首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to develop an in-straw dilution method suitable for 1-step bovine embryo transfer of vitrified embryos using the Cryotop vitrification-straw dilution (CVSD) method. The development of embryos vitrified using the CVSD method was compared with those of embryos cryopreserved using in-straw vitrification-dilution (ISVD) and conventional slow freezing, outside dilution of straw (SFODS) methods. In Experiment 1, in vitro-produced (IVP) embryos cryopreserved using the CVSD method were diluted, warmed and exposed to the dilution solution at various times. When vitrified IVP embryos were exposed to the dilution solution for 30 min after warming, the rates of embryos developing to the hatched blastocyst stage after 72 h of culture (62.0-72.5%) were significantly lower (P<0.05) than those of embryos exposed to the solution for 5 and 10 min (82.4-94.3%), irrespective of supplementation with 0.3 M sucrose in the dilution solution. In Experiment 2, the rate of embryos developing to the hatching blastocyst stage after 48 h of culture in IVP embryos cryopreserved using the SFODS method (75.0%) was significantly (P<0.05) lower than those of embryos cryopreserved using the CVSD and ISVD methods (93.2 and 97.3%, respectively). In Experiment 3, when in vivo-produced embryos that had been cryopreserved using the CVSD, ISVD and SFODS methods and fresh embryos were transferred to recipient animals, no significant differences were observed in the conception and delivery rates among groups. In Experiment 4, when IVP embryos derived from oocytes collected by ovum pick-up that had been cryopreserved using the CVSD and ISVD methods and fresh embryos were transferred to recipient animals, no significant differences were observed in the conception rates among groups. Our results indicate that this simplified regimen of warming and diluting Cryotop-vitrified embryos may enable 1-step bovine embryo transfer without the requirement of a microscope or other laboratory equipment.  相似文献   

2.
This study was conducted to examine the utility of vitrification for bovine embryos with low‐quality grade, and simple cryoprotectants dilution method for practitioners. In Experiment 1, survival of frozen embryos was compared with that of vitrified embryos using minimum volume cooling (MVC). Then, vitrified embryos were used to confirm the optimum sucrose concentration in Experiment 2. The survival rates of embryos that had been vitrified following diluted cryoprotectants with the one‐step in‐straw method were compared with those of fresh control embryos in Experiment 3. Frozen‐thawed or vitrified‐warmed blastocysts were cultured with TCM‐199 supplemented with 100 μmol/L beta‐mercaptoethanol +5% fetal bovine serum at 38.5°C in an atmosphere of 5% CO2 in air, their survival after 24 hr were compared. The development to term of fair quality in vivo embryos after vitrification was examined in Experiment 4. Results show that survival rates of frozen‐thawed embryos were lower (< .05) than that of vitrified‐warmed ones. When vitrified embryos were warmed in 0.3 mol/L sucrose in straws, their survival rate was 100%. The total cell numbers of vitrified‐warmed embryos were comparable to those of fresh control embryos. The six calves from 13 vitrified embryos were delivered in Experiment 4. These results indicate that MVC vitrification following one‐step cryoprotectants dilution is utilized to preserve low‐quality bovine embryos.  相似文献   

3.
The aim of this study was to evaluate the viability in the effect of open pulled straw (OPS) vitrification procedure of sheep embryos after direct transference. Embryos were produced in vivo and cryopreserved in slow freezing or OPS vitrification. The survival rates of cryopreserved embryos were compared to non-frozen standard pattern. In a first set of experiments, embryos at morula and blastocyst stages were dived in ethylene glycol (1.5 M) and frozen in an automatic freezer. After being thawed, they were directly or indirectly transferred to ewes recipient. A second group of embryos were drawn into OPS and plunged into liquid nitrogen after being exposed at room temperature for 1 min and 45 s in 10% EG plus 10% dimethyl sulphoxide (DMSO), then again for 30 s in 20% EG + 20% DMSO + 0.5 M sucrose. After being warmed, embryos were also directly transferred using a French mini straw as the catheter for the transplantation process or after in vitro dilution of cryoprotectants (two-step-process). No significant difference was observed among fresh, frozen or vitrified embryos on pregnancy rate (50.0%, 38.6% and 55.8%). However, when we evaluated only the direct transference, the pregnancy rate of OPS vitrified embryos was higher than that of frozen embryos (57.1% vs 34.8%) (p = 0.07). In addition, vitrified morulae had a higher pregnancy rate than the one with frozen embryos (64.0% vs 38.9%) (p = 0.07). Finally, our results indicate that OPS vitrification technique in association with direct transference improves the viability of sheep embryos with potential applications to field conditions.  相似文献   

