首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied soil ecology》2010,46(3):232-237
A pot experiment was carried out to study the sulfur (S) and lead (Pb) interaction and its impact on soil microbial community composition in rice rhizosphere soil under flooded conditions. Paddy soil was treated with a Pb gradient with and without thiosulfate addition and then planted with rice. The increasing addition of Pb resulted in plant yield reduction and high, phytotoxic concentrations of Pb in roots with relatively low concentration of Pb in shoots. Under the impact of thiosulfate, Pb uptake in plants and NH4OAc extractable Pb did not increase dramatically. PCR-DGGE experiment suggested that S action led to new bands. Specific clones (T3 and T6) found in S addition soils had high similarity to Thiobacillus, which indicated relatively high rates of potential S oxidation. S addition did not affect the availability Pb and the composition of soil microbial community. S addition is not a suitable amendatory tool of phytoremediation for Pb polluted soil.  相似文献   

2.
The effects of phosphorus supply (0, 30, and 90 mg P kg‐1) on growth, N2 fixation, and soil N uptake by soybean (Glycine max (L.) Merr.) were studied in a pot experiment using the 15N isotope technique. Phosphorus supply increased the top dry matter production at flowering and the dry matter production of seeds, straw, pod shells, and roots at late pod filling of inoculated soybeans. Phosphorus supply reduced the N concentration of plant tops at flowering, but increased the amount of N accumulated at both flowering and late pod filling. In inoculated soybeans total N accumulation paralleled the dry matter production. The P concentration in above‐ground plant parts of nodulated soybeans was not affected by P application. At flowering only 18 to 34% of total N was derived from N2 fixation, whereas as much as 74% was derived from N2 fixation at late pod filling. Only the addition of 90 mg P kg‐1 soil significantly increased the amount of N2 fixed at the late pod filling stage. Phosphorus supply did not influence the uptake of fertilizer or soil N in soybeans, even if the root mass was increased up to 60% by the P supply.  相似文献   

3.
外源磷对土壤无机磷的影响及有效性   总被引:5,自引:0,他引:5  
通过对我国具有代表性的几个典型土类15年长期定位试验的CK和NPK处理以及原始土壤中无机磷组分的分析,研究施磷肥对土壤无机磷形态的影响及有效性。结果表明,原始土壤中闭蓄态磷和Ca10-P占无机磷比例大,土壤磷有效性低;在不施外源磷条件下连续耕作,各个土类的无机磷总量均逐年减少,其中主要是Ca2-P、Al-P和Fe—P明显降低;长期施用磷肥提高了土壤无机磷总量(TIP)和各组分的含量,其中以Ca2-P、Al-P和Fe—P提高比例显著,而0-P和Ca10-P提高的比例少。说明累积在土壤中的肥料磷多以有效性较高的形态存在。  相似文献   

4.
有机肥对稻田土壤磷素潜在环境风险的影响   总被引:4,自引:0,他引:4  
采用灭菌和非灭菌相结合的室内淹水培养方法,在施用有机肥后,测定土壤及水层磷含量动态变化特征,以探明有机肥对稻田土壤磷素潜在环境风险的影响。结果表明:两处理土壤速效磷(Olsen-P)、水溶性磷(CaCl2-P)含量均随有机肥施用量增加而显著升高;水层总磷(TP)浓度与土壤Olsen-P(r=0.957**)、CaCl2-P(r=0.871**)含量呈显著正相关关系。水稻土施用有机肥后,土壤磷素有效性提高,磷素潜在环境风险增强,在6~18 d达到高峰,磷素流失潜能最大。低量施用有机肥(0.5%、1%)时,磷素环境风险增强主要由于有机酸对磷素的活化作用;高量施用有机肥(2.5%、5%)时,主要由于有机质对磷素的活化作用,两者作用比例分别为35%~50%、50%~65%。  相似文献   

