首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.

Purpose

Plantation is an important strategy for forest restoration and carbon (C) storage. Plantations with different tree species could significantly affect soil properties, including soil pH, soil nutrient content, soil microbial activities, and soil dissolved organic C. Changes in these abiotic and biotic factors could regulate mineralization of soil organic C (SOC). However, it remains unclear to what extent these factors affect the mineralization of SOC under different tree species plantations.

Materials and methods

Soil was collected at 0–10 cm depth from plantations with Pinus elliottii Engelm. var. elliottii, Araucaria cunninghamii, and Agathis australis, respectively, in southeast Queensland, Australia. Soil samples were assayed for soil organic C; organic N and mineralization of SOC; soil particle size; total C, N, and P; and pH. In addition, a 42-day laboratory incubation with substrate additions was done to examine the influence of different substrates and their combinations on bio-available organic C.

Results and discussion

Our results suggested that SOC mineralization was mainly determined by soil pH and soil C content among plantations with different tree species, whereas SOC mineralization was not correlated with soil N and P contents. These results were further confirmed by the substrate addition experiments. SOC mineralization of soils from slash pine showed greater response to C (glucose) addition than soils from other two plantations, which suggested significant differences in SOC mineralization among plantations with different tree species. However, neither N addition nor P addition had significant effects on SOC mineralization.

Conclusions

Our results indicated that plantations with different tree species substantially affect the mineralization and stability of soil organic C pool mainly by soil pH and soil C content.
  相似文献   

2.

Purpose

The purpose of this study was to better understand how both the content and flux of soil carbon respond to forest succession and anthropogenic management practices in forests in subtropical China.

Materials and methods

We assembled from the literature information on soil organic carbon (SOC) and soil respiration (Rs) covering the forest successional chronosequence from pioneer masson pine (Pinus massoniana) forest (MPF) to medium broadleaf and needleleaf mixed forest (BNMF) and the climax evergreen broadleaf forest (EBF), along with the two major forest plantation types found in subtropical China, Chinese fir (Cunninghamia lanceolata) forest (CFF) and Moso bamboo (Phyllostachys pubescens) forest (MBF).

Results and discussion

Both SOC and Rs increased along the forest successional gradient with the climax EBF having both the highest SOC content of 33.1?±?4.9 g C kg?1(mean?±?standard error) and the highest Rs rate of 46.8?±?3.0 t CO2?ha?1 year?1. It can be inferred that when EBF is converted to any of the other forest types, especially to MPF or CFF, both SOC content and Rs are likely to decline. Stand age did not significantly impact the SOC content or Rs rate in either types of plantation.

Conclusions

Forest succession generally increases SOC content and Rs, and the conversion of natural forests to plantations decreases SOC content and Rs in subtropical China.
  相似文献   

3.

Purpose

Forest ecosystems play an important role in sequestering carbon in their biomass and soils. Moso bamboo plantations, as a special forest type, are mainly distributed in southern China. There is little information about the carbon storage in moso bamboo plantations, it is now important to better understand the moso bamboo’s carbon sequestration. The main objectives of this study were to investigate the spatial variation of aboveground biomass carbon (AGC) and soil organic carbon (SOC) in moso bamboo plantations and to compare carbon storage in moso bamboo plantations under different management options.

Materials and methods

A total of 73 moso bamboo plots were selected in Anji County, which is a famous “bamboo town” in northwest Zhejiang province, China. The diameter at breast height and the age of each moso bamboo in the selected plots were measured in order to calculate the AGC. SOC was analyzed using sulfuric acid–potassium dichromate solution. One-way ANOVA was applied to analyze the significant difference of AGC and SOC under different management options. Geostatistics and geographical information were used to study the spatial dependence characteristics of AGC and SOC.