4.
Three experiments were designed to test a solid‐surface vitrification system for bovine in vitro‐produced embryos and to develop a simple method of in‐straw dilution after warming, which can be potentially used for direct transfer in the field. Experiment 1 evaluated embryo survival rates (i.e. re‐expansion and hatching) after vitrification and warming in three different solutions: VS1 (20% ethylene glycol (EG) + 20% propanediol (PROH) + 0.25 m trehalose (Tr)), VS2 (20% EG + 1M Tr) or VS3 (30% EG + 0.75 m Tr). Re‐expansion and hatching rates were higher (p < 0.05) for embryos vitrified in VS3 (72.2 ± 1.9 and 58.2 ± 0.8) than VS1 (64.4 ± 0.9 and 37.2 ± 2.5) or VS2 (68.5 ± 1.5 and 49.6 ± 1.0; p < 0.05). Experiment 2 was designed to compare two methods of vitrification: glass micropipettes or solid surface, using the VS1 or VS3 solutions. No significant differences were detected between the two methods; but re‐expansion and hatching rates were higher (p < 0.05) with VS3 (73.5 ± 3.1 and 47.1 ± 2.1) than VS1 (63.3 ± 3.3 and 39.7 ± 2.8). In experiment 3, embryos were vitrified by solid surface in VS1 or VS3 solutions and cryoprotectants were diluted in‐straw after warming in a TCM 199, 0.25 m sucrose solution or holding media. Survival rates of embryos vitrified in VS3 did not differ between those exposed to 0.25 m sucrose (74.7 ± 1.3 and 57.2 ± 2.2) or holding (77.3 ± 1.4 and 58.0 ± 2.5) medium after warming; however, survival rates of embryos vitrified in VS1 were higher (p < 0.05) in those exposed to 0.25 m sucrose (67.7 ± 2.3 and 47.0 ± 1.7) than holding medium (54.5 ± 1.0 and 27.7 ± 3.1). In conclusion, solid‐surface vitrification using simplified EG‐based solutions and in‐straw dilution with holding media may be a practical alternative for cryopreservation and direct transfer of in vitro‐produced bovine embryos.  相似文献   

5.
The aim of this study was to evaluate the suitability of a commercial kit for bovine embryo vitrification for cryopreserving cat oocytes and to evaluate comparatively the effects of its use with slow freezing procedure on cryotolerance in terms of morphology and oocyte resumption of meiosis. Germinal vesicle stage oocytes isolated from cat ovaries were either vitrified (n = 72) using a vitrification kit for bovine embryo or slow frozen (n = 69) by exposing oocyte to ethylene glycol solution before being transferred to a programmable embryo freezer. After thawing and warming, oocytes were cultured for 48 h and then were examined for meiosis resumption using bisbenzimide fluorescent staining (Hoechst 33342). Fresh immature oocytes (n = 92) were used as the control group. The proportion of oocytes recovered in a morphologically normal state after thawing/warming was significantly higher in frozen oocytes (94.5%) than in the vitrified ones (75%, p < 0.01). Morphological integrity after culture was similar in vitrified (73.6%) and slow frozen oocytes (76.8%); however, only 37.5% of the morphologically normal oocytes resumed meiosis after vitrification compared to 60.9% of those submitted to slow freezing procedure (p < 0.01). Fresh oocytes showed higher morphological integrity (91.3%) and meiosis resumption rates (82.6%, p < 0.002) than cryopreserved oocytes, irrespective of the procedure used. These results suggest that immature cat oocytes vitrified with a kit for bovine embryos retain their capacity to resume meiosis after warming and culture, albeit at lower rates than slow frozen oocytes. Vitrification and slow freezing methods show similar proportions of oocytes with normal morphology after culture, which demonstrate that thawed and warmed oocytes that resist to cryodamage have the same chances to maintain their integrity after 48 h of culture.  相似文献   

