共查询到20条相似文献,搜索用时 0 毫秒
1.
Svetlana Bykova Pascal Boeckx Irina Kravchenko Valery Galchenko Oswald Van Cleemput 《Biology and Fertility of Soils》2007,43(3):341-348
Methane oxidising activity and community structure of 11, specifically targeted, methanotrophic species have been examined
in an arable soil. Soils were sampled from three different field plots, receiving no fertilisation (C), compost (G) and mineral
fertiliser (M), respectively. Incubation experiments were carried out with and without pre-incubation at elevated CH4 mixing ratios (100 ml CH4 l−1) and with and without ammonium (100 mg N kg−1) pre-incubation. Four months after fertilisation, plots C, G and M did not show significant differences in physicochemical
properties and CH4 oxidising activity. The total number of methanotrophs (determined as the sum the 11 specifically targeted methanotrophs)
in the fresh soils was 17.0×106, 13.7×106 and 15.5×106 cells g−1 for treatment C, G and M, respectively. This corresponded to 0.11 to 0.32% of the total bacterial number. The CH4 oxidising activity increased 105-fold (20–26 mg CH4 g−1 h−1), the total number of methanotrophs doubled (28–76×106 cells g−1) and the methanotrophic diversity markedly increased in treatments with a pre-incubation at elevated CH4 concentrations. In all soils and treatments, type II methanotrophs (62–91%) outnumbered type I methanotrophs (9–38%). Methylocystis and Methylosinus species were always most abundant. After pre-incubation with ammonium, CH4 oxidation was completely inhibited; however, no change in the methanotrophic community structure could be detected. 相似文献
2.
Reducing CH<Subscript>4</Subscript> and CO<Subscript>2</Subscript> emissions from waterlogged paddy soil with biochar 总被引:1,自引:0,他引:1
Yuxue Liu Min Yang Yimin Wu Hailong Wang Yingxu Chen Weixiang Wu 《Journal of Soils and Sediments》2011,11(6):930-939
Purpose
A potential means to diminish increasing levels of CO2 in the atmosphere is the use of pyrolysis to convert biomass into biochar, which stabilizes the carbon (C) that is then applied to soil. Before biochar can be used on a large scale, especially in agricultural soils, its effects on the soil system need to be assessed. This is especially important in rice paddy soils that release large amounts of greenhouse gases to the atmosphere. 相似文献3.
Junqiang Zheng Yuzhe Wang Nan Hui Haibo Dong Chengrong Chen Shijie Han Zhihong Xu 《Journal of Soils and Sediments》2017,17(4):949-959
Purpose
Our aim was to examine linkages between mass loss, chemical transformation and CH4 production during decomposition of leaf litters submerged under water. We hypothesised that (i) labile leaf litters would fuel a rapid, high rate of methane (CH4) production and that recalcitrant litters would fuel long-lasting but lower emissions, (ii) leaf litters experiencing a greater alteration to chemical properties would stimulate increased CH4 production and (iii) nitrogen (N) addition would increase CH4 emissions.Materials and methods
Litters from six plant species were collected from a riparian ecosystem adjacent to Wyaralong Dam, located in Queensland, Australia, i.e., Lophostemon confertus, Cynodon dactylon, Heteropogon contortus, Chamaecrista rotundifolia, Chrysocephalum apiculatum and Imperata cylindrica. We evaluated the rate of mass loss and CH4 emissions for 122 days of incubation in inundated microcosms with and without N addition. We quantified the chemical changes in the decomposing litters with 13 C-cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectrum.Results and discussion
The inundation treatment of plant litters significantly affected decomposition rates. All litters decomposed in either inundated or aerobic microcosms were quite distinct with regard to the NMR spectra of their initial litters. N addition altered the NMR spectra under both inundation and aerobic conditions. The N treatment only marginally influenced the decomposition rates of I. cylindrica and C. apiculatum litters. The diurnal patterns of CH4 production in the H. contortus, C. rotundifolia and C. apiculatum litters under inundation incubation could be expressed as one-humped curves, with the peak value dependent on litter species and N treatment. N addition stimulated CH4 emission by C. rotundifolia and C. apiculatum litters and inhibited CH4 emission from microcosms containing the litters of the three gramineous species, i.e., I. cylindrica, C. dactylon and H. contortus.Conclusions
Our results provide evidence that labile leaf litters could fuel a rapid, high rate of CH4 production and that recalcitrant litters fuelled a lower CH4 emission. We did not find that leaf litters with altered chemical properties stimulated increased CH4 production. We also found that N addition was able to increase CH4 emissions, but this effect was dependent on the litter species.4.