Results and discussion

The AGC values were very variable, ranging from 9.92 to 38.70 Mg?ha?1, with an average of 20.85 Mg?ha?1. The SOC values were from 34.8 to 176.17 Mg?ha?1. Both the AGC and SOC values were followed normal distributions. Moso bamboo plantations contributed about 16.5 % of total forest biomass carbon in Zhejiang Province, indicating its important influence on regional carbon budget. Geostatistical analysis revealed that the AGC had moderate spatial autocorrelation. A nested model (a spherical model with a Gaussian model) was chosen to describe the variogram. Spatial patterns for AGC were found in Anji County, with relatively high AGC values were found in the southwestern part of Anji County, and low values were located in the eastern and central parts of the county. While no clear spatial autocorrelation trend was observed in the semivariogram of SOC, indicating a random distribution pattern for SOC in the study area. Meanwhile, the Pearson’s correlation between AGC and SOC in bamboo plantation was weak (r?=?0.064, p?=?0.496), due to moso bamboo’s special growth process and different management options by human beings.

Conclusions

In this study, moderate spatial dependency was found for AGC, while the spatial autocorrelation of SOC was poor. In moso bamboo forest ecosystem, SOC was mainly stored at the top 40 cm layer. Management options were proved to be an important factor for carbon sequestration. Extensive management is an efficient way to increase carbon stock, compared to moderate and intensive management. With the rapid increase of plantation area, moso bamboo ecosystem will continue to play an important role in regional carbon budget.  相似文献   

4.

Purpose

It has been widely recognized that land use changes can cause significant alterations of soil organic matter (SOM) of various ecosystems. Forest conversion, a common land use change, and its effects on SOM have been a hot research topic during the past two decades. However, the mechanisms of the effects of forest conversion on SOM dynamics, particularly in deep soils, largely remain uncertain. This study aimed to examine the impacts of forest conversion on SOM stabilization through the analysis of soil aggregate and density fractionation, microbial composition, and functions in deep soils.

Materials and methods

Soil C and microbes were sampled in soil layers of 0–20 and 60–80 cm under broadleaved secondary forest and two coniferous plantations (Cunninghamia lanceolata and Pinus massoniana). Aggregate and density fractionation techniques were used to analyze C accumulation in non-protected, physically, chemically, and biochemically protected C fractions. A 90-day laboratory mineralization incubation experiment with and without 400-mg C kg?1 soil glucose and phenol was conducted to determine the potential mineralizable C, utilization of substrate capacity, and metabolic quotient (qCO2).

Results and discussion

Conversion of secondary forests into coniferous plantations significantly decreased bulk soil C, especially in the deep soils. Forest conversion significantly decreased non-protected, physically, and chemically protected C fractions in both topsoil and deep soil and biochemically protected C fraction in deep soils. The soil organic carbon (SOC) of topsoils was dominated by non-protected fraction while in deep soil which was dominated by protected fraction. Compared with the topsoils, soil microbes in the deep soils tend to preferentially use labile soil organic matter with lower substrate use efficiency (higher values of qCO2), which indicates that a r-strategy dominates of microbes. The increased respiration rate in the deep soils caused by forest conversion, when normalized to soil C, indicates that deep SOM may be more prone to decomposition and destabilization than top SOM.

Conclusions

Forest conversion can cause a significant alteration of SOC stabilization through the changes of physically, chemically, and biochemically protected SOC fractions. The mechanisms for the changes in non-protected or/and protected SOC fractions may be associated with the redistribution of r-strategy- and K-strategy-dominated microbes due to changes in litter inputs and priming effects.
  相似文献   

5.

Purpose

Moso bamboo (Phyllostachys edulis), an important economic crop, is distributed from low- to medium-elevation mountains in Taiwan. Bamboo is a fast-growing herbaceous species with an extensive rhizome structure. With the hypothesis that the characteristics of soil organic matter and microbes might change after long-term bamboo plantation, we investigated different fractions of organic C and N as well as soil microbial biomass and activities in five moso bamboo plantations along an elevation gradient in Central Taiwan.

Materials and methods

Five soil samples (top 10 cm of soil) were collected from each bamboo plantation (600, 800, 1,000, 1,200, and 1,400 m above sea level (asl)) in January 2011. Soil was processed and analyzed for soil total C and N contents, biologically available C, potentially mineralizable N, soil microbial biomass and soil respiration (CO2). Two extraction methods (2 M KCl and hot-water extraction) were used to estimate soil soluble organic C and N (SbOC and SbON) and soil inorganic N (NH4 + and NO3 ?) concentrations to evaluate the relationship with soil organic matter and microbe characteristics in bamboo plantations.

