首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reasons for performing study: Minocycline holds great potential for use in horses not only for its antimicrobial effects but also for its anti‐inflammatory and neuroprotective properties. However, there are no pharmacokinetic or safety data available regarding the use of oral minocycline in horses. Objectives: To determine pharmacokinetics, safety and penetration into plasma, synovial fluid, aqueous humour (AH) and cerebral spinal fluid (CSF) of minocycline after oral administration of multiple doses in horses and to determine the minimum inhibitory concentrations (MIC) of minocycline for equine pathogenic bacteria. Methods: Six horses received minocycline (4 mg/kg bwt q. 12 h for 5 doses). Thirty‐three blood and 9 synovial fluid samples were collected over 96 h. Aqueous humour and CSF samples were collected 1 h after the final dose. Minocycline concentrations were measured using high pressure liquid chromatography. The MIC values of minocycline for equine bacterial isolates were determined. Results: At steady state, the mean ± s.d. peak concentration of minocycline in the plasma was 0.67 ± 0.26 µg/ml and the mean half‐life was 11.48 ± 3.23 h. The highest trough synovial fluid minocycline concentration was 0.33 ± 0.12 µg/ml. The AH concentration of minocycline was 0.09 ± 0.03 µg/ml in normal eyes and 0.11 ± 0.04 µg/ml in blood aqueous barrier‐disrupted eyes. The mean CSF concentration of minocycline was 0.38 ± 0.09 µg/ml. The MIC values were determined for 301 isolates. Minocycline concentrations were above the MIC50 and MIC90 for many gram‐positive equine pathogens. Potential relevance: This study supports the use of orally administered minocycline at a dose of 4 mg/kg bwt every 12 h for the treatment of nonocular infections caused by susceptible (MIC≤0.25 µg/ml) organisms in horses. Further studies are required to determine the dose that would be effective for the treatment of ocular infections.  相似文献   

2.
Reasons for performing study: No studies have determined the pharmacokinetics of low‐dose amikacin in the mature horse. Objectives: To determine if a single i.v. dose of amikacin (10 mg/kg bwt) will reach therapeutic concentrations in plasma, synovial, peritoneal and interstitial fluid of mature horses (n = 6). Methods: Drug concentrations of amikacin were measured across time in mature horses (n = 6); plasma, synovial, peritoneal and interstitial fluid were collected after a single i.v. dose of amikacin (10 mg/kg bwt). Results: The mean ± s.d. of selected parameters were: extrapolated plasma concentration of amikacin at time zero 144 ± 21.8 µg/ml; extrapolated plasma concentration for the elimination phase 67.8 ± 7.44 µg/ml, area under the curve 139 ± 34.0 µg*h/ml, elimination half‐life 1.34 ± 0.408 h, total body clearance 1.25 ± 0.281 ml/min/kg bwt; and mean residence time (MRT) 1.81 ± 0.561 h. At 24 h, the plasma concentration of amikacin for all horses was below the minimum detectable concentration for the assay. Selected parameters in synovial and peritoneal fluid were maximum concentration (Cmax) 19.7 ± 7.14 µg/ml and 21.4 ± 4.39 µg/ml and time to maximum concentration 65 ± 12.2 min and 115 ± 12.2 min, respectively. Amikacin in the interstitial fluid reached a mean peak concentration of 12.7 ± 5.34 µg/ml and after 24 h the mean concentration was 3.31 ± 1.69 µg/ml. Based on a minimal inhibitory concentration (MIC) of 4 µg/ml, the mean Cmax : MIC ratio was 16.9 ± 1.80 in plasma, 4.95 ± 1.78 in synovial fluid, 5.36 ± 1.10 in peritoneal fluid and 3.18 ± 1.33 in interstitial fluid. Conclusions: Amikacin dosed at 10 mg/kg bwt i.v. once a day in mature horses is anticipated to be effective for treatment of infection caused by most Gram‐negative bacteria. Potential relevance: Low dose amikacin (10 mg/kg bwt) administered once a day in mature horses may be efficacious against susceptible microorganisms.  相似文献   

