首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Invasive woody plant expansion is a primary threat driving fragmentation and loss of sagebrush (Artemisia spp.) and prairie habitats across the central and western United States. Expansion of native woody plants, including conifer (primarily Juniperus spp.) and mesquite (Prosopis spp.), over the past century is primarily attributable to wildfire suppression, historic periods of intensive livestock grazing, and changes in climate. To guide successful conservation programs aimed at reducing top-down stressors, we mapped invasive woody plants at regional scales to evaluate landscape level impacts, target restoration actions, and monitor restoration outcomes. Our overarching goal was to produce seamless regional products across sociopolitical boundaries with resolution fine enough to depict the spatial extent and degree of woody plant invasion relevant to greater sage-grouse (Centrocercus urophasianus) and lesser prairie-chicken (Tympanuchus pallidicinctus) conservation efforts. We mapped tree canopy cover at 1-m spatial resolution across an 11-state region (508 265 km2). Greater than 90% of occupied lesser prairie-chicken habitat was largely treeless for conifers (< 1% canopy cover), whereas > 67% was treeless for mesquite. Conifers in the higher canopy cover classes (16 ? 50% and > 50% canopy cover) were scarce (< 2% and 1% canopy cover), as was mesquite (< 5% and 1% canopy cover). Occupied habitat by sage-grouse was more variable but also had a relatively large proportion of treeless areas (x? = 71, SE = 5%). Low to moderate levels of conifer cover (1 ? 20%) were fewer (x? = 23, SE = 5%) as were areas in the highest cover class (> 50%; x? = 6, SE = 2%). Mapping indicated that a high proportion of invading woody plants are at a low to intermediate level. Canopy cover maps for conifer and mesquite resulting from this study provide the first and most geographically complete, high-resolution assessment of woody plant cover as a top-down threat to western sage-steppe and prairie ecosystems.  相似文献   

2.
Woody encroachment has influenced wildlife distributions and, thus, predator-prey dynamics, for many taxa in North American grasslands. In 2015 and 2016, we examined how vegetative characteristics influenced avian nest predator assemblages and nest predation rates in semiarid grasslands of south Texas, where encroachment of woody plant species is common. We monitored 253 nests of 17 bird species and deployed infrared cameras at 107 nest sites within four vegetation types at our study sites. We also used data from a concurrent, multispecies monitoring project within our study area to assess predator activity within these same vegetation types. We divided bird species into four nest types based on nest shape and size (i.e., small, medium, and large cup-shaped nests and exposed nests with little structure). We then used logistic regression to examine relationships between shrub cover, concealment, and distance to edge and the probability of nest success and predation by snakes. We observed a significant decrease in nest success of our medium-sized, cup-shaped nest type when shrub cover increased at the nest site, indicating small increases in shrub cover (≈ 10%) could have substantial impacts on birds using this nest type. Snakes were our primary predator at camera-monitored nests (59%), and snake activity increased by 6.7% with every 10% increase in shrub cover at the nest site. Mesomammalian and large mammalian predators were most active in vegetation types predominated by herbaceous cover, small mammals were most active in vegetation types predominated by woody cover, and snake activity was highly variable. Predator activity did not reflect predator identity at camera-monitored nests, suggesting that potential nest predator activity may not accurately reflect the risk of nest predation. Results of our study will help inform management of bird species using semiarid grasslands affected by woody encroachment and offer recommendations for improved nest success.  相似文献   

3.
Despite the importance of maternally selected nests in shaping offspring phenotypes, our understanding of how the nest environment affects embryonic development and offspring traits of most non-avian reptiles is rather limited largely due to the logistical difficulty in locating their nests. To identify the relative contributions of environmental (temporal [seasonal] and spatial [nest-site]) and intrinsic (clutch) factors on embryonic development and offspring traits, we conducted a cross-fostering experiment by swapping eggs between maternally-selected nests of the toad-headed agama (Phrynocephalus przewalskii) in the field. We found that nest environment explained a large proportion of variation in incubation duration, hatching success, and offspring size and growth. In contrast, clutch only explained a small proportion of variation in these embryonic and offspring traits. More significantly, compared with spatial effects, seasonal effects explained more phenotypic variation in both embryonic development and offspring traits. Eggs laid early in the nesting season had longer incubation durations and produced smaller hatchlings with higher post-hatching growth rates than did later-laid eggs. Consequently, hatchlings from early-laid eggs reached larger body sizes prior to winter. In addition, we found that female toad-headed agama did not select nests specific to reaction norms of their own offspring because hatchlings from original or translocated nests had similar phenotypic traits. Overall, our study demonstrates the importance of seasonal variation in nest environments in determining embryonic development and offspring phenotypes, which has not been widely appreciated at least in non-avian reptiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号