Results and discussion

Soil total C and N contents as well as soil microbial biomass and soil respiration (CO2) of the bamboo plantations increased along the elevation gradient. Temperature changes along elevation contributed to such variations observed among the selected bamboo plantations. The SbON in hot-water extracts was highest in the 1,200-m plantation, then in the 1,400-m plantation, and lowest in the low-elevation plantations (600, 800, and 1,000 m). However, SbON in 2 M KCl extracts did not differ by elevation. The SbON was strongly correlated with soil total N in both 2 M KCl and hot-water extracts, but only SbON in hot-water extracts was strongly correlated with microbial biomass N and potentially mineralizable N. SbOC was strongly correlated with soil total C content, microbial biomass C, and biologically available C in both 2 M KCl and hot-water extracts.

Conclusions

Soil total C and N, SbOC and SbON, and microbial biomass characteristics increased in the moso bamboo plantations with increasing elevation. No altitudinal difference in specific soil respiration (CO2) rate suggested that the enhanced potentially mineralizable N and soil respiration (CO2) in the high-elevation plantations were associated with increased microbial biomass rather than microbial activities.  相似文献   

6.
不同经营措施对毛竹林土壤有机碳含量及季节动态的影响   总被引:3,自引:0,他引:3  
Soil samples for conventional management (CM) and intensive management (IM) practices were taken over a year at 2-month intervals to determine the effect of management practices on soil organic carbon (SOC) and to quantify seasonal dynamics in SOC for bamboo (Phyllostachys pubescens Mazel ex H. de Lehaie) stands. The results with IM compared to CM showed large decreases in total organic carbon (TOC), microbial biomass carbon (MBC), water-soluble organic carbon (WSOC), and the MBC/TOC ratio in the soils. With all IM plots in the 0-20 cm depth across sampling periods, average decreases compared with CM were: TOC, 12.1%; MBC, 26.1%; WSOC, 29.3%; the MBC/TOC ratio, 16.1%; and the WSOC/TOC ratio, 20.0%. Due to seasonal changes of climate, seasonal variations were observed in MBC and WSOC. Soil MBC in the 0-20 cm depth in September compared to May were 122.9% greater for CM and 57.6% greater for IM. However, due primarily to soil temperature, soil MBC was higher during the July to November period, whereas because of soil moisture, WSOC was lower in July and January. This study revealed that intensive management in bamboo plantations depleted the soil C pool; therefore, soil quality with IM should be improved through application of organic manures.  相似文献   

7.

Purpose

The impacts of land-use change on dynamics of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) in the subsoil (>?30 cm) are poorly understood. This study aims to investigate whether the effects of land-use change on stocks and stoichiometric ratios (RCN, RCP, and RNP) of SOC, TN, and TP can be different between topsoil (0–30 cm) and subsoil (30–60 cm) in the Ili River Valley, northwest China.

Materials and methods

Soil samples (0–10, 10–20, 20–30, 30–40, 40–50, and 50–60 cm) were collected from a pasture (PT), a 27-year-old cropland (CL) converted from PT, and a 13-year-old poplar (Populus tomentosa Carr.) plantation (PP) converted from CL. SOC, TN, and TP concentrations and soil bulk density were determined to calculate stocks and stoichiometric ratios (molar ratios) of SOC, TN, and TP.

Results and discussion

Conversion from PT to CL led to substantial losses in SOC, TN, and TP pools in both topsoil and subsoil, and the reduction rates in subsoil (13.8–24.7%) were higher than those in topsoil (8.5–17.3%), indicating that C, N, and P pools in subsoil could also be depleted by cultivation. Similar to topsoil, significant increases in SOC, TN, and TP stocks were detected after afforestation on CL in subsoil, although the increase rates (31.2–56.2%) were lower than those in topsoil (47.8–69.1%). Soil pH and electrical conductivity (EC), which generally increased after conversion from PT to CL while decreased after CL afforestation, showed significant negative correlations with SOC, TN, and TP, suggesting that cultivation might lead to soil degradation, whereas afforestation contributed to soil restoration in this area. Significant changes in C:N:P ratios in topsoil were only detected for RNP after conversion from CL to PP. By contrast, land-use change significantly altered both RCN and RNP in the subsoil, demonstrating that the impacts of land-use change on RCN and RNP were different between topsoil and subsoil. The significant relationship between soil EC and RNP suggested that RNP might be a useful indicator of soil salinization.