5.
Phosphorus (P) fertilizers are usually supplied prior to or at planting of potato even though most P is taken up 40 to 80 d after emergence. This may lead to inefficient P use as a result of P leaching or fixation in the soil. This study evaluates the effects of split P application at multiple times during the growth period according to the plant's need for P. Potato (Solanum tuberosum L. cv. Ditta) was grown in pots in climate chambers, and radioactive 32P isotope was used to distinguish between the fertilizer and soil‐derived P sources. Two soils were tested in combination with five application rates of P, and the plants were harvested at four dates. The results show that the recovery of P fertilizer can be significantly enhanced if the P supply is split. The result also showed that the proportion of soil‐derived P, accumulated in the plant, was significantly reduced both when more fertilizer P was applied to the soil and when P supply was split into several applications. The positive effects of multiple P applications on the P recovery were greatest in the soil with low P status and low buffer capacity.  相似文献   

6.
Agricultural practices have strong impacts on soil microbes including both the indices related to biomass and activity as well as those related to community composition. In a grassland restoration project in California, where native perennial bunchgrasses were introduced into non-native annual grassland after a period of intensive tillage, weeding, and herbicide use to reduce the annual seed bank, microbial community composition was investigated. Three treatments were compared: annual grassland, bare soil fallow, and restored perennial grassland. Soil profiles down to 80 cm in depth were investigated in four separate layers (0-15, 15-30, 30-60, and 60-80 cm) using both phospholipid ester-linked fatty acid (PLFAs) and ergosterol as biomarkers in addition to microbial biomass C by fumigation extraction. PLFA fingerprinting showed much stronger differences between the tilled bare fallow treatment vs. grasslands, compared to fewer differences between restored perennial grassland and annual grassland. The presence or absence of plants over several years clearly distinguished microbial communities. Microbial communities in lower soil layers were little affected by management practices. Regardless of treatment, soil depth caused a strong gradient of changing habitat conditions, which was reflected in Canonical Correspondence Analysis of PLFAs. Fungal organisms were associated with the presence of plants and/or litter since the total amount and the relative proportion of fungal markers were reduced in the tilled bare fallow and in lower layers of the grassland treatments. Total PLFA and soil microbial biomass were highly correlated, and fungal PLFA biomarkers showed strong correlations to ergosterol content. In conclusion, microbial communities are resilient to the grassland restoration process, but do not reflect the change in plant species composition that occurred after planting native bunchgrasses.  相似文献   

7.
The influence of soil pH on the phospholipid fatty acid (PLFA) composition of the microbial community was investigated along the Hoosfield acid strip, Rothamsted Research, UK - a uniform pH gradient between pH 8.3 and 4.5. The influence of soil pH on the total concentration of PLFAs was not significant, while biomass estimated using substrate induced respiration decreased by about 25%. However, the PLFA composition clearly changed along the soil pH gradient. About 40% of the variation in PLFA composition along the gradient was explained by a first principal component, and the sample scores were highly correlated to pH (R2 = 0.97). Many PLFAs responded to pH similarly in the Hoosfield arable soil compared with previous assessments in forest soils, including, e.g. monounsaturated PLFAs 16:1ω5, 16:1ω7c and 18:1ω7, which increased in relative concentrations with pH, and i16:0 and cy19:0, both of which decreased with pH. Some PLFAs responded differently to pH between the soil types, e.g. br18:0. We conclude that soil pH has a profound influence on the microbial PLFA composition, which must be considered in all applications of this method to detect changes in the microbial community.  相似文献   

8.
《Pedobiologia》2014,57(4-6):205-213
Drought and heavy rainfall are contrasting conditions expected to result from increasingly extreme weather during climate change; and both scenarios will strongly affect the functioning of soil systems. However, little is known about the specific responses of soil microorganisms, whose functioning is intimately tied to the magnitude of the water-filled pore space in soil. Soil heterotrophic protists, being important aquatic soil organisms are considered as key-regulators of microbial nutrient turnover. We investigated the responses of distinct protist taxa to changes in soil water availability (SWA) using a modified enumeration technique that enabled quantification of protist taxa up to genus level. Our study revealed a non-linear shift of protist abundance with decreasing SWA and this became apparent at a maximum water-filled pore size of ≤40 μm. Generally, taxa containing large specimen were more severely affected by drought, but responses to either drought or rewetting of soils were not uniform among taxa. Changes in water availability may thus affect the functioning of key taxa and soil ecosystems long before aboveground “drought” effects become apparent.  相似文献   

