首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAGNETIC RESONANCE IMAGING FEATURES OF PRIMARY BRAIN TUMORS IN DOGS   总被引:1,自引:0,他引:1  
Magnetic resonance images of twenty-five dogs with histopathologically confirmed primary brain tumors were evaluated. A lesion was visible in each dog. Meningiomas were extra-axial lesions that enhanced markedly withj gadolinium-DTPA. Glimas were Characteized by intra-axial location, significant mass effect and surrounding edema, and variable enhancement patterns. Choroid plexus tumors and pituitary tumors were differentiated by their location and marked enbancement. Prediction of general typeof tumor was correct in 24 of 25 dogs.  相似文献   

2.
3.
Evaluation of the canine temporomandibular joint (TMJ) is important in the clinical diagnosis of animals presenting with dysphagia, malocclusion and jaw pain. In humans, magnetic resonance imaging (MRI) is the modality of choice for evaluation of the TMJ. The objectives of this study were to establish a technical protocol for performing MRI of the canine TMJ and describe the MRI anatomy and appearance of the normal canine TMJ. Ten dogs (one fresh cadaver and nine healthy live dogs) were imaged. MRIs were compared with cadaveric tissue sections. T1‐weighted (T1‐W) transverse closed‐mouth, T1‐W sagittal closed‐mouth, T1‐W sagittal open‐mouth, and T2‐W sagittal open‐mouth sequences were obtained. The condylar process of the mandible and the mandibular fossa of the temporal bone were hyperintense to muscle and isointense to hypointense to fat on T1‐W images, mildly hyperintense to muscle on T2‐W images, and were frequently heterogeneous. The articular disc was visible in 14/20 (70%) TMJs on T1‐W images and 13/20 (65%) TMJs on T2‐W images. The articular disc was isointense to hyperintense to muscle on T1‐W images and varied from hypointense to hyperintense to muscle on T2‐W images. The lateral collateral ligament was not identified in any joint. MRI allows evaluation of the osseous and certain soft tissue structures of the TMJ in dogs.  相似文献   

4.
This retrospective study describes the clinical and magnetic resonance (MR) imaging features of chronic orbital inflammation with intracranial extension in four dogs (two Dachshunds, one Labrador, one Swiss Mountain). Intracranial extension was observed through the optic canal (n=1), the orbital fissure (n=4), and the alar canal (n=1). On T1-weighted images structures within the affected skull foramina could not be clearly differentiated, but were all collectively isointense to hypointense compared with the contralateral, unaffected side, or compared with gray matter. On T2-, short tau inversion recovery (STIR)-, or fluid-attenuated inversion recovery (FLAIR)-weighted images structures within the affected skull foramina appeared hyperintense compared with gray matter, and extended with increased signal into the rostral cranial fossa (n=1) and middle cranial fossa (n=4). Contrast enhancement at the level of the affected skul foramina as well as at the skull base in continuity with the orbital fissure was observed in all patients. Brain edema or definite meningeal enhancement could not be observed, but a close anatomic relationship of the abnormal tissue to the cavernous sinus was seen in two patients. Diagnosis was confirmed in three dogs (one cytology, two biopsy, one necropsy) and was presumptive in one based on clinical improvement after treatment. This study is limited by its small sample size, but provides evidence for a potential risk of intracranial extension of chronic orbital inflammation. This condition can be identified best by abnormal signal increase at the orbital fissure on transverse T2-weighted images, on dorsal STIR images, or on postcontrast transverse or dorsal images.  相似文献   