6.
An efficient cryopreservation protocol for porcine morulae was investigated with three types of vitrification having different cooling rates (Exp. 1). Survival of embryos vitrified after removal of cytoplasmic lipid droplets was also examined by means of the minimum volume cooling (MVC) method (Exp. 2). In Exp. 1, the morula stage embryos were vitrified with a 0.25 ml plastic straw (ST-method), gel loading tip (GLT-method) and the MVC-method, respectively, and stored in liquid nitrogen after which they were warmed in sucrose solutions with cryoprotectants being subsequently removed in a stepwise manner. In Exp. 2, morulae were centrifuged with 7.5 microg/ml cytocharasin B at 12000 x g for 20 min to polarize the cytoplasmic lipid droplets that were then removed from the embryos by micromanipulation (delipation). Both those delipated at the morula stage and the intact embryos at the morula to blastocyst stages were vitrified by the MVC-method. In vitro survival of the vitrified embryos was assessed in both experiments by culturing in NCSU-23 + 10% FCS for 48 h. In vitro developments of vitrified embryos after warming to blastocysts were 20% (6/30) for the ST-method, 39% (18/46) for the GLT-method, and 60% (26/43) for the MVC-method. Embryo survival was further improved by vitrification after delipation (95%, 35/37) compared to intact vitrified morulae (24/42, 57%, P<0.001) and blastocysts (23/31, 74%, P<0.05). Moreover, the number of cells in blastocysts (92 +/- 25) derived from the delipated-vitrified morulae was comparable to those derived from intact control non-vitrified embryos (103 +/- 31). Our results demonstrate that vitrified porcine morulae have the highest survival when using the MVC-method in conjunction with delipation.  相似文献   

7.
In the present study, mouse blastocysts were employed to investigate the feasibility and efficiency of stepwise in-straw dilution and direct transfer using the open pulled straw (OPS) method. In experiment I, the effects of various vitrification solutions (VS) on embryo survival were examined. After thawing, the expanded blastocyst rates (97.59 and 95.05%) and hatching rates (80.48 and 78.95%) achieved in the EDFS30 [15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll, and sucrose] and EFS40 [40% EG, Ficoll, and sucrose] groups were no different from those (96.15% and 83.33%) of the control group. However, the rates in the EFS30 [30% EG, Ficoll, and sucrose] (87.80 and 55.43%) and EDFS40 [20% EG, 20% DMSO, Ficoll, and sucrose] (95.69 and 70.97%) groups were significantly lower than those (96.15 and 83.33%) of the control group (P<0.05). In the experiment II, the effects of the volume of VS in the OPS on the survival of embryos after in-straw thawing were investigated. When the length of the VS in the column was less than 1 cm, the in vitro viability of embryos thawed by stepwise in-straw dilution was no different among the experimental and control groups. The embryos could be successfully thawed by immersing the OPS in 0.5 M sucrose for 3 min and then 0.25 M sucrose for 2 min. In experiment III, the effect of immersion time of the OPS in diluent (PBS) on the viability of vitrified embryos was investigated. After in-straw thawing, OPSs were immersed immediately in 1 ml PBS for 0 to 30 min. When the immersion time of the OPSs in PBS was less than 12 min, in vitro development of the in-straw thawed embryos was no different from that of the controls. In experiment IV, in-straw thawed blastocysts were directly transferred to pseudopregnant mice to examine their in vivo developmental viability. The pregnancy (91.67%) and birth rates (42.42%) of embryos in-straw thawed and directly transferred were no different from those of the unvitrified controls (90.90 and 40%) and embryos thawed by the conventional method (84.61 and 46.94%). These results demonstrate that mouse embryos vitrified with OPS could be successfully thawed by stepwise in-straw dilution and transferred directly to a recipient and that this method might be a model for field manipulation of vitrified embryos in farm animals.  相似文献   