9.
On the Loess Plateau of China, a dry soil layer may form due to excess transpiration, leading to degradation of black locust(Robinia pseudoacacia) stands. In order to better manage projects involving black locust, this study was intended to investigate the response of black locust transpiration rate to soil water availability as affected by meteorological factors using two representative soils(loamy clay and sandy loam) on the Loess Plateau. Four soil water contents were maintained for black locust seedlings grown in pots initially outdoors and then in a climate-controlled chamber, by either drying or irrigating the pots. In both environments, daily transpiration rates were related by a power function to air temperature and by a logistic function to reference evapotranspiration(ET0). Transpiration rates were more susceptible to changes in the meteorological conditions in the sandy loam than in the loamy clay soil. The transpiration rate in the well-watered treatment was greater for black locust grown in the sandy loam than in the loamy clay soil. Normalized transpiration rates were unaffected by ET0 until a critical value of soil water content(θc) was attained; the θc value decreased significantly for the loamy clay soil but increased significantly for the sandy loam soil when ET0 increased. These suggested that the effect of the meteorological condition on the transpiration characteristics of black locust was dependent on soil texture.  相似文献   

10.
11.
Soil microorganisms can use a wide range of nitrogen (N) compounds. When organic N sources are degraded, microorganisms can either take up simple organic molecules directly (direct route), or organic N may be mineralized first and taken up in the form of mineral N (mineralization-immobilization-turnover [MIT] route). To determine the importance of the direct route, a microcosm experiment was carried out. Two types of wheat residue were added to soil samples, including younger residue with a carbon (C) to N ratio of 12 and older residue with a C to N ratio of 29. Between days 1 and 4, the gross N mineralization rate reached 8.4 and 4.0 mg N kg−1 dry soil day−1 in the treatment with younger and older residue, respectively. During the same period, there was no difference in protease activity between the two residue amended treatments. The fact that protease activity was not related to gross N mineralization, even though the products of protease activity are the substrates for N mineralization, suggests that not all organic molecules released from residue or soil N passed through the soil mineral N pool. In fact, when leucine and glycine were added, only 10 and 53% of the amino acid-N, respectively, was mineralized. The fraction of N taken up via the direct route was estimated to be 55 and 62% for the young and older residue, respectively. After 28 days of incubation, the proportion of amino acid-N mineralized had increased especially in the soil amended with older residue, suggesting that the MIT route became increasingly important. This result is supported by an increase in the activities of enzymes responsible for the intracellular assimilation of ammonium (NH4+). Our results suggest that in contrast to what is proposed by many models of soil N cycling, both the direct and MIT routes were operative, with the direct route being the preferred route of residue N uptake. The direct route became less important over time and was more important in soil amended with older residue, suggesting that the direct route is favored by lower mineral N availabilities. An important implication of these findings is that when the direct route is dominant, gross N mineralization underestimates the amount of N made available from the residue.  相似文献   

12.
氮钾肥对磷在红壤肥际微域中迁移转化的影响   总被引:5,自引:1,他引:5  
在农田施肥中,氮肥和钾肥经常与磷肥一起施入土壤,一定程度上会影响磷的土壤化学行为。采用室内土柱实验研究了NH4Cl、KCl在与磷酸二氢钙(MCP)共施条件下对磷在红壤肥际微域中迁移和形态转化的影响。试验结果表明,共施NH4Cl或KCl未改变磷在红壤中的迁移距离,但对肥际微域中磷的形态转化产生了显著影响。与单施MCP相比,共施NH4Cl和KCl均显著降低了红壤肥际微域的土壤pH。在培养7 d和28 d时,共施NH4Cl均未对施肥点附近红壤的水溶性磷含量产生显著影响,而共施KCl在培养7 d时显著降低了水溶性磷含量,在培养28 d时却增加了水溶性磷含量。共施NH4Cl或KCl显著增加了红壤肥际微域内的酸溶性磷和有效磷含量。磷的迁移量回收结果表明,共施NH4Cl或KCl促进了磷从MCP中向红壤迁移,增加了磷的迁移量。  相似文献   