Cultivation of rice in unsaturated soils covered with mulch is receiving more attention in China because of increasingly serious water shortage; however, greenhouse gas emission from this cultivation system is still poorly understood. A field experiment was conducted in 2001 to compare nitrous oxide (N2O) and methane (CH4) emission from rice cultivated in unsaturated soil covered with plastic or straw mulch and the traditional waterlogged production system. Trace gas fluxes from the soil were measured weekly throughout the entire growth period using a closed chamber method. Nitrous oxide emissions from unsaturated rice fields were large and varied considerably during the rice season. They were significantly affected by N fertilizer application rate. In contrast, N2O emission from the waterlogged system was very low with a maximum of 0.28 mg N2O m–2 h–1. However, CH4 emission from the waterlogged system was significantly higher than from the unsaturated system, with a maximum emission rate of 5.01 mg CH4 m–2 h–1. Our results suggested that unsaturated rice cultivation with straw mulch reduce greenhouse gas emissions. 相似文献
5.
The effect of elevated CO2 (eCO2) on rhizospheric diazotrophic community in cropland has little been studied, although eCO2 facilitates nodulation and N2 fixation in legumes. In this study, four soybean cultivars (Xiaohuangjin, Suinong 8, Suinong 14, and Heinong 45) were grown in Mollisols for 65 days under ambient CO2 (aCO2) (390 ppm) or eCO2 (550 ppm). Quantitative PCR and Illumina MiSeq sequencing targeting the nifH gene that reflects the composition of diazotrophic community were determined. Elevated CO2 significantly increased the abundance of nifH gene copies in the rhizospheres of the Suinong 8 and Heinong 45 cultivars, but not in the Suinong 14 and Xiaohuangjin cultivars. The nifH abundance correlated negatively with nodule density (p?≤?0.01) but positively with nodule size (p?≤?0.01). Elevated CO2 did not significantly alter the composition of diazotrophic community, nor shift dominant bacterial operational taxonomic units (OTUs). These results indicated that eCO2 stimulated the growth but did not alter the community composition of diazotrophs in the rhizosphere of soybean, which depended on cultivar and might contribute to nodulation responses to eCO2. 相似文献
6.
7.
In this study, the impact of rose chafer (Cetonia aurata L.) larvae on net and gross methane (CH4) fluxes in soil from an old permanent grassland site (Giessen, Germany) was investigated. Previous studies at this site suggested the existence of Scarabaeidae larvae-induced “CH4-emitting hot spots” within the soil profile which may subsequently lead to increased CH4 oxidation. The net (soil + larvae) and gross (soil and larvae separated) CH4 fluxes were studied in a 3-month laboratory incubation. Addition of larvae changed the soil from a net sink (?330 ± 11 ng CH4 kg?1 h?1) to a net source (637 ± 205 ng CH4 kg?1 h?1). Supply of plant litter to the soil + larvae incubation jars tended to increase CH4 emissions which was not significant due to large variability. After 11–13 weeks of incubation, the net soil CH4 oxidation was significantly stimulated by 13–21% in the treatments containing larvae when these were taken out. Analysis of archaeal 16S rRNA genes revealed that the majority of the obtained clones were closely related to uncultured methanogens from guts of insects and other animals. Other sequences were relative to cultivated species of Methanobrevibacter, Methanoculleus, and Methanosarcina. Hence, Scarabaeidae larvae in soils (i) may represent an underestimated source of CH4 emissions in aerobic upland soils, (ii) may stimulate gross CH4 consumption in their direct soil environment, and, thus, (iii) contribute to the spatial heterogeneity often observed in the field with closed-chamber measurements. Long-term CH4-flux balances may be wrongly assessed when “exceptional” net CH4 flux rates (due to larvae hot spots) are excluded from data sets. 相似文献
8.