3.
The pharmacokinetics of doxycycline was studied in plasma after a single dose (20 mg/kg) of intravenous or oral administration to tilapia (Oreochromis aureus × Oreochromis niloticus) reared in fresh water at 24 °C. Plasma samples were collected from six fish per sampling point. Doxycycline concentrations were determined by high‐performance liquid chromatography with a 0.005 μg/mL limit of detection, then were subjected to noncompartmental analysis. Following oral administration, the double‐peak phenomenon was observed, and the first (Cmax1) and second (Cmax2) peaks were 1.99 ± 0.43 μg/mL at 2.0 h and 2.27 ± 0.38 μg/mL at 24.0 h, respectively. After the intravenous injection, a Cmax2 (12.12 ± 1.97 μg/mL) was also observed, and initial concentration of 45.76 μg/mL, apparent elimination rate constant (λz) of 0.018 per h, apparent elimination half‐life (t1/2λz) of 39.0 h, systemic total body clearance (Cl) of 41.28 mL/h/kg, volume of distribution (Vz) of 2323.21 mL/kg, and volume of distribution at steady‐state (Vss) of 1356.69 mL/kg were determined, respectively. While after oral administration, the λz, t1/2λz, and bioavailability of doxycycline were 0.009 per h, 77.2 h, and 23.41%, respectively. It was shown that doxycycline was relatively slowly and incompletely absorbed, extensively distributed, and slowly eliminated in tilapia, in addition, doxycycline might undergo enterohepatic recycling in tilapia.  相似文献   

4.
The objectives of this study were to investigate the pharmacokinetics of danofloxacin and its metabolite N‐desmethyldanofloxacin and to determine their concentrations in synovial fluid after administration by the intravenous, intramuscular or intragastric routes. Six adult mares received danofloxacin mesylate administered intravenously (i.v.) or intramuscularly (i.m.) at a dose of 5 mg/kg, or intragastrically (IG) at a dose of 7.5 mg/kg using a randomized Latin square design. Concentrations of danofloxacin and N‐desmethyldanofloxacin were measured by UPLC‐MS/MS. After i.v. administration, danofloxacin had an apparent volume of distribution (mean ± SD) of 3.57 ± 0.26 L/kg, a systemic clearance of 357.6 ± 61.0 mL/h/kg, and an elimination half‐life of 8.00 ± 0.48 h. Maximum plasma concentration (Cmax) of N‐desmethyldanofloxacin (0.151 ± 0.038 μg/mL) was achieved within 5 min of i.v. administration. Peak danofloxacin concentrations were significantly higher after i.m. (1.37 ± 0.13 μg/mL) than after IG administration (0.99 ± 0.1 μg/mL). Bioavailability was significantly higher after i.m. (100.0 ± 12.5%) than after IG (35.8 ± 8.5%) administration. Concentrations of danofloxacin in synovial fluid samples collected 1.5 h after administration were significantly higher after i.v. (1.02 ± 0.50 μg/mL) and i.m. (0.70 ± 0.35 μg/mL) than after IG (0.20 ± 0.12 μg/mL) administration. Monte Carlo simulations indicated that danofloxacin would be predicted to be effective against bacteria with a minimum inhibitory concentration (MIC) ≤0.25 μg/mL for i.v. and i.m. administration and 0.12 μg/mL for oral administration to maintain an area under the curve:MIC ratio ≥50.  相似文献   

5.
  1. The pharmacokinetics of doxycycline in ducks were investigated after a single intravenous (IV), intramuscular (IM) or oral (PO) dose at 20 mg/kg body weight.

  2. The concentrations of doxycycline in plasma samples were assayed using a high performance liquid chromatography method, and pharmacokinetic parameters were calculated using a non-compartmental model.

  3. After IV administration, doxycycline had a mean (±SD) distribution volume (Vz) of 1761.9 ± 328.5 ml/kg and was slowly eliminated with a terminal half-life (t1/2λz) of 21.21±1.47 h and a total body clearance (Cl) of 57.51 ± 9.50 ml/h/kg. Following PO and IM administration, doxycycline was relatively slowly absorbed – the peak concentrations (Cmax) were 17.57 ± 4.66 μg/ml at 2 h and 25.01 ± 4.18 μg/ml at 1.5 h, respectively. The absolute bioavailabilities (F) of doxycycline after PO and IM administration were 39.13% and 70.71%, respectively.