Conclusions

Stocks of SOC, TN, and TP as well as RCN and RNP in subsoil showed different responses to land-use change compared to those in topsoil in this typical agro-pastoral region. Therefore, it is suggested that the effects of land-use change on dynamics of SOC, TN, and TP in subsoil should also be evaluated to better understand the role of land-use change in global biogeochemical cycles.
  相似文献   

8.
人工林代替天然林后土壤碳库的变化   总被引:19,自引:8,他引:19  
Changes in soil carbon pools under Chinese fir (Cunninghamia lanceolata) and bamboo (Phyllostachys pubescent) plantations substituted for a native forest (Quercus acutissima, Cyclobalanopsis glauca, Cas-tanops~.s sclerophyUa, Platycarya strobilacea, Lithocarpus glaber) were studied on the hills with acid parent rock and soils classified as red soils (Ferrisols) in Huzhou, Zhejiang Province of east China. It was found that total soil organic carbon (TSOC), easily oxidisable carbon (EOC) and water-soluble organic carbon(WSOC) under bamboo plantation were increased, but microbial biomass carbon (MBC) was decreased. On the contrary, Chinese fir induced declines of all fractions of C including TSOC, EOC, WSOC and MBC.The percentages of the active fractions of soil C (EOC and WSOC) were increased in the plantations as compared to the native broad-leaved forest, but proportions of soil organic C as MBC were decreased. It could be concluded that bamboo plantation had a great ability of not only fixing C but also accelerating soil C pool cycle, improving nutrient and microorganism activity; therefore, it is a good ecosystem and could be recommended for wide development. Chinese fir would shrink the soil C pool and deteriorate sou biological fertility, so it did not benefit CO2 fixing and land sustainable utilization.  相似文献   

9.
以起始于1984年的长期不同经营模式毛竹林为研究对象,探讨了夏季毛竹林集约经营后土壤有机碳的变化。结果表明:(1)集约经营后0~80 cm土层毛竹林土壤总有机碳平均增加了5.48%,易氧化碳含量平均增加了15.14%,水溶性有机碳含量平均下降了3.98%,三者均未达到显著差异。(2)两种毛竹林土壤总有机碳、易氧化碳、水溶性有机碳的剖面特征均随土层深度的增加而呈现下降趋势,但下降速度不同。集约经营在一定程度上影响毛竹土壤易氧化碳剖面特征。(3)土壤总有机碳、易氧化碳与土壤养分之间相关性均达到极显著水平,而水溶性有机碳与土壤养分之间相关性不显著。(4)集约经营提高了土壤易氧化碳占总有机碳的比例、土壤碳库活度,并在土壤剖面部分土层差异达到显著水平。但其水溶性有机碳占总有机碳的比例3.74%,低于粗放经营毛竹林的4.10%。因此,集约经营的毛竹林,通过配施恰当比例的有机无机肥,结合土壤垦复、除草、合理的竹株留养和采伐等综合竹林经营技术,以达到改善土壤质量和实现毛竹林可持续经营的目的,也可改善土壤生物化学活性。  相似文献   

10.
The ratios of soil carbon (C) to nitrogen (N) and C to phosphorus (P) are much higher in Chinese temperate forest soils than in other forest soils, implying that N and P might limit microbial growth and activities. The objective of this study was to assess stoichiometric responses of microbial biomass, enzyme activities, and respiration to N and P additions. We conducted a nutrient (N, P, and N + P) addition experiment in two temperate soils under Korean pine (Pinus koraiensis) plantation and natural broadleaf forest in Northeast China and measured the microbial biomass C, N, P; the activities of β-glucosidase (BG), N-acetyl-β-glucosaminidase (NAG), and acid and alkaline phosphomonoesterase (AP); and the microbial respiration in the two soils. Nitrogen addition increased microbial biomass N and decreased microbial biomass C-to-N ratio and microbial respiration in the two soils. Nitrogen addition decreased NAG activity to microbial biomass N ratio, P addition decreased AP activity to microbial biomass P ratio, and N, P, and N + P additions all increased BG activity to microbial biomass C ratio. These results suggest that microbial stoichiometry is not strictly homeostatic in response to nutrient additions, especially for N addition. The responses of enzyme activities to nutrient additions support the resource allocation theory. The N addition induced a decline in microbial respiration, implying that atmospheric N deposition may reduce microbial respiration, and consequently increase soil C sequestration in the temperate region.  相似文献   