13.
土壤温度和含水量互作对抑制剂抑制氮素转化效果的影响   总被引:11,自引:1,他引:11  
周旋  吴良欢  戴锋 《农业工程学报》2017,33(20):106-115
为比较生化抑制剂组合对土壤氮素转化的抑制效果,揭示不同土壤温度和含水量互作对尿素水解抑制效应的影响。该文采用室内模拟培养方法,研究土壤含水量(60%和80%田间最大持水量,water holding capacity,WHC)和土壤温度(15、25和35℃)互作对生化抑制组合[N-丁基硫代磷酰三胺(N-(n-butyl)thiophosphoric triamide,NBPT)、N-丙基硫代磷酰三胺(N-(n-propyl)thiophosphoric triamide,NPPT)和2-氯-6(三氯甲基)吡啶(2-chloro-6(trichloromethyl)pyridine,CP)在黄泥田土壤中抑制氮素转化效果的影响。结果表明:土壤温度和含水量对生化抑制组合在黄泥田土壤中抑制尿素水解效应显著,以土壤温度影响更大。随着土壤温度增加,尿素水解转化增强,有效作用时间降低,硝化作用增强,脲酶和硝化抑制效应减弱;随着土壤含水量降低,尿素水解转化缓慢,有效作用时间延长,硝化作用减弱,脲酶和硝化抑制效应增强。不同土壤温度和含水量条件下,NBPT/NPPT或配施CP处理有效抑制黄泥田土壤脲酶活性,延缓尿素水解;CP或配施NBPT/NPPT处理有效抑制NH4+-N向NO_3~--N转化,保持土壤中较高NH_4~+-N含量长时间存在。新型脲酶抑制剂NPPT单独施用及与CP配施的土壤尿素水解抑制效果与NBPT相似。黄泥田土壤中生化抑制组合应用最佳的土壤温度和含水量分别为25℃和60%WHC。总之,针对不同土壤温度和含水量条件,在黄泥田土壤中应采用脲酶抑制剂与硝化抑制剂相结合的施肥方式。  相似文献   

14.
超微活化条件对磷矿粉磷素形态及肥效的影响   总被引:3,自引:0,他引:3  
采用化学分析、红外光谱分析以及盆栽试验研究了活化剂添加量及研磨时间对超微活化磷矿粉磷素形态及生物有效性的影响.结果表明,与普通磷矿粉相比,磷矿粉经超微活化处理后有效磷提高了45.1%~58.7%,活性磷提高了169.4%~203.6%,水溶性磷含量随活化剂添加量的增加也明显提高;当活化剂添加量达到5%时,3次水溶性磷的累积释放量较相同条件下制得的超微细磷矿粉提高84倍以上.适当延长研磨时间有利于磷矿粉磷素的释放,但效果不显著.红外光谱分析结果表明:超微细活化磷矿粉中与PO3-、HPO2-相关的特征吸收峰强度较普通磷矿粉显著增强,且生成了与PO43-、HPO42-相关的新特征吸收峰,使磷矿粉中的磷向有效状态转变.盆栽试验结果进一步表明,超微活化磷矿粉处理的玉米生物量、磷素利用率均显著高于磷矿粉、普通超微细磷矿粉以及过磷酸钙和磷酸二铵等常规水溶性磷肥,可增强抗固定能力而显著提高土壤有效磷含量.超微活化磷矿粉较高的活性磷总量和水溶性磷持续适度的供磷强度是其生物有效性高的原因.  相似文献   

15.
Abstract

After a 3‐months equilibration of soil with phosphorus (P) (up to four times the respective P sorption capacity), equilibrium P concentration (EPCo), standard P requirement (SPR), P sorption index (SI), and P availability by Bray I, Olsen, water and iron‐oxide paper strip methods were determined on three soils of the Latium region of Italy, widely ranging in their affinity for P. Soil P addition increased EPCo and availability P content and decreased SPR and SI values for all soils with differences between soil types a ffinction of P sorption maximum. The tractional increase of available NaHCO3‐P with added P, i.e. P availability index (F) was 0.486 for the soil with the lowest P sorption maximum, 0.217 for the soil with the highest P sorption maximum, and 0.369 for the third soil presenting an intermediate P sorption (r = 0.997; P<0.01). The results indicate that soil type, in addition to the amount of P added, will determine the potential for a soil to release P to runoff.  相似文献   