  4. The plasma profile of doxycycline exhibited favourable pharmacokinetics characteristics in Muscovy ducks, such as wide distribution, relatively slow absorption and slow elimination, though oral bioavailability was low.

  相似文献   

6.
The objectives of this study were to examine the pharmacokinetics of tobramycin in the horse following intravenous (IV), intramuscular (IM), and intra‐articular (IA) administration. Six mares received 4 mg/kg tobramycin IV, IM, and IV with concurrent IA administration (IV+IA) in a randomized 3‐way crossover design. A washout period of at least 7 days was allotted between experiments. After IV administration, the volume of distribution, clearance, and half‐life were 0.18 ± 0.04 L/kg, 1.18 ± 0.32 mL·kg/min, and 4.61 ± 1.10 h, respectively. Concurrent IA administration could not be demonstrated to influence IV pharmacokinetics. The mean maximum plasma concentration (Cmax) after IM administration was 18.24 ± 9.23 μg/mL at 1.0 h (range 1.0–2.0 h), with a mean bioavailability of 81.22 ± 44.05%. Intramuscular administration was well tolerated, despite the high volume of drug administered (50 mL per 500 kg horse). Trough concentrations at 24 h were below 2 μg/mL in all horses after all routes of administration. Specifically, trough concentrations at 24 h were 0.04 ± 0.01 μg/mL for the IV route, 0.04 ± 0.02 μg/mL for the IV/IA route, and 0.02 ± 0.02 for the IM route. An additional six mares received IA administration of 240 mg tobramycin. Synovial fluid concentrations were 3056.47 ± 1310.89 μg/mL at 30 min after administration, and they persisted for up to 48 h with concentrations of 14.80 ± 7.47 μg/mL. Tobramycin IA resulted in a mild chemical synovitis as evidenced by an increase in synovial fluid cell count and total protein, but appeared to be safe for administration. Monte Carlo simulations suggest that tobramycin would be effective against bacteria with a minimum inhibitory concentration (MIC) of 2 μg/mL for IV administration and 1 μg/mL for IM administration based on Cmax:MIC of 10.  相似文献   

7.
1. Pharmacokinetics of acetylsalicylic acid (ASA) and sodium salicylate (SS) were assessed following single intravenous (i.v.) and oral administration at doses of 50 mg/kg body weight to chickens and turkeys. Plasma drug concentrations were determined using high-performance liquid chromatography with ultraviolet detection and pharmacokinetic variables were calculated using a non-compartmental model.

2. The mean residence time (MRT) of salicylate (SA) after i.v. administration of SS was 6.08 ± 0.59 and 3.32 ± 0.27 h and after oral administration was 6.95 ± 0.72 and 4.55 ± 0.71 h in chickens and turkeys, respectively. The elimination half-life (T 1/2 e) was shorter in turkeys compared with chickens. The value of body clearance (ClB) was higher in turkeys than in chickens, but the apparent volume of distribution (V ss) was similarly low in both species. The bioavailability of SS was complete and the maximal plasma concentration of SA (C max) after oral administration was 96.93 ± 8.06 and 91.76 ± 9.64 µg/ml, respectively, in chickens and turkeys.

3. The MRT of ASA after iv administration was 0.24 ± 0.08 and 0.24 ± 0.02 h and after oral administration was 0.78 ± 0.25 and 0.59 ± 0.13 h, respectively, in chickens and turkeys. In both species, T 1/2 e was very short, ClB and V ss were similar and markedly higher than those of salicylate. The bioavailability of unchanged ASA was low and C max after oral administration was 6.9 ± 3.6 µg/ml in chickens and 8.6 ± 1.3 µg/ml in turkeys.  相似文献   


8.
  1. The pharmacokinetics of doxycycline in laying hens was investigated after a single intravenous (IV) or an oral (PO) dose at 20 mg/kg body weight.

  2. The concentrations of doxycycline in plasma samples were determined by high-performance liquid chromatography with an ultraviolet detector, and pharmacokinetic parameters were calculated using a compartmental model method.