5.
Intracranial arachnoid diverticula (cysts) are rare accumulations of cerebrospinal fluid (CSF) within the arachnoid membrane. The purpose of this retrospective study was to describe magnetic resonance imaging (MRI) characteristics of fourth ventricle arachnoid diverticula in a group of dogs. The hospital's medical records were searched for dogs with MRI studies of the brain and a diagnosis of fourth ventricle arachnoid diverticulum. Clinical characteristics were recorded from medical records and MRI studies were reinterpreted by a board‐certified veterinary radiologist. Five pediatric dogs fulfilled inclusion criteria. Clinical signs included cervical hyperaesthesia, obtundation, tetraparesis, and/or central vestibular syndrome. In all five dogs, MRI findings were consistent with obstructive hydrocephalus, based on dilation of all ventricles and compression of the cerebellum and brainstem. All five dogs also had cervical syringohydromyelia, with T2‐weighted hyperintensity of the gray matter of the cord adjacent to the syringohydromyelia. A signal void, interpreted as flow disturbance, was observed at the mesencephalic aqueduct in all dogs. Four dogs underwent surgical treatment with occipitalectomy and durotomy. A cystic lesion emerging from the fourth ventricle was detected in all four dogs during surgery and histopathology confirmed the diagnosis of arachnoid diverticula. Three dogs made excellent recovery but deteriorated shortly after surgery and were euthanized. Repeat MRI in two dogs revealed improved hydrocephalus but worsening of the syringohydromyelia. Findings from the current study supported theories that fourth ventricle arachnoid diverticula are secondary to partial obstruction of the central canal or lateral apertures and that arachnoid diverticula are developmental lesions in dogs.  相似文献   

6.
Signal changes within the bone marrow adjacent to osteoarthritic joints are commonly seen on magnetic resonance (MR) images in humans and in dogs. The histological nature of these lesions is poorly known. In this study, we describe the MR imaging of bone marrow lesions adjacent to the stifle joints of dogs with experimental osteoarthritis over 13 months. Histology of the proximal tibia at the end of the study was compared with the last MR imaging findings. In five adult dogs, the left cranial cruciate ligament was transected. Post-operatively, MR imaging was performed at 1, 2, 3, 4, 6, 8, and 13 months. Dogs were euthanised after 13 months and histological specimen of the proximal tibia were evaluated. Bone marrow edema like MR imaging signal changes were seen in every MR examination of all dogs in one or more locations of the proximal tibia and the distal femur. Lesions varied in size and location throughout the whole study with the exception of constantly seen lesions in the epiphyseal and metaphyseal region at the level of the tibial eminence. On histology, hematopoiesis and myxomatous transformation of the bone marrow and/or intertrabecular fibrosis without signs of bone marrow edema were consistent findings in the areas corresponding to the MR imaging signal changes. We conclude that within the bone marrow, zones of increased signal intensity on fat suppressed MR images do not necessarily represent edema but can be due to cellular infiltration. Contrary to humans, hematopoiesis is seen in bone marrow edema-like lesions in this canine model of osteoarthritis.  相似文献   

7.
Magnetic resonance (MR) imaging characteristics of intracranial granular cell tumors (GCTs) have been previously reported in three dogs. The goal of this retrospective study was to examine a larger number of dogs and determine whether distinctive MR characteristics of intracranial GCTs could be identified. Six dogs with histologically confirmed intracranial GCTs and MR imaging were included. Tumor location, size, mass effect, T1‐ and T2‐weighted signal intensity, and peritumoral edema MR characteristics were recorded. In all dogs, GCTs appeared as well‐defined, extra‐axial masses with a plaque‐form, sessile distribution involving the meninges. All tumors were located along the convexity of the cerebrum, the falx cerebri, or the ventral floor of the cranial vault. All tumors were mildly hyperintense on T1‐weighted images, and iso‐ to hyperintense on T2‐weighted images. A moderate‐to‐severe degree of peritumoral edema and mass effect were evident in all dogs. Findings indicated that, while several MR imaging characteristics were consistently identified in canine cerebral GCTs, none of these characteristics were unique or distinctive for this tumor type alone.  相似文献   