16.
为阐明施磷对不同质地棉田土壤磷素有效性及磷肥利用率的影响,以盆栽试验为基础,在不同质地(粘土、壤土、砂土)上设计5个磷素水平(P0、P150、P300、P600、P1200)研究棉田磷素状况和棉花磷素积累及磷肥利用率。结果表明:不同质地棉田土壤有效磷含量在苗期和蕾期均随施磷量的增加而增加,苗期时粘土、壤土、砂土的土壤有效磷含量在P1200处理下与对照相比分别增加了80.94%、85.78%、94.41%,蕾期则分别增加了76.82%、85.10%、94.20%。苗期时,土壤全磷含量分别在粘土P600、壤土P1200、砂土P600处理下达到最大值;蕾期时粘土、壤土和砂土的全磷含量均在P1200处理达到最大值,土壤磷素活化系数在苗期时表现为粘土砂土壤土,蕾期磷素活化系数在粘土和砂土基本呈持续递增状态,最大值与对照(P0)相比分别增加了34.22%、85.71%。植物整株干物质积累在不同土壤质地表现为粘土砂土壤土。植物全磷含量则是壤土略低于粘土,砂土最低。棉花整株磷素积累量在不同土质上表现为粘土最高,壤土次之,砂土最低,且分别在P600、P300、P600处理时达到最大值。不同磷水平下,磷肥表观利用率在3种土壤质地上表现不同,粘土、壤土、砂土分别在P150、P300、P600时达到最大值,与P0相比分别提高了16.84%、29.19%、10.68%。同一磷水平下不同土壤质地磷素生理利用率表现为砂土壤土粘土。因此,在生产中应针对土壤质地合理施磷,粘土土质下棉田施磷量应控制在约150 kg/hm~2,壤土土质应控制在150~300 kg/hm~2,砂土土质施磷量总体应控制在300~600 kg/hm~2,才能促进土壤中磷的有效性和棉花磷素吸收,从而提高磷肥利用率。  相似文献   

17.
Abstract

Changes in agronomic and environmental soil phosphorus (P) availability parameters, i.e., Mehlich‐ and Olsen‐extractable P, reversibly‐adsorbed P, soil‐solution P, and equilibrium‐P concentration were determined following equilibration of 13 Italian soils with five rates of P application (0, 12.5, 25, 50, and 100 mg P kg‐1 soil). Soil P availability as determined by each parameter increased with added P. The relative change in soil P availability with added P was a function of soil sorption index silicon (SI), according to the equation DP=(Padded)a*exp(b+g*SI). This equation accounted for 94 to 98% of the variance in soil‐P availability. The inclusion of SI in a soil testing program may increase the reliability in assessing both soil‐P fertilizer requirements and the vulnerability of a soil to P loss in runoff following land application of fertilizer or manure P.  相似文献   

18.
Abstract

Little is known about the effects of long-term fertilization on pesticide persistence. A long-term field experiment was thus conducted to study the influence of fertilization on soil physicochemical properties, microbial biomass carbon, microbial quotient, enzyme activities, and cypermethrin dissipation. Five fertilization treatments were arranged: organic manure (OM), NPK fertilizer, PK fertilizer, NK fertilizer, and no fertilizer (control). Soil organic C, N, P contents and enzymatic activities were higher in soils with balanced fertilization as opposed to those with unbalanced fertilization, especially fertilization with organic manure. The longest half-life of cypermethrin was in the NK treatment (15.1 d), the least in the PK treatment (9.6 d). Pesticide dissipation in non-sterilized and sterilized soils showed that changes of cypermethrin persistence were caused by biodegradation. Soil N/P ratio (ratio of soil-available N to available P) and available N content positively correlated with half-life (p<0.05), and could limit cypermethrin dissipation greatly. These results indicate that in agricultural practice, oversupplying N should not be advocated. P application may be an efficient way to decrease N/P ratio and enhance cypermethrin dissipation in soil with high available N content. Based on a comprehensive consideration of soil fertility, crop yield, and environment, a mixed application of organic manure and inorganic fertilizers is recommended in the region, although balanced fertilization results in slower cypermethrin dissipation than does N-deficiency treatment.  相似文献   