  3. The disposition of doxycycline after one single IV injection was best described by a two-compartment open model and the main pharmacokinetic parameters were as follows: volume of distribution (Vd) was 865.15 ± 127.64 ml/kg, distribution rate constant (α) was (2.28 ± 0.38) 1/h, elimination rate constant (β) was 0.08 ± 0.02 1/h and total body clearance (Cl) was104.11 ± 18.32 ml/h/kg, while after PO administration, the concentration versus time curve was best described by a one-compartment open model and absorption rate constant (Ka), peak concentration (Cmax), time to reach Cmax (tmax) and absolute bioavailability (F) were 2.55 ± 1.40 1/h, 5.88 ± 0.70 μg/ml, 1.73 ± 0.75 h and 52.33%, respectively.

  4. The profile of doxycycline exhibited favourable pharmacokinetic characteristics in laying hens, such as quick absorption and slow distribution and elimination, though oral bioavailability was relatively low. A multiple-dosing regimen (a dose of 20 mg/kg/d for 3 consecutive days) of doxycycline was recommended to treat infections in laying hens. But a further study should be conducted to determine the withdrawal time of doxycycline in eggs.

  相似文献   

9.
The objective of this study was to determine the pharmacokinetics of meropenem in horses after intravenous (IV) administration. A single IV dose of meropenem was administered to six adult horses at 10 mg/kg. Plasma and synovial fluid samples were collected for 6 hr following administration. Meropenem concentrations were determined by bioassay. Plasma and synovial fluid data were analyzed by compartmental and noncompartmental pharmacokinetic methods. Mean ± SD values for elimination half‐life, volume of distribution at steady‐state, and clearance after IV administration for plasma samples were 0.78 ± 0.176 hr, 136.1 ± 19.69 ml/kg, and 165.2 ± 29.72 ml hr‐1 kg?1, respectively. Meropenem in synovial fluid had a slower elimination than plasma with a terminal half‐life of 2.4 ± 1.16 hr. Plasma protein binding was estimated at 11%. Based on a 3‐compartment open pharmacokinetic model of simultaneously fit plasma and synovial fluid, dosage simulations were performed. An intermittent dosage of meropenem at 5 mg/kg IV every 8 hr or a constant rate IV infusion at 0.5 mg/kg per hour should maintain adequate time above the MIC target of 1 μg/ml. Carbapenems are antibiotics of last resort in humans and should only be used in horses when no other antimicrobial would likely be effective.  相似文献   

10.
Kumar, V., Madabushi, R., Lucchesi, M. B. B., Derendorf, H. Pharmacokinetics of cefpodoxime in plasma and subcutaneous fluid following oral administration of cefpodoxime proxetil in male beagle dogs. J. vet. Pharmacol. Therap. 34 , 130–135. Pharmacokinetics of cefpodoxime in plasma (total concentration) and subcutaneous fluid (free concentration using microdialysis) was investigated in dogs following single oral administration of prodrug cefpodoxime proxetil (equivalent to 5 and 10 mg/kg of cefpodoxime). In a cross over study design, six dogs per dose were utilized after a 1 week washout period. Plasma, microdialysate, and urine samples were collected upto 24 h and analyzed using high performance liquid chromatography. The average maximum concentration (Cmax) of cefpodoxime in plasma was 13.66 (±6.30) and 27.14 (±4.56) μg/mL with elimination half‐life (t1/2) of 3.01 (±0.49) and 4.72 (±1.46) h following 5 and 10 mg/kg dose, respectively. The respective average area under the curve (AUC0–∞) was 82.94 (±30.17) and 107.71 (±30.79) μg·h/mL. Cefpodoxime was readily distributed to skin and average free Cmax in subcutaneous fluid was 1.70 (±0.55) and 3.06 (±0.93) μg/mL at the two doses. Urinary excretion (unchanged cefpodoxime) was the major elimination route. Comparison of subcutaneous fluid concentrations using pharmacokinetic/pharmacodynamic indices of fT>MIC indicated that at 10 mg/kg dose; cefpodoxime would yield good therapeutic outcome in skin infections for bacteria with MIC50 upto 0.5 μg/mL while higher doses (or more frequent dosing) may be needed for bacteria with higher MICs. High urine concentrations suggested cefpodoxime use for urinary infections in dogs.  相似文献   

