首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Piñon (Pinus spp.) and juniper (Juniperus spp.) removal is a common management approach to restore sagebrush (Artemisia spp.) vegetation in areas experiencing woodland expansion. Because many management treatments are conducted to benefit sagebrush-obligate birds, we surveyed bird communities to assess treatment effectiveness in establishing sagebrush bird communities at study sites in Utah, Nevada, Idaho, and Oregon. Our analyses included data from 1 or 2 yr prior to prescribed fire or mechanical treatment and 3 to 5 yr posttreatment. We used detrended correspondence analysis to 1) identify primary patterns of bird communities surveyed from 2006 to 2011 at point transects, 2) estimate ecological scale of change needed to achieve treatment objectives from the relative dissimilarity of survey points to the ordination region delineating sagebrush bird communities, and 3) measure changes in pre- and posttreatment bird communities. Birds associated with sagebrush, woodlands, and ecotones were detected on our surveys; increased dissimilarity of survey points to the sagebrush bird community was characterized by a gradient of increased juniper and decreased sagebrush cover. Prescribed fires burned between 30% and 97% of our bird survey points. However, from 6% to 24% cover of piñon-juniper still remained posttreatment on the four treatment plots. We measured only slight changes in bird communities, which responded primarily to current vegetation rather than relative amount of change from pretreatment vegetation structure. Bird communities at survey points located at greater ecological scales from the sagebrush bird community changed least and will require more significant impact to achieve changes. Sagebrush bird communities were established at only two survey points, which were adjacent to a larger sagebrush landscape and following almost complete juniper removal by mechanical treatment. Our results indicate that management treatments that leave residual woodland cover and are not adjacent to extensive sagebrush stands are unlikely to establish sagebrush birds.  相似文献   

2.
Woodland and forest ecosystems across western North America have experienced increased density and expansion since the early 1900s, including in the widely distributed piñon-juniper vegetation type of the western United States. Fire suppression and grazing are often cited as the main drivers of these historic changes and have led to extensive tree-reduction treatments across the region. However, much of the scientific literature on piñon-juniper expansion dates back only to the early 1900s, which is generally half a century after Euro-American settlement. Yet US General Land Office (GLO) surveys provide valuable insight into the historical extent and density of woodland and forest ecosystems as surveyors would note where on the landscape they entered and exited woodlands or forests and provided qualitative estimates of relative tree density. This study uses these GLO surveys to establish piñon-juniper woodland extent in the late 19th century at the incipient stages of Euro-American settlement in southeastern Colorado and compares these data with 2017 aerial imagery of woodland cover. We found substantial amounts of woodland contraction, as well as expansion: ≈61% of historically dense woodland is now savanna or open (treeless), whereas ≈57% of historically open areas are now savannas or woodlands. The highest rates of expansion occurred on shallow, rocky soil types with low soil available water capacity, which support little herbaceous vegetation and were consequently less likely to be affected by fire suppression or grazing. Meanwhile, the significant contractions in woodland extent occurred on deeper, upland soils with higher soil available water capacity, which were likely where early settlement and tree cutting was most prevalent. Our results provide mixed support for the widespread assumption of woodland expansion since Euro-American settlement in southeast Colorado and suggest that the expansion that has occurred in our study area is unlikely a result of past grazing or fire suppression.  相似文献   