8.
The objective of this study was to evaluate fertility and full‐term development of rat vitrified oocytes after in vitro fertilization (IVF) with cryopreserved sperm. Oocytes with or without surrounding cumulus cells were vitrified with 30% ethylene glycol + 0.5 mol/L sucrose + 20% fetal calf serum by using the Cryotop method. The warmed oocytes were co‐cultured with sperm. Although the denuded/vitrified oocytes were not fertilized, some of the oocytes vitrified with cumulus cells were fertilized (32.7%) after IVF with fresh sperm. When IVF was performed with cryopreserved sperm, vitrified or fresh oocytes with cumulus cells were fertilized (62.9% or 41.1%, respectively). In addition, to confirm the full‐term development of the vitrified oocytes with surrounding cumulus cells after IVF with cryopreserved sperm, 108 vitrified oocytes with two pronuclei (2PN) were transferred into eight pseudopregnant females, and eight pups were obtained from three recipients. The present work demonstrates that vitrified rat oocytes surrounded by cumulus cells can be fertilized in vitro with cryopreserved sperm, and that 2PN embryos derived from cryopreserved gametes can develop to term. To our knowledge, this is the first report of successful generation of rat offspring derived from vitrified oocytes that were fertilized in vitro with cryopreserved sperm.  相似文献   

9.
This study was conducted to clarify the feasibility of newly developed vitrification techniques for porcine embryos using the micro volume air cooling (MVAC) method without direct contact with liquid nitrogen (LN2). Expanded blastocysts were vitrified in a solution containing 6 M ethylene glycol, 0.6 M trehalose and 2% (wt/vol) polyethylene glycol in 10% HEPES-buffered PZM-5. The blastocysts were collected from gilts and vitrified using the new device (MVAC) or a Cryotop (CT). Blastocysts were stored in LN2 for at least 1 month. After warming, cryoprotective agents were removed using a single step. Survival of the embryos was assessed by in vitro culture (Experiment 1) and by embryo transfer to recipients (Experiment 2). In Experiment 1, the embryos vitrified by the MVAC or CT and fresh embryos without vitrification (Control) were used. The survival rates of embryos in the MVAC, CT and Control groups were 88.9% (32/36), 91.7% (33/36) and 100% (34/34), respectively, after 48 h culture, and the hatching rates of embryos after 48 h incubation were 69.4% (25/36), 63.9% (23/36) and 94.1% (32/34), respectively. In Experiment 2, 64 vitrified embryos were transferred to 5 recipient gilts, and 8 healthy piglets were produced from 3 recipients in the MVAC group. Similarly, 66 vitrified embryos were transferred to 5 recipient gilts, and 9 healthy piglets were produced from 2 recipients in the CT group. These results indicated that porcine expanded blastocysts can be cryopreserved using the MVAC method without potential pathogen contamination from LN2.  相似文献   

10.
The current study examined the protective effects of l ‐glutamine and cytochalasin B during vitrification of immature bovine oocytes. Oocyte vitrification solution (PBS supplemented with 10% FCS, 25% EG, 25% DMSO and 0.5 m trehalose) was the vitrification control. Treatments were the addition of 7 μg/ml cytochalasin B, 80 mm glutamine or both cytochalasin and glutaminine for 30 s. After warming, oocytes were matured in vitro for 24 h, fixed and stained with Hoechst (33342) for nuclear maturation evaluation. l ‐glutamine improved the vitrified/warmed immature bovine oocytes viability (32.8%), increasing the nuclear maturation rates compared to other treatments and the no treatment vitrified control (17.4%). There was, however, no effect of cytochalasin B on in vitro maturation (14.4%).  相似文献   

11.
Despite the numerous potential applications of oocyte cryopreservation, the poor success rate has limited its practical applications. In livestock, particularly in ovine, the oocytes have low developmental competence following vitrification/warming process. Considering the occurrence of osmotic and oxidative stresses during the vitrification/warming process, the application of antioxidants and osmolytes may improve the developmental competence of vitrified/warmed oocytes. In the present study, we aimed to evaluate the effects of the addition of ascorbic acid (AA) and N‐acetyl cysteine (NAC) as antioxidants and glycine as an organic osmolyte either to the vitrification/warming solutions (VWS) or to the IVM medium on the developmental competence of vitrified/warmed ovine germinal vesicle stage oocytes. The survival rate in the vitrified groups was significantly lower than fresh ones. In vitrified/warmed oocytes, there was no significant difference in survival rate between supplemented and non‐supplemented groups. The addition of AA and/or NAC to the VWS or IVM medium and adding glycine to the IVM medium reduced the proportion of apoptotic oocytes and fragmented embryos, which was reflected as an increase in the proportions of metaphase II stage oocytes and blastocyst production. The best result was achieved by supplementing the IVM medium with NAC. In our study condition, antioxidants and glycine could improve the developmental competence of vitrified/warmed ovine immature oocytes, especially when added during IVM.  相似文献   