11.
The purpose of this study was to determine the effect of concurrent sucralfate (tablet or suspension) on doxycycline pharmacokinetics and to determine the effects of delaying sucralfate by 2 h on doxycycline absorption. Five dogs were included in a crossover study receiving: doxycycline alone; doxycycline concurrently with sucralfate tablet; doxycycline followed 2 h by sucralfate tablet; doxycycline concurrently with sucralfate suspension; and doxycycline followed 2 h by sucralfate suspension. Doxycycline plasma concentrations were evaluated with liquid chromatography with mass spectrometry. No interaction was seen when sucralfate was administered as a tablet. Sucralfate tablet fragments were frequently observed in some dogs' feces. The area under the curve (AUC) and maximum plasma concentration (CMAX) were significantly lower (P < 0.001) in the concurrent sucralfate suspension group (AUC 7.2 h·μg/mL, CMAX 0.43 μg/mL) than with doxycycline alone (AUC 36.0 h·μg/mL, CMAX 2.53 μg/mL) resulting in a relative bioavailability of 20%. Delaying sucralfate suspension by 2 h after doxycycline administration resulted in no difference in doxycycline absorption as compared with doxycycline administration alone with a relative bioavailability of 74%. The lack of an interaction with sucralfate tablets suggests sucralfate should be administered as a suspension rather than tablet in dogs.  相似文献   

12.
Eleven pregnant pony mares (D270‐326) were administered ceftiofur sodium intramuscularly at 2.2 mg/kg (n = 6) or 4.4 mg/kg (n = 5), once daily. Plasma was obtained prior to ceftiofur administration and at 0.5, 1, 2, 4, 8, 12, and 24 hr after administration. Eight pony mares were re‐enrolled in the study at least 3 days from expected foaling to ensure steady‐state concentrations of drug at the time of foaling. Mares were administered ceftiofur sodium (4.4 mg/kg, IM) daily until foaling. Parturition was induced using oxytocin 1 hr after ceftiofur sodium administration. Allantoic and amniotic fluid, plasma, and colostrum samples were collected at time of foaling. Serial foal plasma samples were obtained. Placental tissues were collected. Desfuroylceftiofur acetamide (DCA) concentrations were measured in samples by high‐performance liquid chromatography (HPLC). Mean (±SD) peak serum concentrations of DCA were 3.97 ± 0.50 μg/ml (low dose) and 7.45 ± 1.05 μg/ml (high dose). Terminal half‐life was significantly (p = .014) shorter after administration of the low dose (2.91 ± 0.59 hr) than after administration of the high dose (4.10 ± 0.72 hr). The mean serum concentration of DCA from mares at time of foaling was 7.96 ± 1.39 μg/ml. The mean DCA concentration in colostrum was 1.39 ± 0.70 μg/ml. DCA concentrations in allantoic fluid, amniotic fluid, placental tissues, and foal plasma were below the limit of quantification (<0.1 μg/ml) and below the minimum inhibitory concentration of ceftiofur against relevant pathogens. These results infer incomplete passage of DCA across fetal membranes after administration of ceftiofur sodium to normal pony mares.  相似文献   

13.
The plasma levels of chloramphenicol were determined following i.m. administration in three groups of water buffalo (n= 4 per group). The absorption of chloramphenicol was relatively rapid since concentrations of 7.00 ± 0.62 μg/ml were detected in plasma after 1 h and peak concentrations of 9.25 ± 0.53 μg/ml were obtained 3 h following administration of 30 mg/kg. A concentration of at least 5 μg/ml was achieved at the end of 1 h and persisted up to 12 h (6.79 ± 1.19 μg/ml). With repetition of 10 and 20 mg/kg dose at 12 h, concentrations greater than 5 μg/ml persisted for an additional 8 and 12 h, respectively. The distribution studies of chloramphenicol in tissues and body fluids at 4 h post-injection (30 mg/kg i.m., n= 4, group IV), revealed that the highest concentration was seen in bile (31.67 ± 6.21 μg/ml), followed by liver, kidney, plasma, heart, skeletal muscle and brain (4.00 ± 0.50 μg/g).  相似文献   

14.
1. The antibacterial agent doxycycline hyclate (Dox) is usually administered to broilers in drinking water or as a feed supplement. Parenteral injection is not the usual route for administration, so a long-acting formulation (Dox-LA) was tested to evaluate if serum concentrations can achieve the pharmacokinetic/pharmacodynamic (PK/PD) ratios regarded as adequate for the drug.