3.
Piñon (Pinus spp.) and juniper (Juniperus spp.) trees are reduced to restore native vegetation and avoid severe fires where they have expanded into sagebrush (Artemisia tridentata Nutt.) communities. However, what phase of tree infilling should treatments target to retain desirable understory cover and avoid weed dominance? Prescribed fire and tree felling were applied to 8–20-ha treatment plots at 11 sites across the Great Basin with a tree-shredding treatment also applied to four Utah sites. Treatments were applied across a tree infilling gradient as quantified by a covariate tree dominance index (TDI = tree cover/[tree + shrub + tall perennial grass cover]). Mixed model analysis of covariance indicated that treatment × covariate interactions were significant (P &spilt; 0.05) for most vegetation functional groups 3 yr after treatment. Shrub cover was most reduced with fire at any TDI or by mechanical treatment after infilling resulted in over 50% shrub cover loss (TDI &spigt; 0.4). Fire increased cheatgrass (Bromus tectorum L.) cover by an average of 4.2% for all values of TDI. Cutting or shredding trees generally produced similar responses and increased total perennial herbaceous and cheatgrass cover by an average of 10.2% and 3.8%, at TDIs ≥ 0.35 and ≥ 0.45. Cheatgrass cover estimated across the region was &spilt; 6% after treatment, but two warmer sites had high cheatgrass cover before (19.2% and 27.2%) and after tree reduction (26.6% and 50.4%). Fuel control treatments are viable management options for increasing understory cover across a range of sites and tree cover gradients, but should be accompanied by revegetation on warmer sites with depleted understories where cheatgrass is highly adapted. Shrub and perennial herbaceous cover can be maintained by mechanically treating at lower TDI. Perennial herbaceous cover is key for avoiding biotic and abiotic thresholds in this system through resisting weed dominance and erosion.  相似文献   

4.
The expansion of piñon and juniper trees into sagebrush steppe and the infilling of historic woodlands has caused a reduction in the cover and density of the understory vegetation. Water is the limiting factor in these systems; therefore, quantifying redistribution of water resources by tree species is critical to understanding the dynamics of these formerly sagebrush-dominated rangelands. Tree canopy interception may have a significant role in reducing the amount of rainfall that reaches the ground beneath the tree, thereby reducing the amount of available soil moisture. We measured canopy interception of rainfall by singleleaf piñon (Pinus monophylla Torr. & Frém.) and Utah juniper (Juniperus osteosperma [Torr.] Little) across a gradient of storm sizes. Simulated rainfall was used to quantify interception and effective precipitation during 130 rainfall events ranging in size from 2.2 to 25.9 mm hr? 1 on 19 trees of each species. Effective precipitation was defined as the sum of throughfall and stemflow beneath tree canopies. Canopy interception averaged 44.6% (± 27.0%) with no significant difference between the two species. Tree allometrics including height, diameter at breast height, stump diameter, canopy area, live crown height, and width were measured and used as predictor variables. The best fit predictive model of effective precipitation under canopy was described by stump diameter and gross precipitation (R2 = 0.744, P < 0.0001). An alternative management model based on canopy area and gross precipitation predicted effective precipitation with similar accuracy (R2 = 0.741, P < 0.0001). Canopy area can be derived from various remote sensing techniques, allowing these results to be extrapolated to larger spatial scales to quantify the effect of increasing tree canopy cover on rainfall interception loss and potential implications for the water budget.  相似文献   

5.
6.
With the encroachment of piñon (Pinus ssp.) and juniper (Juniperus ssp.) woodlands onto sagebrush steppe rangelands, there is an increasing interest in rapid, accurate, and inexpensive quantification methods to estimate tree canopy cover and aboveground biomass. The objectives of this study were 1) to evaluate the relationship and agreement of piñon and juniper (P-J) canopy cover estimates, using object-based image analysis (OBIA) techniques and National Agriculture Imagery Program (NAIP, 1-m pixel resolution) imagery with ground measurements, and 2) to investigate the relationship between remotely-sensed P-J canopy cover and ground-measured aboveground biomass. For the OBIA, we used eCognition® Developer 8.8 software to extract tree canopy cover from NAIP imagery across 12 P-J woodlands within the Sagebrush Steppe Treatment Evaluation Project (SageSTEP) network. The P-J woodlands were categorized based on the dominant tree species found at the individual sites for the analysis (western juniper, Utah juniper, and mixed P-J community). Following tree canopy cover extractions, relationships were assessed between remotely-sensed canopy cover and ground-measured aboveground biomass. Our OBIA estimates for P-J canopy cover were highly correlated with ground-measured tree canopy cover (averaged across all regions r = 0.92). However, differences between methods occurred for western and Utah juniper sites (P < 0.05), and were more prominent where tree canopy cover was > 40%. There were high degrees of correlation between predicted aboveground biomass estimates with the use of remotely-sensed tree canopy cover and ground-measured aboveground biomass (averaged across all regions r = 0.89). Our results suggest that OBIA methods combined with NAIP imagery can provide land managers with quantitative data that can be used to evaluate P-J woodland cover and aboveground biomass rapidly, on broad scales. Although some accuracy and precision may be lost when utilizing aerial imagery to identify P-J canopy cover and aboveground biomass, it is a reasonable alternative to ground monitoring and inventory practices.  相似文献   

