neutralizing antibody titer. All 6 of these pigs had an increase in precipitating antibody activity. Precipitation patterns changed both quantitatively and qualitatively, especially for virus-coded proteins of relatively low molecular weight (less than 46 K). There were some differences in the precipitation patterns associated with sera of individual pigs. However, there was no clear indication of any difference between the 2 treatment groups and therefore no evidence that reactivation of latent virus is associated with any unique immunologic response that could be detected by radioimmunoprecipitation and used diagnostically. Clinical signs were limited to the 3 pigs that were exposed oronasally and parenterally to virulent virus even though the dexamethasone-treated pigs shed more virus for much longer than did those exposed directly to virus.  相似文献   

9.
Groups of pigs vaccinated with an inactivated bivalent vaccine containing porcine parvovirus (PPV) and pseudorabies virus (PRV) developed geometric mean titers (GMT) of humoral antibody for each of the viruses as high or slightly higher than those of other groups of pigs that were vaccinated with inactivated monovalent vaccines containing one or the other of the same viruses. An increase in GMT after challenge exposure of vaccinated pigs to live virus indicated that vaccination did not prevent virus replication. However, an indication that replication was less extensive in vaccinated pigs was provided by the following. Although neither vaccinated nor nonvaccinated (control) pigs had clinical signs after exposure to the live PPV, the effect of vaccination was evident by the fact that GMT were higher in nonvaccinated pigs after exposure than they were in vaccinated pigs. Conversely, all pigs exposed to live PRV had clinical signs, but these signs varied between mild-to-moderate and transient for vaccinated pigs to severe and fatal for nonvaccinated pigs.  相似文献   

10.
Three gilts were vaccinated with a NYVAC vaccinia recombinant expressing glycoprotein gD of pseudorabies virus (PRV) (NYVAC/gD). After farrowing, the piglets were allowed to nurse normally to obtain colostral immunity and then were divided into four groups, receiving NYVAC/gD, a NYVAC recombinant expressing glycoprotein gB of PRV (NYVAC/gB), an inactivated PRV vaccine (iPRV), or no vaccine. The piglets were vaccinated twice, three weeks apart beginning at approximately two weeks of age and later challenged with virulent PRV oronasally. Piglets that received NYVAC/gB or iPRV were the best protected based on lack of mortality, lower temperature responses, decreased weight loss and decreased viral shedding after challenge. These results indicate effective strategies for stimulating active immune response while still under the protection of maternal immunity.  相似文献   

11.
The ability of pseudorabies virus (PRV) to infect and establish latency in pigs with passively acquired (maternal) antibody for PRV was tested by exposing such pigs to the virus and subsequently attempting to reactivate latent virus by administering large doses of dexamethasone. Pigs of each of 4 litters that had nursed gilts with relatively high (512, gilts 1 and 2), moderate (32, gilt 3), and no (less than 2, gilt 4) serum titers of virus-neutralizing (VN) antibodies for PRV were allotted to 3 treatment groups (A, B, C) when they were 2 weeks old. Group-A pigs were separated from littermates and dam and thereafter kept in isolation; group-B pigs were experimentally exposed oronasally to PRV and 1 hour later returned to their dam; group-C pigs were kept with their dam and potentially exposed to PRV by contact with littermates of group B. Sera obtained from pigs at selected intervals until they were 17 weeks old were tested for VN activity and for precipitating activity for radiolabeled viral proteins. All group-A pigs remained clinically normal throughout the experiment. Depending on the initial amount of passively acquired antibody, little or no serum VN or precipitating activity remained by the time these pigs were 17 weeks old. Group-B and -C pigs, with relatively high amounts of passively acquired antibody when exposed to PRV, also remained clinically normal. However, most became latently infected as subsequently evidenced by either dexamethasone-induced or noninduced virus reactivation. Noninduced reactivation may have been initiated by weaning the pigs when they were about 8 weeks old.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Eighteen seronegative swine weighing from 9 to 11 kg were exposed intranasally with the Shope strain of pseudorabies virus (PRV) and were observed for 21 days in an experiment to detect virus shedding and immune responses. All swine had PRV in their nasal passages at 7 days after exposure; they also had precipitating antibodies to PRV as determined by the microimmunodiffusion test (MIDT) and very low levels of virus-neutralizing (VN) antibodies. The PRV was isolated from only 2 swine at postexposure day 14; all swine were MIDT positive, and VN titers ranged from 4 to 128. Virus was not isolated from the swine at 21 days after exposure, but all were MIDT positive; VN titers ranged between 8 and greater than or equal to 256.  相似文献   