2. A poloxamer-based matrix was used to provide Dox-LA. Serum and tissue concentrations of Dox vs time were determined in two day-old broilers after subcutaneous (SC) injection of Dox-LA or oral administration of a single bolus of aqueous Dox (Dox-PO), at a dose of 20?mg/kg. Weight gain, feed conversion rate, haematological variables, aspartate aminotransferase and alanine aminotransferase activities, blood urea and creatinine were determined and compared for Dox-LA with Dox-PO and non-medicated controls.

3. Dox-LA had a high relative bioavailability (1200%). Maximum serum concentrations were not statistically different (5·1?±?1·1?µg/ml for Dox-LA and 6·1?±?1.4?µg/ml for Dox-PO), but half-life of Dox-LA was much greater than the value obtained for Dox-PO (73·0?±?0·9?h and 2·0?±?0·02?h, respectively). Tissue concentrations were higher, and stayed higher for longer periods in the Dox-LA group.

4. In conclusion, considering the minimum effective serum concentration against Mycoplasma spp is 0·5?µg/ml, a dose-interval of 180?h can be achieved with Dox-LA, but only for 24?h after Dox-PO. Better PK/PD ratios for Dox-LA should result in improved clinical outcomes compared with Dox-PO.  相似文献   

15.
The pharmacokinetics of difloxacin (Dicural) was studied in a crossover study using three groups (n = 4) of male and female Friesian calves after intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) administrations of 5 mg/kg body weight. Drug concentration in plasma was determined by high-performance liquid chromatography using fluorescence detection. The plasma concentration–time data following i.v. administration were best fitted to a two-compartment open model and those following i.m. and s.c. routes were best fitted using one-compartment open model. The collected data were subjected to a computerized kinetic analysis. The mean i.v., i.m. and s.c. elimination half-lives (t 1/2β) were 5.56 ± 0.33 h, 6.12 ± 0.42 h and 7.26 ± 0.6 h, respectively. The steady-state volume of distribution (V dss) was 1.12 ± 0.09 L/kg and total body clearance (ClB) was 2.19 ± 0.1 ml/(min. kg). The absorption half lives (t 1/2ab) were 0.38 ± 0.027 h and 2.1 ± 0.09 h, with systemic bioavailabilities (F) of 96.5% ± 6.4% and 84% ± 5.5% after i.m. and s.c. administration, respectively. After i.m. and s.c. dosing, peak plasma concentrations (C max) of 3.38 ± 0.13 μg/ml and 2.18 ± 0.12 μg/ml were attained after (t max) 1.22 ± 0.20 h and 3.7 ± 0.52 h. The MIC90 of difloxacin for Mannheimia haemolytica was 0.29 ± 0.04 μg/ml. The AUC/MIC90 and C max/MIC90 ratios for difloxacin following i.m. administration were 120 and 11.65, respectively and following s.c. administration were 97.58 and 7.51, respectively. Difloxacin was 31.7–36.8% bound to calf plasma protein. Since fluoroquinolones display concentration-dependent activities, the doses of difloxacin used in this study are likely to involve better pharmacodynamic characteristics that are associated with greater clinical efficacy following i.m. administration than following s.c. administration.  相似文献   