7.
Comparisons of tree-removal treatments to reduce the cover of single-leaf pinyon (Pinus monophylla Torr. and Frém.) and Utah juniper (Juniperus osteosperma [Torr.] Little), and subsequently increase native herbaceous cover in black sagebrush (Artemisia nova A. Nelson), are needed to identify most cost-effective methods. Two adjacent vegetation management experiments were initiated in 2006 and monitored until 2010 in eastern Nevada to compare the costs and efficacy of various tree reduction methods. One Department of Energy (DOE) experiment compared a control to five treatments: bulldozing imitating chaining ($205 · ha-1), lop-pile-burn ($2 309 · ha-1), lop-and-scatter ($1 297 · ha-1), feller-buncher and chipper ($4 940 · ha-1), and mastication ($1 136 · ha-1), whereas a second Bureau of Land Management (BLM) experiment compared one-way chaining ($205 · ha-1) to a control treatment. Chaining and bulldozing resulted in the least reduction of tree cover among the treatments. In the DOE experiment, forb cover only decreased in the mastication treatment. Litter increased in all methods. Slash cover was lowest in the control and lop-pile-burn treatments, intermediate in the feller-buncher and mastication treatments, and highest in the bulldozing and lop-and-scatter treatments. By 2010, forb cover and the combined cover of dead shrubs and trees were increased and decreased, respectively, by chaining in the BLM experiment. Nonnative annual grass and biotic crust were absent or uncommon before and after treatment implementation. In both experiments, tree removal resulted in a nonsignificant increase in perennial grass cover even 4 yr post-treatment. An ecological return-on-investment (EROI) metric was developed to compare perennial grass cover and tree cover per unit area cost of each active treatment. By 2010, chaining or bulldozing, followed by mastication, showed the highest EROI for improving perennial grass and decreasing tree cover. Mastication is recommended for restoration of smaller tree-encroached areas, whereas land managers should reconsider smooth chaining, despite its negative perceptions, for rapid and cost-efficient restoration of large landscapes obligates.  相似文献   

8.
Managers reduce piñon (Pinus spp.) and juniper (Juniperus spp.) trees that are encroaching on sagebrush (Artemisia spp.) communities to lower fuel loads and increase cover of desirable understory species. All plant species in these communities depend on soil water held at &spigt; -1.5 MPa matric potential in the upper 0.3 m of soil for nutrient diffusion to roots and major growth in spring (resource growth pool). We measured soil water matric potentials and temperatures using gypsum blocks and thermocouples buried at 0.01–0.3 m on tree, shrub, and interspace microsites to characterize the seasonal soil climate of 13 tree-encroached sites across the Great Basin. We also tested the effects of initial tree infilling phase and tree control treatments of prescribed fire, tree cutting, and tree shredding on time of available water and soil temperature of the resource growth pool on nine sites. Both prescribed fire and mechanical tree reduction similarly increased the time that soil water was available (matric potential &spigt; -1.5 MPa) in spring, but this increase was greatest (up to 26 d) when treatments were applied at high tree dominance. As plant cover increased with time since treatment, the additional time of available water decreased. However, even in the fourth year after treatment, available water was 8.6 d and 18 d longer on treatments applied at mid and high tree dominance compared to untreated plots, indicating ongoing water availability to support continued increases in residual plants or annual invaders in the future. To increase resistance to invasive annual grasses managers should either treat at lower or mid tree dominance when there is still high cover of desirable residual vegetation or seed desirable species to use increased resources from tree reduction. This strategy is especially critical on warmer sites, which have high climate suitability to invasive species such as cheatgrass (Bromus tectorum L.)  相似文献   