13.
Ferrets experimentally infected by various routes with pseudorabies virus were examined for gross and microscopic lesions. Nonsuppurative meningoencephalomyelitis, as well as visceral lesions, occurred. The incubation period seemed related to the viral dose and to the distance between the inoculation site and the central nervous system. The distribution of the lesions in the central nervous system appeared to be closely related to the peripheral nerve pathways from the inoculation sites. Other findings indicated that the lymphohematogenous route could have a role in the dissemination of the virus in infected ferrets.  相似文献   

14.
Sixteen 20 day old pigs, devoid of neutralizing antibody to pseudorabies virus (PRV), were divided into two groups of eight, and the animals of each group were housed in a separate unit. In each group 6 pigs were inoculated intranasally with the thymidine kinase (TK) mutant (Group 1) or the field strain of PRV (Group 2), each pig receiving an inoculum of 4 ml. The remaining 2 pigs in each group served as uninoculated controls. The only clinical sign observed in the pigs of Group 1 was a transient febrile reaction, in the case of six pigs inoculated with the TK mutant of PRV, whereas no signs of disease were seen in the uninoculated controls. The virus was isolated from the 6 infected pigs of the group only on post infection day (PID) 2, whereas it was never isolated from the controls. By contrast, the pigs of Group 2, had a severe clinical response and one, among those that were inoculated with the field strain of the PRV, died on PID 9. Virus was consistently isolated from all pigs of Group 2, inoculated and control. On PID 30 all pigs, i.e. the 8 of Group 1 and 7 of the Group 2 which survived to the infection, were subjected to dexamethasone (DMS) treatment. After DMS treatment virus was never isolated from the nasal swabbings obtained from the pigs of Group 1, whereas it was consistently isolated from pigs of Group 2. After 30 d from the start of DMS treatment the pigs were killed and several tissues were collected from each pig for virus detection, by isolation in tissue culture and by PCR analysis. At necropsy no lesions were found in pigs of Group 1, whereas acute pneumonia and gliosis in the trigeminal ganglia were observed in pigs of Group 2. Virus was never isolated from any of the tissues taken from pigs of both, Group 1 and Group 2, nevertheless sequences of PRV were detected by PCR analysis in the trigeminal ganglia of the pigs of both Groups.  相似文献   

15.
《中国兽医学报》2015,(11):1727-1734
本实验室2014年从福建省龙岩市某规模化猪场疑似猪伪狂犬病发病仔猪的脑组织中分离到1株猪伪狂犬病毒变异株,命名为PRV Fujian-LY株。为了研究Fujian-LY株对免疫仔猪的致病性,将8头20龄的PRV抗原、gE抗体均为阴性,gB抗体均为阳性仔猪随机分为3组,其中2组(每组3头猪)分别通过肌肉注射和滴鼻接种Fujian-LY株,第3组2头仔猪做阴性对照。试验仔猪接种病毒24h后体温均开始升高,随着病程发展,呼吸系统症状明显,滴鼻接种组仔猪发病明显快于肌肉注射组,所有攻毒仔猪虽均有发病但未出现死亡。通过病理剖检、PCR鉴定、病毒分离培养、易感动物感染试验及gE抗体ELISA检测证实Fujian-LY株人工攻毒试验成功。gE抗体检测结果表明所有攻毒仔猪攻毒后7dPRV gE抗体开始阳转。对发病仔猪剖检可见,脑积液明显增多,脑膜血管充血,并伴有出血等典型的伪狂犬病病理变化。病理切片观察结果显示发病仔猪脑实质中小血管扩张充血,血管周围有淋巴细胞包围"血管套"现象,其他主要脏器也均有明显的病理变化。试验结果表明PRV Fujian-LY株为伪狂犬病毒强毒株。  相似文献   

16.
《畜牧与兽医》2015,(12):1-4
本研究旨在检测仔猪免疫猪伪狂犬病活疫苗(Bartha K61株)后,抵抗伪狂犬病病毒(PRV)变异株攻击的保护效果。取4~6周龄PRV抗体阴性仔猪,接种猪伪狂犬病活疫苗,1周后用PRV变异株(AH02LA株)攻毒,检测攻毒后临床症状、直肠温度、鼻腔排毒和肺部病变。疫苗免疫组在免疫后7 d均可以检测到gB抗体。攻毒对照组攻毒后出现典型伪狂犬症状,发病率为100%,死亡率为60%,所有猪只鼻拭子均检出排毒,所有猪只肺部均有出血、淤血等病变。免疫组的猪只攻毒后,所有猪只均未出现明显临床症状,部分猪只鼻拭子检出排毒,排毒持续时间缩短,排毒量显著减少,所有免疫猪只肺部未见明显病变。结果表明:伪狂犬病活疫苗免疫猪后对PRV变异株的攻击具有良好的保护效果。  相似文献   