16.
Cefuroxime axetil pharmacokinetic profile was investigated in 12 Beagle dogs after single intravenous and oral administration of tablets or suspension at a dose of 20 mg/kg, under both fasting and fed conditions. A three-period, three-treatment crossover study (IV, PO under fasting and fed condition) was applied. Blood samples were withdrawn at predetermined times over a 12-hr period. Cefuroxime plasma concentrations were determined by HPLC. Data were analyzed by compartmental analysis. No statistically significant differences were observed between formulations and feeding conditions on PK parameters. Independently of the feeding condition, absorption of cefuroxime axetil after tablet administration was low and erratic. The drug has been quantified in plasma in 3 out of 6 and 5 out of 6 dogs in the fasted and fed groups. For this formulation, the bioavailability (F), peak plasma concentration (Cmax), and area under the concentration–time curve (AUC) of cefuroxime axetil were significantly enhanced (p < .05) by the concomitant ingestion of food (32.97 ± 13.47–14.08 ± 7.79%, 6.30 ± 2.62–2.74 ± 0.66 µg/ml, and 15.75 ± 3.98–7.82 ± 2.76 µg.hr/ml for F, Cmax, and AUC in fed and fasted dogs, respectively), while for cefuroxime axetil suspension, feeding conditions affected only the rate of absorption, as reflected by the significantly shorter absorption half-life (T½(a)) and time to peak concentration (Tmax) (0.55 ± 0.27–1.15 ± 0.19 hr and 1.21 ± 0.22–1.70 ± 0.30 for T½(a) and Tmax in fed and fasted dogs, respectively). For cefuroxime axetil tablets, T > MIC (≤1 µg/ml) was <2 hr in fasted and ≈4 hr in fed animals, and for cefuroxime axetil suspension, T > MIC (≤1 µg/ml) was ≈5 hr and for T >MIC (≤4 µg/ml) was ≈2.5 hr for fasted and fed dogs, respectively. Cefuroxime axetil as a suspension formulation seems to be a better option than tablets. However, its short permanence in plasma could reduce its clinical usefulness in dogs.  相似文献   

17.
Objective— To estimate maximum plasma concentration (Cmax) and time to maximum plasma (tmax) bupivacaine concentration after intra‐articular administration of bupivacaine for single injection (SI) and injection followed by continuous infusion (CI) in normal dogs. Study Design— Cross‐over design with a 2‐week washout period. Animals— Healthy Coon Hound dogs (n=8). Methods— Using gas chromatography/mass spectrometry, canine plasma bupivacaine concentration was measured before and after SI (1.5 mg/kg) and CI (1.5 mg/kg and 0.3 mg/kg/h). Software was used to establish plasma concentration–time curves and estimate Cmax, Tmax and other pharmacokinetic variables for comparison of SI and CI. Results— Bupivacaine plasma concentration after SI and CI best fit a 3 exponential model. For SI, mean maximum concentration (Cmax, 1.33±0.954 μg/mL) occurred at 11.37±4.546 minutes. For CI, mean Cmax (1.13±0.509 μg/mL) occurred at 10.37±4.109 minutes. The area under the concentration–time curve was smaller for SI (143.59±118.390 μg/mL × min) than for CI (626.502±423.653 μg/mL × min, P=.02) and half‐life was shorter for SI (61.33±77.706 minutes) than for CI (245.363±104.415 minutes, P=.01). The highest plasma bupivacaine concentration for any dog was 3.2 μg/mL for SI and 2.3 μg/mL for CI. Conclusion— Intra‐articular bupivacaine administration results in delayed absorption from the stifle into the systemic circulation with mean Cmax below that considered toxic and no systemic drug accumulation. Clinical Relevance— Intra‐articular bupivacaine can be administered with small risk of reaching toxic plasma concentrations in dogs, though toxic concentrations may be approached. Caution should be exercised with multimodal bupivacaine administration because plasma drug concentration may rise higher than with single intra‐articular injection.  相似文献   