Jivago Schumacher de Oliveira Michel Brondani Evandro Sttoffels Mallmann Sérgio Luiz Jahn Edson Luiz Foletto Siara Silvestri 《Water, air, and soil pollution》2018,229(12):386
CoFe2O4/Zn2SnO4 composite was synthesized using a simple two-step process and applied as a novel-efficient photocatalyst for the rhodamine B degradation from aqueous solution. Characterization techniques such as X-ray diffraction (XRD), N2 adsorption-desorption isotherms, scanning electron microscopy (SEM), EDS analysis, and diffuse reflectance spectroscopy were employed in order to investigate the physical and chemical properties of composite. Higher values of the specific surface area, pore volume and diameter, and a smaller band-gap energy promoted a greater catalytic activity of CoFe2O4/Zn2SnO4 composite when compared to Zn2SnO4. A rapid decolorization of dye solution was observed at 40 min of reaction using the CoFe2O4/Zn2SnO4 catalyst, being 2.5 times faster than the Zn2SnO4 alone. Therefore, the CoFe2O4/Zn2SnO4 composite shows extraordinarily high photocatalytic activity toward the degradation of rhodamine B dye from aqueous solution. 相似文献
9.
Daan Beheydt Pascal Boeckx Hasan Pervej Ahmed Oswald Van Cleemput 《Biology and Fertility of Soils》2008,44(6):863-873
In this study, we investigated N2O emissions from two fields under minimum tillage, cropped with maize (MT maize) and summer oats (MT oats), and a conventionally
tilled field cropped with maize (CT maize). Nitrous oxide losses from the MT maize and MT oats fields (5.27 and 3.64 kg N2O-N ha−1, respectively) were significantly higher than those from the CT maize field (0.27 kg N2O-N ha−1) over a period of 1 year. The lower moisture content in CT maize (43% water-filled pore space [WFPS] compared to 60–65%)
probably caused the difference in total N2O emissions. Denitrification was found to be the major source of N2O loss. Emission factors calculated from the MT field data were high (0.04) compared to the CT field (0.001). All data were
simulated with the denitrification decomposition model (DNDC). For the CT field, N2O and N2O + N2 emissions were largely overestimated. For the MT fields, there was a better agreement with the total N2O and N2O + N2 emissions, although the N2O emissions from the MT maize field were underestimated. The simulated N2O emissions were particularly influenced by fertilization, but several other measured N2O emission peaks associated with other management practices at higher WFPS were not captured by the model. Several mismatches
between simulated and measured
\textNH4+ {\text{NH}}_4^ + ,
\textNO3- {\text{NO}}_3^ - and WFPS for all fields were observed. These mismatches together with the insensitivity of the DNDC model for increased N2O emissions at the management practices different from fertilizer application explain the limited similarity between the simulated
and measured N2O emissions pattern from the MT fields. 相似文献
10.
Purpose
Climate models predict that amplification of the hydrological cycle results in more extreme (more intensive but less frequent) precipitation events (EPEs) that have larger effects on ecosystem functioning than mean precipitation conditions. Semiarid grassland ecosystems are considered important CH4 sinks whose functioning is greatly affected by variations in precipitation patterns. An experiment was performed to assess the effects of extreme precipitation events on the functioning of a fenced semiarid steppe grassland on the Inner Mongolian Plateau of China.Materials and methods
Extreme precipitation events (282 mm over 20 consecutive days) during the middle (Pm) and late (Ps) growing periods of 2014 were simulated to assess the effects of extreme precipitation events on the CH4 uptake of the ecosystem.Results and discussion
The extreme precipitation events had no significant effect on the CH4 uptake rate during the growing season but did result in 62 and 45% reductions in the CH4 uptake rate during the Pm and Ps events, respectively. There were legacy effects on suppression of the CH4 uptake rate for approximately 40 and 35 days after the events in the Pm and Ps plots, respectively, but the suppression disappeared rapidly during the late season as a result of faster water loss. No significant differences in cumulative CH4 uptake were detected between the treatment and the control plots over the growing season as a whole, which demonstrates that the ecosystem functions as a CH4 sink. The average CH4 uptake rates were found to be strongly regulated by changes in the soil water content.Conclusions
The results suggest that the CH4 uptake budget of this fenced steppe grassland can be maintained even in the face of consecutive extreme precipitation events, regardless of the timing of the events. Nevertheless, long-term experiments are needed to detect the thresholds for CH4 uptake budget changes, in case of an increasing occurrence of EPEs in the future.11.