8.
The cervical spine of 27 dogs with cervical pain or cervical myelopathy was evaluated using magnetic resonance imaging (MRI). Spin echo T1, T2, and post-contrast T1 weighted imaging sequences were obtained with a 0.5 Tesla magnet in 5 dogs and a 1.5 Tesla magnet in the remaining 22 dogs. MRI provided for visualization of the entire cervical spine including the vertebral bodies, intervertebral discs, vertebral canal, and spinal cord. Disorders noted included intervertebral disc degeneration and/or protrusion (12 dogs), intradural extramedullary mass lesions (3 dogs), intradural and extradural nerve root tumors (3 dogs), hydromyelia/syringomyelia (1 dog), intramedullary ring enhancing lesions (1 dog), extradural synovial cysts (1 dog), and extradural compressive lesions (3 dogs). The MRI findings were consistent with surgical findings in 18 dogs that underwent surgery. Magnetic resonance imaging provided a safe, useful non-invasive method of evaluating the cervical spinal cord.  相似文献   

9.
The cervical spine of 21 dogs with clinical signs of cervical stenotic myelopathy was evaluated using magnetic resonance (MR) imaging. Spin echo T1, T2 and gradient echo T2 weighted images were obtained with a 1.5 Tesla magnet in 12 dogs and a 1.0 Tesla magnet in 9 dogs. Sagittal or parasagittal T1W and T2W images were helpful in determining the presence of spinal cord compression or degenerative disease of the articular processes. Transverse T1W and T2W images were the most useful for the identification of dorsolateral spinal cord compression secondary to soft tissue and ligament hypertrophy, as well as synovial cysts, associated with the articular processes. The MR imaging findings were consistent with the surgical findings in all 14 dogs that underwent surgery. Magnetic resonance imaging provided a safe, non-invasive method of evaluating the cervical spine in dogs suspected of having cervical stenotic myelopathy. Veterinary  相似文献   

10.
Radiography and magnetic resonance imaging were used to evaluate osteoarthritis at 2, 6, and 12 weeks following transection of the cranial cruciate ligament of the stifle (femorotibial) joint of 6 dogs. A quantitative radiographic scoring system was used to assess the progression of hard and soft tissue changes of osteoarthritis. Mediolateral (flexed joint) and oblique (extended joint) radiographic projections enabled identification of small osteophytes on the femoral trochlear ridges, which were detected at an earlier stage of development than was previously reported. Magnetic resonance imaging was useful in detecting changes in cartilage thickness, osteophytosis and intraarticular loose bodies. Radiography and magnetic resonance imaging were complementary in the assessment of pathologic changes of osteoarthritis.  相似文献   

11.
The imaging features of four dogs with atlanto-occipital overlapping are described. This malformation appeared to play a role in the development of neck pain, ataxia, variable cerebellar involvement, medullary kinking, and possibly syringomyelia. Using cervical radiographs, three of the four dogs were initially diagnosed with an atlanto-axial malformation. Because this disorder could not account for all clinical signs, magnetic resonance and computed tomography images were also acquired. These provided a more complete evaluation of the craniocervical junction, allowing detection of atlanto-occipital overlapping, medullary kinking, occipital dysplasia, abnormalities of the dens, and syringomyelia in these dogs. Head position during imaging affected the degree of atlanto-occipital overlap. These findings emphasize the need to modify the currently accepted imaging recommendations for dogs with head and neck pain and/or cranial cervical myelopathy. We suggest that the entire craniocervical junction be evaluated, even if atlanto-axial subluxation has already been detected. Moreover, we propose that atlanto-occipital overlapping is a perhaps underrecognized disorder that can influence the clinical signs and therapeutic outcome of dogs with anomalies of the craniocervical junction.  相似文献   

12.
Three dogs with multilobular osteochondrosarcoma of the skull were evaluated using magnetic resonance (MR) imaging. Spin echo T1, T2, proton weighted and post contrast T1W images were obtained with a 1.5 Tesla magnet. The MR imaging findings were similar in all three dogs with mixed signal intensities in the T1W, T2W and proton weighted images and fairly large areas of contrast enhancement in the post contrast T1W images. The extent of brain and soft tissue involvement were well delineated and provided useful information concerning surgical planning. MR imaging provided a useful method of evaluating dogs with skull tumors.  相似文献   