18.
The plasma and synovial fluid pharmacokinetics and safety of cefquinome, a 2‐amino‐5‐thiazolyl cephalosporin, were determined after multiple intravenous administrations in sixteen healthy horses. Cefquinome was administered to each horse through a slow i.v. injection over 20 min at 1, 2, 4, and 6 mg/kg (= 4 horses per dose) every 12 h for 7 days (a total of 13 injections). Serial blood and synovial fluid samples were collected during the 12 h after the administration of the first and last doses and were analyzed by a high‐performance liquid chromatography assay. The data were evaluated using noncompartmental pharmacokinetic analyses. The estimated plasma pharmacokinetic parameters were compared with the hypothetical minimum inhibitory concentration (MIC) values (0.125–2 μg/mL). The plasma and synovial fluid concentrations and area under the concentration–time curves (AUC) of cefquinome showed a dose‐dependent increase. After a first dose of cefquinome, the ranges for the mean plasma half‐life values (2.30–2.41 h), the mean residence time (1.77–2.25 h), the systemic clearance (158–241 mL/h/kg), and the volume of distribution at steady‐state (355–431 mL/kg) were consistent across dose levels and similar to those observed after multiple doses. Cefquinome did not accumulate after multiple doses. Cefquinome penetrated the synovial fluid with AUCsynovial fluid/AUCplasma ratios ranging from 0.57 to 1.37 after first and thirteenth doses, respectively. Cefquinome is well tolerated, with no adverse effects. The percentage of time for which the plasma concentrations were above the MIC was >45% for bacteria, with MIC values of ≤0.25, ≤0.5, and ≤1 μg/mL after the administration of 1, 2, and 4 or 6 mg/kg doses of CFQ at 12‐h intervals, respectively. Further studies are needed to determine the optimal dosage regimes in critically ill patients.  相似文献   

19.
Methylprednisolone acetate (MPA) is commonly administered to performance horses, and therefore, establishing appropriate withdrawal times prior to performance is critical. The objectives of this study were to describe the plasma pharmacokinetics of MPA and time‐related urine and synovial fluid concentrations following intra‐articular administration to sixteen racing fit adult Thoroughbred horses. Horses received a single intra‐articular administration of MPA (100 mg). Blood, urine, and synovial fluid samples were collected prior to and at various times up to 77 days postdrug administration and analyzed using tandem liquid chromatography‐mass spectrometry (LC‐MS/MS). Maximum measured plasma MPA concentrations were 6.06 ± 1.57 at 0.271 days (6.5 h; range: 5.0–7.92 h) and 6.27 ± 1.29 ng/mL at 0.276 days (6.6 h; range: 4.03–12.0 h) for horses that had synovial fluid collected (group 1) and those that did not (group 2), respectively. The plasma terminal half‐life was 1.33 ± 0.80 and 0.843 ± 0.414 days for groups 1 and 2, respectively. MPA was undetectable by day 6.25 ± 2.12 (group 1) and 4.81 ± 2.56 (group 2) in plasma and day 17 (group 1) and 14 (group 2) in urine. MPA concentrations in synovial fluid remained above the limit of detection (LOD) for up to 77 days following intra‐articular administration, suggesting that plasma and urine concentrations are not a good indicator of synovial fluid concentrations.  相似文献   

20.
1. The pharmacokinetics of difloxacin were investigated in healthy and E. coli-infected broiler chickens following intravenous and oral administration of a single dose of 10 mg/kg bodyweight.

2. After intravenous injection of difloxacin, the serum concentration–time curves were best described by a two-compartment open model. The distribution and elimination half-lives (t0.5α) and (t0.5el), respectively, were 0.10 ± 0.016 h and 3.7 ± 0.08 h in healthy chickens compared with 0.05 ± 0.005 h and 6.42 ± 0.71 h in E. coli-infected birds. The volumes of distribution Vdss were 3.14 ± 0.11 and 9.25 ± 0.43 l/kg, with total body clearance (Cltot) of 0.65 ± 0.018 and 1.14 ± 0.1 ml/kg/h, respectively.

3. Following oral administration, difloxacin was absorbed with t0.5(ab) of 0.57 ± 0.06 and 0.77 ± 0.04 h and was eliminated with t0.5(el) of 4.7 ± 0.34 and 3.42 ± 0.19, respectively, in normal and infected chickens. The peak serum concentrations were 1.34 ± 0.09 and 1.05 ± 0.06 µg/ml and attained a Tmax of 2.27 ± 0.07 and 2.43 ± 0.06 h, respectively. The systemic bioavailability of difloxacin following oral administration was 86.2% in healthy chickens and 90.6% in E. coli-infected birds. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of difloxacin against the field strain of E. coli O78 in vitro were 0.02 µg and 0.04 µg/ml, respectively.

4. These results show that administration of a therapeutic dose of difloxacin is effective in the treatment of E. coli infection in chickens. The serum concentration of the drug was much higher than the MIC of the E. coli O78 strain in both healthy and infected chickens.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号