Hongling?Qin Yafang?Tang Jianlin?Shen Cong?Wang Chunlan?Chen Jie?Yang Yi?Liu Xiangbi?Chen Yong?Li Haijun?Hou
Agricultural management significantly affects methane (CH4) and nitrous oxide (N2O) emissions from paddy fields. However, little is known about the underlying microbiological mechanism. Field experiment was conducted to investigate the effect of the water regime and straw incorporation on CH4 and N2O emissions and soil properties. Quantitative PCR was applied to measure the abundance of soil methanogens, methane-oxidising bacteria, nitrifiers, and denitrifiers according to DNA and mRNA expression levels of microbial genes, including mcrA, pmoA, amoA, and nirK/nirS/nosZ. Field trials showed that the CH4 and N2O flux rates were negatively correlated with each other, and N2O emissions were far lower than CH4 emissions. Drainage and straw incorporation affected functional gene abundance through altered soil environment. The present (DNA-level) gene abundances of amoA, nosZ, and mcrA were higher with straw incorporation than those without straw incorporation, and they were positively correlated with high concentrations of soil exchangeable NH4+ and dissolved organic carbon. The active (mRNA-level) gene abundance of mcrA was lower in the drainage treatment than in continuous flooding, which was negatively correlated with soil redox potential (Eh). The CH4 flux rate was significantly and positively correlated with active mcrA abundance but negatively correlated with Eh. The N2O flux rate was significantly and positively correlated with present and active nirS abundance and positively correlated with soil Eh. Thus, we demonstrated that active gene abundance, such as of mcrA for CH4 and nirS for N2O, reflects the contradictory relationship between CH4 and N2O emissions regulated by soil Eh in acidic paddy soils. 相似文献
12.
Sébastien Gogo Christophe Guimbaud Fatima Laggoun-Défarge Valéry Catoire Claude Robert 《Journal of Soils and Sediments》2011,11(4):545-551
Purpose
CH4 emissions from peatlands are space and time dependent. The variety of efflux routes contributes to these variabilities. CH4 bubbling remains difficult to investigate since it occurs on a timescale of seconds. The aims of this study were to use for the first time the recently built infrared high-resolution spectrometer, SPectrometre Infra-Rouge In situ Troposphérique to (1) measure in situ CH4 fluxes in natural and artificial peatland plot and (2) observe online bubbling events with quantification of CH4 emission fluxes corresponding to this very sudden degassing event. 相似文献13.
At cattle overwintering areas, inputs of nutrients in animal excrements create conditions favourable for intensive microbial
activity in soil. During nitrogen transformations, significant amounts of N2O are released, which makes overwintering areas important sources of N2O emission. In previous studies, however, increasing intensity of long-term cattle impact did not always increase emissions
of N2O from the soil: in some cases, N2O emissions from the soil were lower at the most impacted area than at the moderately impacted one. Thus, the relationships
between the level of long-term animal impact and potential production of N2O from soil by denitrification were investigated in field and laboratory experiments. Field measurements indicated that the
production of N2O after glucose and nitrate amendments was greater in severely and moderately impacted locations than in an unimpacted location,
while differences between the severely and moderately impacted locations were not significant. In laboratory experiments,
the potential production of N2O (measured as anaerobic production of N2O after addition of glucose and nitrate) was highest in the moderately impacted soil. Surprisingly, potential N2O production was lower in the most impacted than in the moderately impacted soil, and the net N2O production in the highly impacted soil was further decreased by a significant reduction of N2O to N2. The expected stimulating effect of an increasing ratio of glucose C to nitrate N on the reduction of N2O to N2 during denitrification was not confirmed. The results show that cattle increase the denitrification potential of the soil
but suggest that the denitrification potential does not increase indefinitely with increasing cattle impact. 相似文献
14.