12.
The present study was designed to investigate the cryotolerance of in vitro fertilised (IVF) mouse embryos at various preimplantation developmental stages. IVF mouse embryos were vitrified by the open-pulled straw (OPS) method. After warming, embryos were morphologically evaluated and assessed by their development to blastocysts, hatched blastocysts or term. The results showed that a high proportion (93.3-100.0%) of vitrified embryos at all developmental stages were morphologically normal after recovery. The developmental rate of vitrified 1-cell embryos to blastocyst (40.0%) or hatched blastocyst (32.7%) or term (9.3%) was significantly lower than that from other stages (P < 0.05). Vitrified embryos from 2-cell to early blastocyst stage showed similar blastocyst (71.8-89.5%) and hatched blastocyst rates (61.1-69.6%) and could develop to term without a significant loss of survival compared with those of fresh embryos (P > 0.05). Vitrified 2-cell embryos showed the highest survival rate in vivo (50.6%, 88/174), compared with that from other stages (9.3-30.5%, P < 0.05). The data demonstrate that the OPS method is suitable for the cryopreservation of IVF mouse embryos from 2-cell stage to early blastocyst stage without a significant loss of survival. Embryos at the 2-cell stage had the best tolerance for cryopreservation in the present study.  相似文献   

13.
Equine embryos can remain viable for 12 to 24 hours when cooled and stored at 5°C.1 Cryopreservation of embryos would allow for long-term preservation of genetic material and more efficient management of embryo recipients. This study compared pregnancy rates after transfer of equine embryos vitrified within 1 hour of collection or cooled for 12 to 19 hours before vitrification. Mares (N = 40) were superovulated using equine follicle-stimulating hormone (eFSH). Embryos were recovered 6.5 days after ovulation or 8 days after human chorionic gonadotropin. Forty morulae or early blastocysts with a grade of 1 to 2 and <300 mm in diameter were randomly assigned to 1 of 2 treatments: Group 1 (n = 20), washed 4 times in a commercial holding medium and then vitrified; Group 2 (n = 20), washed 3 times and then stored in the same holding medium at 5°C to 8°C in a passive cooling device for 12 to 19 hours before being vitrified. To thaw, embryos were warmed by holding the straw in air at room temperature for 10 seconds and then submerged in a water bath (20°C to 22°C) for an additional 10 seconds. The contents of the straw were transferred directly into a recipient that had ovulated 4 to 6 days previously. There were no differences (P > .05) in embryo diameter, grade, or morphology score between treatment groups before vitrification. Pregnancy rates (day 16) were not different (P > .05) between embryos vitrified immediately after collection (15 of 20; 75%) and embryos cooled for 12 to 19 hours before vitrification (13 of 20; 65%). Based on these results, small equine embryos (<300 mm) can be stored at 5°C to 8°C for 12 to 19 hours before vitrification without a significant loss of viability.  相似文献   

14.
This study was designed to compare the efficiency of the Cryotop method and that of two methods that employ a micro volume air cooling (MVAC) device by analyzing the survival and development of bovine oocytes and blastocysts vitrified using each method. In experiment I, in vitro-matured (IVM) oocytes were vitrified using an MVAC device without direct contact with liquid nitrogen (LN2; MVAC group) or directly plunged into LN2 (MVAC in LN2 group). A third group of IVM oocytes was vitrified using a Cryotop device (Cryotop group). After warming, vitrified oocytes were fertilized in vitro. There were no significant differences in cleavage and blastocyst formation rates among the three vitrified groups, with the rates ranging from 53.1% to 56.6% and 20.0% to 25.5%, respectively; however, the rates were significantly lower (P < 0.05) than those of the fresh control group (89.3% and 43.3%, respectively) and the solution control group (87.3% and 42.0%, respectively). In experiment II, in vitro-produced (IVP) expanded blastocysts were vitrified using the MVAC, MVAC in LN2 and Cryotop methods, warmed and cultured for survival analysis and then compared with the solution control group. The rate of development of vitrified-warmed expanded blastocysts to the hatched blastocyst stage after 24 h of culture was lower in the MVAC in LN2 group than in the solution control group; however, after 48–72 h of culture, the rates did not significantly differ between the groups. These results indicate that the MVAC method without direct LN2 contact is as effective as the standard Cryotop method for vitrification of bovine IVM oocytes and IVP expanded blastocysts.  相似文献   