13.
Astrocytomas and oligodendrogliomas represent one third of histologically confirmed canine brain tumors. Our purpose was to describe the magnetic resonance (MR) imaging features of histologically confirmed canine intracranial astrocytomas and oligodendrogliomas and to examine for MR features that differentiate these tumor types. Thirty animals with confirmed astrocytoma (14) or oligodendroglioma (16) were studied. All oligodendrogliomas and 12 astrocytomas were located in the cerebrum or thalamus, with the remainder of astrocytomas in the cerebellum or caudal brainstem. Most (27/30) tumors were associated with both gray and white matter. The signal characteristics of both tumor types were hypointense on T1‐weighted images (12 each) and hyperintense on T2‐weighted images (11/14 astrocytomas, 12/16 oligodendrogliomas). For astrocytomas and oligodendrogliomas, respectively, common findings were contrast enhancement (10/13, 11/15), ring‐like contrast enhancement (6/10, 9/11), cystic regions within the mass (7/14, 12/16), and hemorrhage (4/14, 6/16). Oligodendrogliomas were significantly more likely to contact the brain surface (meninges) than astrocytomas (14/16, 7/14, respectively, P=0.046). Contact with the lateral ventricle was the most common finding, occurring in 13/14 astrocytomas and 14/16 oligodendrogliomas. No MR features were identified that reliably distinguished between these two tumor types. Contrast enhancement was more common in high‐grade tumors (III or IV) than low‐grade tumors (II, P=0.008).  相似文献   

14.
The magnetic resonance (MR) imaging findings in 22 dogs and two cats with confirmed paraspinal infection of the thoracolumbar spine were characterized. These findings included extensive T2-hyperintense areas (24/24), abscessation (20/24), mild inherent T1-hyperintensity of muscle and abscesses (18/24), and postcontrast enhancement (24/24). Changes involved the vertebral canal in four patients. The longus coli muscles were affected in one cat. Thoracolumbar changes in the remaining 23 patients involved the iliopsoas and epaxial muscles in 23/23 and 19/23 patients, respectively. Iliopsoas muscle abscessation was unilateral in 12/23, and bilateral in 6/24 patients. Abscessation involved both epaxial and iliopsoas muscles in 2/23 patients and the epaxial muscles alone in one patient. A contrast-enhancing sinus tract within the deep thoracolumbar fascia was present in 10/23 patients. Lumbar vertebrae periosteal reactions were identified in 19/23 patients on MR images compared with 15/17 patients with radiography. A focal area of signal void suspected to represent foreign material was seen in 5/23 patients but foreign material was actually found in only two of these five. There was no recurrence of clinical signs following MR imaging and revision surgery. MR imaging permits the severity and extent of changes associated with paraspinal infection to be characterized and allows the location, number and any communication of sinus tracts to be documented.  相似文献   

15.
Carotid body tumors (paragangliomas) arise from chemoreceptors located at the carotid bifurcation. In imaging studies, this neoplasm may be confused with other neck neoplasms such as thyroid carcinoma. The purpose of this retrospective, cross‐sectional study was to describe computed tomographic (CT) and magnetic resonance imaging (MRI) characteristics of confirmed carotid body tumors in a multi‐institutional sample of dogs. A total of 16 dogs met inclusion criteria (14 examined using CT and two with MRI). The most common reason for imaging was a palpable cervical mass or respiratory signs (i.e., dyspnea or increased respiratory noises). The most commonly affected breed was Boston terrier (n = 5). Dogs were predominantly male castrated (n = 10) and the median age was 9 years [range 3–14.5]. Most tumors appeared as a large mass centered at the carotid bifurcation, with poor margination in six dogs and discrete margins in ten dogs. Masses were iso‐ to hypoattenuating to adjacent muscles in CT images and hyperintense to muscles in T1‐ and T2‐weighted MRI. For both CT and MRI, masses typically showed strong and heterogeneous contrast enhancement. There was invasion into the adjacent structures in 9/16 dogs. In six of these nine dogs, the basilar portion of the skull was affected. The external carotid artery was entrapped in seven dogs. There was invasion into the internal jugular vein in three dogs, and into the external jugular, maxillary, and linguo‐facial veins in one dog. Imaging characteristics helped explain some clinical presentations such as breathing difficulties, Horner's syndrome, head tilt, or facial nerve paralysis.  相似文献   