Effects of biochar addition on N<Subscript>2</Subscript>O and CO<Subscript>2</Subscript> emissions from two paddy soils 总被引:2,自引:0,他引:2
Jinyang Wang Man Zhang Zhengqin Xiong Pingli Liu Genxing Pan 《Biology and Fertility of Soils》2011,47(8):887-896
Impacts of biochar addition on nitrous oxide (N2O) and carbon dioxide (CO2) emissions from paddy soils are not well documented. Here, we have hypothesized that N2O emissions from paddy soils could be depressed by biochar incorporation during the upland crop season without any effect
on CO2 emissions. Therefore, we have carried out the 60-day aerobic incubation experiment to investigate the influences of rice
husk biochar incorporation (50 t ha−1) into two typical paddy soils with or without nitrogen (N) fertilizer on N2O and CO2 evolution from soil. Biochar addition significantly decreased N2O emissions during the 60-day period by 73.1% as an average value while the inhibition ranged from 51.4% to 93.5% (P < 0.05–0.01) in terms of cumulative emissions. Significant interactions were observed between biochar, N fertilizer, and
soil type indicating that the effect of biochar addition on N2O emissions was influenced by soil type. Moreover, biochar addition did not increase CO2 emissions from both paddy soils (P > 0.05) in terms of cumulative emissions. Therefore, biochar can be added to paddy fields during the upland crop growing
season to mitigate N2O evolution and thus global warming. 相似文献
15.
Zhiqun Huang Zhihong Xu Timothy J. Blumfield Chengrong Chen Ken Bubb 《Journal of Soils and Sediments》2008,8(6):389-397
Background, aim, and scope
Mulching is frequently used to overcome the drought problem in hardwood plantations that are increasingly being established in lower rainfall areas of Queensland, Australia because of increasing land values. In addition to soil water content, soil nitrogen (N) availability is another critical determinant of plantation productivity in these areas. The purpose of this study was to understand how soil mineral N dynamics, in situ N mineralization, and the fate of fertilized N would be affected by mulching during the early establishment of hardwood plantations. 相似文献16.
A. Yu. Kudeyarova 《Eurasian Soil Science》2016,49(5):519-528
The participation of anionic aluminum hydroxo complexes in the binding of phosphate anions on the surface of gibbsite has been shown. The succession of changes in the anionic aluminum phosphate complexes under increasing concentration of phosphate solution has been studied. It has been found that aluminum polyphosphate complexes responsible for the intensive dissolution of gibbsite are formed, along with aluminum orthophosphate complexes, at phosphate solution concentrations of 1 and 2 mol P/L. The decisive role of polyphosphate (P–O–P) groups in the ligand structure of anionic complexes in the transformation of gibbsite to a phosphate mineral (ammonium taranakite) has been revealed. The role of hydrogen bonds with the participation of ligand P(O)OH groups in the formation of ammonium taranakite crystals has been discussed. 相似文献
17.
A laboratory incubation experiment was conducted to demonstrate that reduced availability of CO2 may be an important factor limiting nitrification. Soil samples amended with wheat straw (0%, 0.1% and 0.2%) and (15NH4)2SO4 (200 mg N kg–1 soil, 2.213 atom% 15N excess) were incubated at 30±2°C for 20 days with or without the arrangement for trapping CO2 resulting from the decomposition of organic matter. Nitrification (as determined by the disappearance of NH4+ and accumulation of NO3–) was found to be highly sensitive to available CO2 decreasing significantly when CO2 was trapped in alkali solution and increasing substantially when the amount of CO2 in the soil atmosphere increased due to the decomposition of added wheat straw. The co-efficient of correlation between NH4+-N and NO3–-N content of soil was highly significant (r =0.99). During incubation, 0.1–78% of the applied NH4+ was recovered as NO3– at different incubation intervals. Amendment of soil with wheat straw significantly increased NH4+ immobilization. From 1.6% to 4.5% of the applied N was unaccounted for and was due to N losses. The results of the study suggest that decreased availability of CO2 will limit the process of nitrification during soil incubations involving trapping of CO2 (in closed vessels) or its removal from the stream of air passing over the incubated soil (in open-ended systems). 相似文献
18.