15.
牛体细胞核移植胚胎的批量化生产   总被引:8,自引:0,他引:8  
利用2枚显微去核后的半卵与1枚供体细胞同步融合,并结合微穴法(WOWs)培养体系批量化生产成年牛克隆胚胎(日产40~80枚).结果,重构胚电融合率95.7%(3059/3197)、卵裂率87.1%(2637/3027)、囊胚率41.1%(1244/3027)和可冻胚率(72.5%,933/1244)均达到较高水平.克隆胚胎采用玻璃微管玻璃化冷冻保存数月后移植,30日龄时妊娠率为28.1%(48/171),已经产下5头足月克隆牛续.结果表明,该方法具有产业开发潜力.  相似文献   

16.
In this study the efficacy of the combination of glycerol (GLY) and ethylene glycol (EG) as cryoprotectants in a vitrification method developed for direct embryo transfer was evaluated by in vitro development of in vitro fertilized (IVF) and somatic cell nuclear transfer (SCNT) embryos after vitrification. The IVF and SCNT blastocysts were vitrified in either 40% GLY, 30% GLY + 10% EG, or 20% GLY + 20% EG using French straws. After warming, the straws were held vertically for 1 min without shaking and were then placed horizontally for 5 min to dilute the cryoprotectants. After washing, the vitrified-warmed embryos were cultured in vitro for 72 h. There were no differences among the vitrification solutions with respect to the rates of vitrified-warmed IVF and SCNT embryos surviving and developing to the hatched blastocyst stage. However, the rates of development to the hatched blastocyst stage of the SCNT embryos vitrified with 40% GLY tended to be higher than those vitrified with 30% GLY + 10% EG or 20% GLY + 20% EG (26% vs. 7-8%, respectively). The development rates to the hatched blastocyst stage of the IVF and SCNT embryos vitrified with solution containing EG were significantly lower (P<0.05) than those of non-vitrified embryos. These results suggest that use of the combination of GLY and EG as cryoprotectants had no beneficial effect on the viability of embryos after in-straw dilution. However, this method is so simple that it can be used for practical direct transfer of vitrified embryos in the field.  相似文献   

17.
This work analyses the effects of a high hydrostatic pressure (HHP) treatment on in vitro survival of in vitro produced (IVP) bovine embryos vitrified with the Cryologic Vitrification Method (CVM). Consequences on embryo quality in terms of cell proliferation and differentiation, and levels of embryonic Heat Shock Protein 70 (Hsp‐70) were also examined. Day 7 and 8 bovine in vitro‐produced blastocysts were submitted to an HHP treatment (60 MPa, at 32°C for 1 h) and allowed to recover for 1 or 2 h in culture medium. The HHP treatment did not improve blastocyst survival rates after vitrification/warming. Survival (24 h post‐warming) and hatching (48 h post‐warming) rates were 79.3 ± 4.9 and 51.8 ± 4.2 vs 73.9 ± 4.2 and 44.7 ± 4.1 for untreated controls and HHP‐treated embryos, respectively. Total cell numbers measured in fresh embryos were reduced after 1 h at 32°C, with or without HHP treatment, indicating that cell proliferation was stopped as a result of stress. Vitrified HHP‐treated embryos that hatched at 48 h after warming showed increased cell numbers in their ICM compared with untreated controls (50.2 ± 3.1 vs 38.8 ± 2.7), indicating higher embryo quality. Treatment of blastocysts with HHP did not alter the level of the Hsp‐70 protein. In our conditions, HHP treatment did not affect the cryoresistance of these embryos. However, combination of HHP treatment and vitrification in fibreplugs resulted in an increase in the ICM cell number of hatched embryos 48 h post‐warming.  相似文献   