11.
城郊土壤不透水表面有土壤机碳转化及其相关性质的研究   总被引:2,自引:0,他引:2  
Installation of impervious surface in urban area prevents the exchange of material and energy between soil and other environmental counterparts, thereby resulting in negative effects on soil function and urban environment. Soil samples were collected at 0-20 cm depth in Nanjing City, China, in which seven sites were selected for urban open soils, and fourteen sites with similar parent material were selected for the impervious-covered soils, to examine the effect of impervious surface on soil properties and microbial activities, and to determine the most important soil properties associated with soil organic carbon (SOC) transformation in the urban soils covered by impervious surfaces. Soil organic carbon and water-soluble organic carbon (WSOC) concentrations, potential carbon (C) and nitrogen (N) mineralization rates, basal respiration, and physicochemical properties with respect to C transformation were measured. Installation of impervious surface severely affected soil physicochemical properties and microbial activities, e.g., it significantly decreased total N contents, potential C mineralization and basal respiration rate (P 〈 0.01), while increased pH, clay and Olsen-P concentrations. Soil organic carbon in the sealed soils at 0-20 cm was 2.35 kg m-2, which was significantly lower than the value of 4.52 kg m-2 in the open soils (P 〈 0.05). Canonical correlation analysis showed WSOC played a major role in determining SOC transformation in the impervious-covered soil, and it was highly correlated with total N content and potential C mineralization rate. These findings demonstrate that installation of impervious surface in urban area, which will result in decreases of SOC and total N concentrations and soil microbial activities, has certain negative consequences for soil fertility and long-term storage of SOC.  相似文献   

12.
Impact of combined application of inorganic and organic fertilizers on soil carbon dioxide (CO2) emission is poorly understood. We investigated the effects of inorganic fertilizer (IF), organic fertilizer (OF), and a mixture of organic and inorganic fertilizers (OIF) applications on the dynamics of soil CO2 efflux in intensively managed Moso bamboo plantations. Soil CO2 efflux and concentrations of water soluble organic C (WSOC) and microbial biomass C (MBC) in the IF treatment were higher than those in the control but lower than those in the OF and OIF treatments. Both OF and OIF treatments increased the SOC stock. Strong exponential relationships (p < 0.01) between soil temperature and CO2 efflux were observed in all treatments. Soil CO2 efflux in all four treatments was correlated with WSOC (p < 0.05) but not with MBC. We concluded the combined approach can possibly contribute to increasing the level of SOC stock in intensively managed plantations.  相似文献   

13.
Fertilization is an important factor influencing the chemical structure of soil organic carbon (SOC) and soil microbial communities; however, whether any connection exists between the two under different fertilization regimes remains unclear. Soils from a 27-year field experiment were used to explore potential associations between SOC functional groups and specific bacterial taxa, using quantitative multiple cross-polarization magic-angle spinning 13C nuclear magnetic resonance and 16S rRNA gene sequencing. Treatments included balanced fertilization with organic materials (OM) and with nitrogen (N), phosphorus (P), and potassium (K) mineral fertilizers (NPK); unbalanced fertilization without one of the major elements (NP, PK, or NK); and an unamended control. These treatments were divided into four distinct groups, namely OM, NPK, NP plus PK, and NK plus control, according to their bacterial community composition and SOC chemical structure. Soil total P, available P, and SOC contents were the major determinants of bacterial community composition after long-term fertilization. Compared to NPK, the OM treatment generated a higher aromatic C–O and OCH3 and lower alkyl C and OCH abundance, which were associated with the enhanced abundance of members of the Acidobacteria subgroups 6 and 5, Cytophagaceae, Chitinophagaceae, and Bacillus sp.; NP plus PK treatments resulted in a higher OCH and lower aromatic C–C abundance, which showed a close association with the enrichment of unclassified Chloracidobacteria, Syntrophobacteraceae, and Anaerolineae and depletion of Bacillales; and NK plus control treatments resulted in a higher abundance of aromatic C–C, which was associated with the enhanced abundance of Bacillales. Our results indicate that different fertilization regimes changed the SOC chemical structure and bacterial community composition in different patterns. The results also suggest that fertilization-induced variations in SOC chemical structure were strongly associated with shifts in specific microbial taxa which, in turn, may be affected by changes in soil properties.  相似文献   