N. D. Ananyeva E. V. Stolnikova E. A. Susyan A. K. Khodzhaeva 《Eurasian Soil Science》2010,43(11):1287-1293
In the humus horizon of soddy-podzolic soils of postagrogenic cenoses and primary forests, the contributions of the fungi
and bacteria were determined by the selective inhibition of the substrate-induced respiration (SIR) by antibiotics; the basal
(microbial) respiration and the net-produced nitrous oxide (N2O) were also determined. The procedure of the SIR separation using antibiotics (cycloheximide and streptomycin) into the fungal
and bacterial components was optimized. It was shown that the fungi: bacteria ratio was 1.58, 2.04, 1.55, 1.39, 2.09, and
1.86 for the cropland, fallow, and different-aged forests (20, 45, 90, and 450 years), respectively. The fungal and bacterial
production of CO2 in the primary forest soil was higher than in the cropland by 6.3 and 11.4 times, respectively. The production of N2O in the soils of the primary and secondary (90-year-old) forests (3 and 7 ng N-N2O/g soil per hour, respectively) was 2–13 times lower than in the postagrogenic cenoses, where low values were also found
for the microbial biomass carbon (Cmic), its components (the Cmic-bacteria and Cmic-fungi), and the portion of Cmic in the organic carbon of the soil. A conclusion was drawn about the misbalance of the microbial processes in the overgrown
cropland accompanied by the increased production of N2O by the soil during its enrichment with an organic substrate (glucose). 相似文献
19.
Short-term competition between soil microbes and seedlings of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth) for N was assessed in a pot study using (15NH4)2SO4 as a tracer. Seedlings were grown in organic and mineral soil, collected from a podsol soil; 3.18 mg (15NH4)2SO4 per pot were injected into the soil, corresponding to 4 µg 15N g-1 d.m. (dry matter) mineral soil and 17 µg 15N g-1 d.m. organic soil. The amounts of N and 15N in the seedlings and in microbial biomass derived from fumigation-extraction were measured 48 h after addition of 15N. In the mineral soil, 19–30% of the added 15N was found in the plants and 14–20% in the microbial biomass. There were no statistically significant differences between the tree species. In the organic soil, 74% of the added 15N was recovered in the microbial biomass in birch soil, compared to 26% and 17% in pine and spruce soils, respectively. Correspondingly, about 70% of the 15N was recovered in pine and spruce seedlings, and only 23% in birch seedlings. In conclusion, plants generally competed more successfully for added 15NH4 + than soil microbes did. An exception was birch growing in organic soil, where the greater amount of available C from birch root exudates perhaps enabled micro-organisms to utilise more N. 相似文献
20.
Alternative silvicultural systems were introduced in Coastal Western Hemlock forests of British Columbia, Canada, to reduce
disturbance incurred by conventional clear-cutting and to maintain the forest influence on soil nutrient cycling. As we hypothesized,
in situ pools and net mineralization of NH4
+ were lower under no and low disturbance (old-growth forest and shelterwood) compared to clear-cuts (high disturbance); in
situ pools and net production of NO3
− were very low across all treatments. Gross transformation rates of NH4
+ increased while those of NO3
− decreased with increasing disturbance, suggesting that these processes were uncoupled. We conclude that shelterwood harvesting
reduces the impact on forest floor NH4
+ cycling compared to clear-cutting, and that neither low nor high disturbance intensity results in substantial NO3
− accumulation, as what occasionally occurs in other ecosystems. We hypothesize that the uncoupling of NH4
+ and NO3
− dynamics may be due to the predominance of heterotrophic nitrification by lignin-degrading fungi that oxidize organic N rather
than NH4
+–N, and whose activities are suppressed at high NH4
+ concentrations. 相似文献