16.
The aim of this study was to identify magnetic resonance (MR) signs that aid differentiation of neoplastic vs. non-neoplastic brain diseases in dogs and cats. MR images of 36 dogs and 13 cats with histologic diagnosis of intracranial disease were reviewed retrospectively. Diagnoses included 30 primary and three metastatic brain tumors, 11 infectious/inflammatory lesions, three vascular, one degenerative disease, and one developmental malformation. Upon univariate analysis of 21 MR signs, there were seven that had a significant association with neoplasia: single lesion (P = 0.004), shape (P = 0.015), mass effect (P = 0.002), dural contact (P = 0.04), dural tail (P = 0.005), lesions affecting adjacent bone (P = 0.008), and contrast enhancement (P = 0.025). Increasing age was also found to be associated with neoplasia (P = 0.0001). MR signs of non-neoplastic brain diseases in dogs and cats were more variable than those of brain neoplasia.  相似文献   

17.
Magnetic resonance imaging was performed in seven dogs with histopathologically-confirmed brain infarcts. The infarcts were non-hemorrhagic in four dogs and hemorrhagic in three dogs. Six dogs had single infarcts involving the cerebrum and one dog had multiple infarcts involving the cerebrum and brain stem. Non-hemorrhagic infarcts were typically wedge-shaped, hypointense on T1-weighted images, hyperintense on T2-weighted images, and did not enhance with gadolinium-DTPA. Hemorrhagic infarcts had mixed intensity on T1- and T2-weighted images, with variable patterns of enhancement.  相似文献   

18.
Magnetic resonance imaging (MRI) and computed tomographic imaging (CT) characteristics of intracranial intra-arachnoid cysts in six dogs are described.Of the six dogs, three were less than one year of age and 4 were males. Five of the six dogs weighed less than 11 kg. Five cysts were located in the quadrigeminal cistern.On CT images, the intracranial intra-arachnoid cysts had sharply defined margins, contained fluid isodense to CSf and did not enhance following IV administration of contrast. On MRI images, the intracranial intra-arachnoid cysts were extra-axial, contained fluid isointense with CSF and did not enhance following IV contrast. While spinal arachnoid cysts of dogs have been reported in the literature, other than the six dogs contained in this report, intracranial intra-arachnoid cysts have not to our knowledge been described in animals. These six dogs have a similar age, sex, arachnoid cysts.  相似文献   

19.
The clinical and ultrasonographic features of postoperative intestinal entrapment were assessed in five dogs. Four had vomiting and lethargy, and one had peracute collapse and hematochezia. Ultrasonographic findings in four of five dogs were similar, being characterized by focally hyperechoic mesentery and abdominal effusion, surrounding a single loop of amotile and dilated intestine. In some dogs, the affected intestinal loop had a thickened or corrugated wall, or alteration of wall layering. In one dog, the site of entrapment could be directly visualized. In the most severely affected dog, a large volume of echogenic peritoneal effusion was present, as well as fluid dilation of multiple intestinal loops. The ultrasonographic appearance of intestinal entrapment is similar to that of intestinal perforation or infarction by other causes.  相似文献   

20.
Meningiomas are common intracranial masses in the dog, and surgical or radiation treatment of meningiomas depends on accurate identification and location. In this review of 13 patients with confirmed meningioma, low field magnetic resonance imaging characteristics of cranial vault meningiomas included increased signal intensity on T2-weighted images, decreased signal intensity on T1-weighted images, and marked contrast enhancement that was usually nonhomogeneous and well-defined. Mass effect and edema were usually present. Cyst formation and meningeal enhancement were also found in some patients. Low field magnetic resonance imaging characteristics of the meningiomas in these patients were similar to those magnetic resonance imaging findings reported in humans and the few reports pertaining to animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号