14.
【目的】 毛竹入侵能够对生态系统的各个方面产生影响,包括森林生态系统氮循环。生物固氮是森林生态系统氮循环的重要一环,研究毛竹入侵过程中土壤固氮微生物的变化,可为毛竹入侵对生态功能影响的评价提供理论依据。 【方法】 选取天目山自然保护区的三个毛竹入侵带 (青龙山、石门洞和进山门),分别在三个入侵带中沿毛竹入侵方向采集毛竹纯林、毛竹与原林混交林以及原林地的表层土壤,分析pH、有机碳、碱解氮、有效磷和速效钾等土壤化学性质,应用基于nifH功能基因的末端限制性片段长度多态性 (T-RFLP) 和荧光定量PCR (qPCR) 技术,分析土壤固氮微生物群落结构和丰度的变化。 【结果】 毛竹入侵后土壤化学性质呈现三种不同情况,在三个入侵带中总体上升的有pH、有机碳、碱解氮、有效磷,下降的为速效钾,而硝态氮的变化均不显著,总体上,土壤养分含量在毛竹入侵后有所上升。土壤固氮微生物的丰度随毛竹入侵过程降低,其中进山门入侵带的变化显著 (P < 0.05)。土壤固氮微生物T-RFLP的结果显示,48 bp在三个入侵带中均为优势片段;不同的T-RFs在毛竹入侵过程中变化各异,有的片段在毛竹入侵后消失,有的片段在毛竹入侵后出现,有的片段变化不显著。土壤固氮微生物群落的Shannon指数和均匀度指数随毛竹入侵降低,Simpson指数相反,这些指标只在石门洞入侵带的不同林分之间存在显著差异 ( P < 0.05);多响应置换过程分析 (MRPP) 显示,石门洞和进山门入侵带毛竹入侵前后土壤固氮微生物群落结构有显著变化 ( P < 0.05);冗余分析 (RDA) 结果表明,土壤性质对固氮微生物群落变化的解释率普遍较低 (低于30%),三个入侵带显著影响土壤固氮微生物群落变化的土壤化学性质各不相同,并且三个入侵带的样点在RDA坐标图中分布格局并不统一。 【结论】 即使同一自然保护区的三个毛竹入侵带,土壤固氮微生物群落随着入侵过程的变化并不一致,母岩和原有植被产生的综合作用导致土壤固氮微生物群落发生变化,但需结合更多的因素进行进一步地探讨。   相似文献   

15.
To quantify the relationship between the soil organic matter and color parameters using the CIE-Lab system, 62 soil samples (0–10 cm, Ferralic Acrisols) from tea plantations were collected from southern China. After air-drying and sieving, numerical color information and reflectance spectra of soil samples were measured under laboratory conditions using an UltraScan VIS (HunterLab) spectrophotometer equipped with CIE-Lab color models. We found that soil total organic carbon (TOC) and nitrogen (TN) contents were negatively correlated with the L* value (lightness) (r = –0.84 and –0.80, respectively), a* value (correlation coefficient r = –0.51 and –0.46, respectively) and b* value (r = –0.76 and –0.70, respectively). There were also linear regressions between TOC and TN contents with the L* value and b* value. Results showed that color parameters from a spectrophotometer equipped with CIE-Lab color models can predict TOC contents well for soils in tea plantations. The linear regression model between color values and soil organic carbon contents showed it can be used as a rapid, cost-effective method to evaluate content of soil organic matter in Chinese tea plantations.  相似文献   

16.

Purpose

Paulownia, one of the fastest growing broad-leaved tree species in the world, is widely distributed in the warm temperate regions of China. However, there are few commercial-scale Paulownia plantations, and there is only limited information available about the most suitable soil quality for Paulownia fortunei growth in mid-subtropical, Hunan Province, China.