19.
【目的】 聚合度和聚合率是影响聚合态磷肥肥效的关键指标,本研究旨在明确聚合度和聚合率对聚磷酸盐在土壤中的转化、土壤磷有效性及磷肥肥效的影响。 【方法】 以灌耕灰漠土为供试土壤,玉米为供试作物进行了盆栽试验。试验共设5个处理:不施磷肥 (CK);磷酸二氢铵 (MAP);聚合度和聚合率不同的3种聚磷酸铵磷肥平均聚合度3,聚合率40% (APP-3-40%);平均聚合度3,聚合率90% (APP-3-90%);平均聚合度2.7,聚合率90% (APP-2.7-90%)。除对照不施磷肥外,每钵 (7kg 土) 施N 2.4 g、P2O5 1.1 g、K2O 0.7 g。于播种后第10、20、30、40、50、60、70、80、90 d采集土样,测定土壤水溶性磷和Olsen-P。并于第90 d测定土壤全磷,土壤有效态Fe、Mn、Zn含量和磷分级 (Guppy法)。分别于播种后第45和90 d取玉米植株样品,测定玉米干物质,含磷量与微量元素Fe、Mn与Zn含量。 【结果】 与MAP处理相比,不同聚合度与聚合率的聚磷酸磷肥处理均可显著提高土壤有效磷含量。聚合度均为3时,APP-3-90%处理土壤水溶性磷与有效磷比APP-3-40%分别提高了15.7%与7.9%,土壤Resin-P与NaHCO3-P分别提高了38.0%与22.8%,HCl-P则降低了6.2%。聚合率均为90%时,APP-3-90%处理的土壤有效磷比APP-2.7-90%提高了5.0%,Resin-P与NaHCO3-P分别提高了75.1%与34.2%,HCl-P降低了12.0%,APP-3-90%的玉米干物质与吸磷量比APP-2.7-90%处理的分别提高了14.3%与4.5%,聚合度相同的APP-3-90% 与APP-3-40%处理间差异不显著。聚磷酸磷肥可显著提高土壤微量元素 (Fe、Mn、Zn) 的有效性。在相同聚合率 (90%) 下,APP-3-90%处理的土壤有效Fe、Mn和Zn含量比APP-2.7-90%分别提高了5.7%、8.4%与29.9%。在相同聚合度 (n = 3) 下,APP-3-90%处理的土壤有效Fe和Zn含量比APP-3-40%分别提高了3.0%和29.0%。在相同聚合率 (90%) 下,APP-3-90%处理玉米的Fe和Zn吸收量比APP-2.7-90%分别提高了5.7%和19.5%,不同聚合率处理间差异不显著。 【结论】 聚磷酸磷肥可显著提高石灰性土壤磷及Fe、Mn和Zn的有效性,减少土壤对磷的固定;聚合度对土壤磷有效性与微量元素的活化作用显著大于聚合率。   相似文献   

20.
Vertical distribution and plant availability of soil P under subsurface irrigation were investigated in a 5‐year tomato‐grown‐greenhouse experiment. Irrigation was applied when soil water condition reached the predefined maximum allowable depletion (MAD) for different treatments, e.g., –10 kPa, –16 kPa, –25 kPa, –40 kPa, and –63 kPa. Results show that P distribution with soil depth was significantly affected by irrigation schedules. The general trend is that concentrations of soil total P and inorganic P were greater in topsoil than in subsoil, whereas the concentrations of soil organic P were larger at the depths of 0–10 cm, 30–40 cm, and 40–60 cm than at other soil depths. Comparison of different irrigation schedules indicates that more soil organic P was retained in the soils under the MAD of –25 kPa, –40 kPa, and –63 kPa, implying that irrigation of relatively low frequency and large water quantity of each irrigation event favored the accumulation of organic P in soils. In addition, we found that the concentrations of plant‐available P decreased with soil depth and were largest under the MAD of –16 kPa and –25 kPa. This result suggests that irrigation of relatively high frequency and low water quantity of each irrigation event led to greater P availability for plant uptake. Overall, this study suggests that the transformation and plant availability of soil P can be manipulated, to some degree, by soil‐water management. Maximum allowable depletion controlled between –16 kPa and –25 kPa could result in high availability of soil P in clay‐textured soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号