17.
The vaccine efficacy of a genetically engineered deletion mutant strain of pseudorabies virus, strain 783, was compared with that of the conventionally attenuated Bartha strain. Strain 783 has deletions in the genes coding for glycoprotein I and thymidine kinase. In experiment 1, which had a 3-month interval between vaccination and challenge exposure, strain 783 protected pigs significantly (P less than 0.05) better against virulent virus challenge exposure than did the Bartha strain. The growth of pigs vaccinated with strain 783 was not arrested, whereas that of pigs vaccinated with the Bartha strain was arrested for 7 days. Of 8 pigs given strain 783, 4 were fully protected against challenge exposure; none of the pigs given strain Bartha was fully protected. In experiment 2, which had a 3-week interval between vaccination and challenge exposure, the growth of pigs vaccinated with strain 783 was arrested for 3.5 days, whereas that of pigs vaccinated with the Bartha strain was arrested for 6 days. In experiment 3, pigs with moderate titer of maternal antibodies were vaccinated twice IM or once intranasally with either strain 783 or Bartha and were challenge-exposed 3 months after vaccination. Pigs given strain 783 twice IM were significantly (P less than 0.05) better protected than were the other pigs. They had growth arrest of only 6 days, compared with 9 days for pigs of other groups, and shed less virus after challenge exposure. Results of this study indicate that the vaccine based on the deletion mutant strain 783 is more efficacious than is the Bartha strain of pseudorabies virus.  相似文献   

18.
The avirulent Bartha's K strain of pseudorabies virus (PRV) was used to vaccinate 8 pigs at 10 weeks of age by the intransal route (experiment 1). On postvaccination days (PVD) 63 and 91, pigs were treated with corticosteroids. Viral shedding could not be detected. Explant cultures of trigeminal ganglia and tonsils did not produce virus. Four pigs with maternal antibody were vaccinated intranasally with Bartha's (attenuated) K strain of PRV at 10 weeks of age and were challenge exposed with a virulent strain of PRV on PVD 63 (experiment 2). Corticosteroid treatment, starting on postchallenge exposure day 70 (PVD 133) resulted in viral shedding in 1 of 4 pigs. In another pig of these 4, a 2nd corticosteroid treatment was required to trigger reactivation. In both pigs, sufficient reactivated virus was excreted to infect susceptible sentinel pigs. Restriction endonuclease analysis indicated that viruses isolated from the 2 pigs after challenge exposure and corticosteroid treatment were indistinguishable from the virulent virus. Evidence was not obtained for simultaneous excretion of vaccinal and virulent virus. Of 4 pigs without maternal antibody vaccinated twice with 1 of 2 inactivated PRV vaccines, challenge exposed on PVD 84, and treated with corticosteroids on postchallenge exposure day 63 (PVD 147), 1 was latently infected, as evidenced by the shedding of PRV (experiment 3). However, its sentinel pig remained noninfected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Pseudorabies has been controlled efficiently in China for many years by vaccination. However, it suddenly broke out in many pig farms in 2012–2013 in southern China. In this study, a systematic investigation that included virus isolation, genetic and pathological studies, and immunogenicity analysis was carried out with the aim of understanding the pathogenetic and antigenic features of novel isolates of pseudorabies virus (PRV). Of 38 tissue samples collected from pigs with clinical signs of pseudorabies on 13 farms in 4 provinces in southern China in 2012–2013, 29 showed wild-type PRV infection by polymerase chain reaction. Sequence analysis of 5 isolates from the 4 provinces showed that they belonged to a relatively independent cluster that shared 2 insertions of a single amino acid in the gE gene and 1 insertion of 7 amino acids in the gC gene. In experiments, isolate ZJ01 caused death in 100% of pigs that were either 14 or 80 days old. The serum antibodies to the commercial PRV vaccines had significantly lower neutralizing activity against the ZJ01 isolate than against the vaccine strains. The antigenic relatedness between ZJ01 and the vaccine strains was 0.378 to 0.455. These findings indicated that a novel, highly virulent PRV strain with antigenic variance had spread widely in southern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号