Materials and methods

To understand the effect of the growth of P. fortunei on soil conditions, 25 soil property parameters under Paulownia plantations were studied in Hunan Province, China. Seventy-two standard plots of eight different stand types were analyzed by three statistical approaches to assess soil quality (SQ) in the different P. fortunei plantations.

Results and discussion

The results revealed that a majority of the soil characteristics when intercropping with oilseed rape and the pure P. fortunei (plantation III) were better than intercropping with Camellia oleifera, orange trees, and Cunninghamia lanceolata (Lamb.). Available calcium, available magnesium, available potassium, available phosphorus, soil thickness, slope, soil organic matter, available sulfur, available copper, dehydrogenase, and available zinc were selected as the minimum data set (MDS). The SQ index (SQI) showed that three classes for soil quality among the eight P. fortunei plantations ranged from 0.48 to 0.88 and these were correlated with standing volume (p?<?0.05).

Conclusions

From the results, we concluded that selected MDS indicators can describe the soil fertility quality of P. fortunei plantations, and that the relationship between SQI and standing volume has a biological significance. P. fortunei plantations intercropped with Camellia oleifera, orange trees, and Cunninghamia lanceolata (Lamb.) caused a deterioration in SQ, but intercropping oilseed rape and pure P. fortunei plantations produced an improvement in SQ.
  相似文献   

17.

Purpose

Biochemical protection is an important mechanism for maintaining the long-term stability of the soil carbon (C) pool. The labile and recalcitrant pools of soil organic matter (SOM) play different roles in regulating C and N dynamics; however, few studies have characterized the capacity of soil C sequestration while considering the biochemical quality of SOM. The aim of the present study was to assess the changes in the soil organic carbon (SOC) and nitrogen (N) pools during a traditional rotation period (25 years) of a Chinese fir (Cunninghamia lanceolata) plantation with an emphasis on SOM biochemical quality.

Materials and methods

Three different forest stand development stages—young (6 years old), middle-aged (16 years old) and mature (25 years old)—were selected for soil sampling to a depth of 100 cm. Total C and total N of the soil was analysed to determine the changes in the SOC and N stocks among the three development stages using an equivalent soil mass (ESM) approach. Bulk soils were fractionated into labile and recalcitrant fractions using the acid hydrolysis method to identify the quality of SOM.

Results and discussion

The mineral soil organic carbon pool at a 1-m depth slightly decreased from the young stand to the middle-aged stand and rapidly increased by 28 % to reach a maximum in the mature stand. SOC accumulation in the surface soil predominated the changes in total SOC stocks in all three stands. The increased N was reflected in the entire depth, and the highest soil N accumulation was in the mature stand. The recalcitrant C concentration and SOC were positively correlated. The non-hydrolysable C proportion was lower in the middle-aged stand versus the young stand (8.69 % loss), while the labile C percentage was higher (13.89 % gain). In the mature stand, the recalcitrant C index increased to 39.84 %. The recalcitrant index of C decreased with an increasing soil depth, whereas the recalcitrant index of N dramatically increased.

Conclusions

These results highlighted the significant effect of the stand age and the soil depth on the storage and biochemical availability of SOM in Chinese fir plantations of southern China. The recalcitrant index of C changed with the change in SOC concentration, indicating that biochemical protection mechanism plays an important role in soil C sequestration. In addition, more attention should be paid to subsoil C protection in the management of Chinese fir plantations because of low biochemical stability.
  相似文献   

18.
Although soil Collembola are known to contribute to soil carbon (C) cycling, their contribution to the mineralization of C sources that differ in bioavailability, such as soil organic C (SOC) and leaf litter, is unknown. Stable C isotopes are often used to quantify the effects of both soil C and litter C on C mineralization. Here, 13C-labeled litter was used to investigate the effects of Collembola (Folsomia candida) on the mineralization of both SOC and litter C in laboratory microcosms. The three microcosm treatments were soil alone (S); soil treated with δ13C-labeled litter (SL); and soil treated with δ13C-labeled litter and Collembola (SLC). The presence of Collembola did not significantly affect soil microbial biomass or litter mass loss and only had a small effect on CO2 release during the first week of the experiment, when most of the CO2 was derived from litter rather than from SOC. Later, during the experiment (days 21 and 63), when litter-derived labile C had been depleted and when numbers of Collembola had greatly increased, Collembola substantially increased the emission of SOC-derived CO2. These results suggest that the effect of Collembola on soil organic C mineralization is negatively related to C availability.  相似文献   

19.