18.
This study assessed the effects of cryoprotectant concentration during equilibration on the efficiency of bovine blastocyst vitrification and the expression of selected developmentally important genes. In vitro produced bovine blastocysts were equilibrated in either 7.5% ethylene glycol (EG) + 7.5% DMSO (Va group) or in 2% EG + 2% DMSO (Vb group) then vitrified on Cryotop® sheets in 16.5% EG + 16.5% DMSO + 0.5M sucrose. After warming, embryos were cultured for 48 hr. Re‐expansion, hatching, and the numbers of total and membrane damaged cells were compared among vitrified groups and a control. There was no significant difference between the vitrified groups in survival, cell numbers and the extent of membrane damage. Vitrification increased the number of membrane‐damaged cells in both groups, however, in a greater extent in the Vb group. Vitrification increased (p < .05) the expression of the HSP70 gene in Va but not in Vb embryos. The expression of IGF2R, SNRPN, HDAC1, DNMT3B, BAX, OCT4, and IFN‐t genes were the same in control and vitrified groups. In conclusion, the concentration of cryoprotectants during equilibration did not affect survival rates; however, normal cell numbers could be maintained only by equilibration in 15% cryoprotectants which was associated with increased HSP70 expression.  相似文献   

19.
The objective of this study was to investigate the influence of fatty acid-free bovine serum albumin (BSA) or fetal calf serum (FCS) on the re-expansion of biopsied blastocysts and post-warm viability of subsequently vitrified embryos. Firstly, blastocysts produced in vitro were biopsied at Day 7 and cultured to allow repair in TCM199 with 0.3% BSA or 5% FCS for 24 h. The re-expansion rates and mean total numbers of cells of the re-expanded embryos after the repair culture with BSA were almost the same as that with FCS. Secondly, after biopsied embryos were similarly cultured for repair with BSA or FCS, re-expanded embryos were selected for vitrification. After warming and exposure to 0.5 M sucrose with 20% FCS in mPBS, the embryos were cultured in TCM199 with 5% FCS for 24 h. The re-expansion rate and mean total number of cells in re-expanded blastocysts in the BSA treatment group (97.4 +/- 2.9% and 106 +/- 42) was significantly higher than that in the FCS treatment group (51.6 +/- 9.1% and 61 +/- 38), respectively (P<0.05 and P<0.01). In conclusion, both FCS and BSA supplementation can be useful for repairing cultures of bovine biopsied blastocysts; but, compared with BSA supplementation, FCS supplementation during repair culture reduces the post-warm viability of biopsied and subsequently vitrified embryos.  相似文献   

20.
Improving pregnancy rates associated with the use of cryopreserved human oocytes would be an important advance in human assisted reproductive technology (ART). Vitrification allows glasslike solidification of a solution without ice crystal formation in the living cells. We have attempted to improve the survival rates of oocytes by a vitrification technique using bovine models. In vitro matured oocytes with or without cumulus cells were vitrified with either 15.0% (v/v) ethylene glycol (EG) + 15% (v/v) dimethylsulfoxide (DMSO) + 0.5 M sucrose or 15% (v/v) EG + 15% (v/v) 1,2-propanediol (PROH) + 0.5 M sucrose, using 'Cryotop' or 'thin plastic sticker', respectively. The oocyte survival rates after vitrifying-warming, and the capacity for fertilization and embryonic development were examined in vitro. The rate of embryonic development to blastocyst was significantly higher (P<0.05) in the oocytes vitrified with 15% (v/v) EG + 15% (v/v) PROH + 0.5 M sucrose than in the oocytes vitrified with 15% (v/v) EG + 15% (v/v) DMSO + 0.5 M sucrose (7.4% +/- 4.1 vs. 1.7% +/- 3.0, respectively). Oocytes vitrified without cumulus cells had a higher survival rate after thawing and a superior embryonic developmental capacity compared with oocytes vitrified with cumulus cells. Prolonged pre-incubation time after thawing adversely affected the rates of embryonic cleavage and development. These results indicate that in vitro matured bovine oocytes can be vitrified successfully with the mixture of the cryoprotectants, EG + PROH, the absence of cumulus cells for vitrification does not affect oocyte survival rate after warming, and vitrified and warmed oocytes do not require pre-incubation before in vitro fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号