Purpose

Intensive management, such as fertilization and organic mulching, is applied frequently in Lei bamboo (Phyllostachys praecox) plantations to achieve higher production in subtropical China. However, responses as well as key impact factors of soil microbial properties under such management remain uncertain. We analyzed the relationships between nutrient changes and microbial properties and assessed the main factors determining microbial biomass, activity, and functional diversity in soils under intensive management in a Lei bamboo plantation.

Materials and methods

Soil samples of treatments of no fertilization (control), chemical fertilization (CF), and chemical and organic fertilization combined with organic mulching (CFOM + M) were taken before mulching. The soil organic carbon (SOC), dissolved organic carbon, and total and available nitrogen (N), phosphorus (P), and potassium (K) were measured. Microbial biomass carbon (MBC), basal respiration, and mineralization were also analyzed. Community level of physiological profile (CLPP) of microorganisms was analyzed by BIOLOG method to estimate the functional diversity and carbon (C) source utilization patterns of microbes. Principal component analysis (PCA), principal response curve (PRC), correlation analysis, regression analysis, and redundancy analysis (RDA) were performed to clarify changes in variables and determine the factors influencing microbial properties.

Results and discussion

SOC and total and available N, P, and K increased as follows: CFOM + M > CF > control. However, C/P and N/P ratios showed an opposite trend. MBC and respiration were not affected, but microbial quotient and metabolic quotient declined under intensive management. McIntosh diversity index was much higher in CFOM + M. The PCA showed that microorganisms in CFOM + M had a stronger ability to use most C sources. Weaker utilization of serine indicated an alleviation of nutrient deficiency in CFOM + M. PRC of CLPP showed a significant treatment effect and that utilization of serine sensitively responded to nutrient status over the whole incubation time. RDA showed that total and available N, total K, and C/P were the main factors influencing utilization of C sources by microbial communities.

Conclusions

Fertilization combined with organic mulching increased soil nutrients, microbial biomass, and respiration in a Lei bamboo plantation. Abundant nutrients also increased C source use efficiency of microorganisms under intensive management. Changes of N and K and C/P might have led to a shift in microorganisms toward a different life strategy and determined the change in C source utilization patterns of microbial communities.
  相似文献   

20.
《Geoderma》2007,137(3-4):401-413
Land-use history – the number, type, and duration of previous land uses – is relevant to many questions regarding land-use effects on soil carbon, but is infrequently reported. We examine the importance of land-use history variables, as well as topographic and edaphic variables, on soil C in a range of forest types – native forest, pine plantations, secondary forest and rehabilitated forest – at three contrasting locations in south eastern Australia. Our comparisons include a novel forest conversion of exotic pine plantations to native, broadleaf forest.Using nested ANOVAs, we detected few differences in soil C concentration indices (total C, microbial biomass C, K2SO4–C) and C content among eucalypt-dominated vegetation and pine plantations within each location (0–10 cm depth). However, planned contrasts indicated a 30% decrease in soil C content with conversion of native forest to pine plantation of age 37 years. The reverse land-use change – pine plantation to native, broadleaf forest – was associated with a decrease in soil C concentration and content at one location (40%; age 12–13 years) and no detectable changes at another (to age 7 years). Variable effect between locations of this novel land-use change on soil C could be due to differences in potential productivity, conifer species, and plantation age.We used correlation coefficients and general linear models to identify widely applicable variables for predicting soil C concentration and content at local scales (≤ 20 km2). Within-location relationships with topographic variables were weak and infrequent relative to those with edaphic and land-use history variables. Soil texture was strongly correlated with soil C at each location, although the relative significance of different particle size fractions differed among locations. Electrical conductivity appeared more widely applicable since it was included in C models at two locations. Combining land-use history and edaphic variables produced strong predictive models for soil C concentrations and content at two locations (total r2 0.83 to 0.95). Positive relationships were indicated between soil C and ‘age of current vegetation’ at one location, and negative relationships were indicated with ‘number of land uses’ at another. These data highlight a potential predictive role for land-use history variables in local-scale assessments of soil C in forested landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号