9.
Declining greater sage-grouse populations are causing concern for the future of this species across the western United States. Major ecosystem issues, including exotic annual grass invasion and conifer encroachment, threaten vast acreages of sagebrush rangeland and are primary threats to sage-grouse. We discuss types of problems facing sage-grouse habitat and argue that complex ecosystem problems may be difficult to address under the Endangered Species Act as currently applied. Some problems, such as anthropogenic development, can be effectively regulated to produce a desired outcome. Other problems that are complex and involve disruption of ecosystem processes cannot be effectively regulated and require ongoing commitment to adaptive management. We believe that historical inertia of the regulatory paradigm is sufficient to skew management toward regulatory mechanisms, even though complex ecosystem problems impact large portions of the sage-grouse range. To overcome this situation, we suggest that the regulatory approach embodied in the Endangered Species Act be expanded to include promoting management trajectories needed to address complex ecosystem problems. This process should begin with state-and-transition models as the basis for a conceptual framework that outlines potential plant communities, their value as sage-grouse habitat, and their ecological status. Desired management trajectories are defined by maintenance of an ecologically resilient state that is of value as sage-grouse habitat, or movement from a less desired to a more desired state. Addressing complex ecosystem problems will involve shifting conservation roles. Under the regulatory approach, programmatic scales define regulatory policies, and local scales focus on implementing those policies. With complex ecosystem problems, programmatic scales empower local conservationists to make decisions necessary to adaptively manage problems. Putting ecosystem management on par with traditional regulatory actions honors obligations to provide regulatory protections while maintaining the capacity of the ecosystem to produce habitat and greatly expands the diversity of stakeholders willing to participate in sage-grouse conservation.  相似文献   

10.
1. Two experiments were carried out to determine the response of broiler chicks to threonine‐supplemented diets between 10 and 28 d and 7 and 21 d of age, respectively.

2. In the first experiment female broiler chicks were fed on 11 experimental diets. Two iso‐energetic basal diets (diets 1 and 2) were prepared with 200 and 160 g CP/kg and 7·6 and 6·0 g threonine/kg respectively. Both diets contained 11·5 g lysine and 8·7 g sulphur‐containing amino acids/kg. Diet 3 was composed of diet 2, supplemented with all essential and non‐essential amino acids (EAA and NEAA, respectively) except threonine, to the concentrations of the amino acids in diet 1. The NEAA were added as a combination of glutamic acid and glycine. Diets 4 to 11 had the same compositions as diet 3, but contained increasing amounts of threonine.

3. For birds fed on diet 2, gain was significantly lower and food/gain ratio was significantly higher than for birds fed on diet 1. Supplementation with EAA, NEAA and threonine to the same concentrations in diet 1 resulted in a performance similar to that found on diet 1.

4. In experiment 2, male and female broiler chicks both received 10 experimental diets. Diet 1 contained 220 g CP/kg and 8.5 g threonine/kg, diet 2 contained 160 g CP/kg from natural raw materials and 6 g threonine/kg. Both diets contained 12·4 g lysine and 9·3 g sulphur‐containing amino acids/kg. Basal diet 2 was supplemented with all EAA and NEAA to the concentrations of basal diet 1, except for threonine. Diets 3 to 10 had the same compositions as the supplemented diet 2, but contained increasing amounts of threonine.

5. For male and female chicks on diet 2, gain was significantly lower and food/gain ratio significantly higher than those on diet 1. Diet 10 (160 g CP/kg plus all EAA, including threonine, and NEAA supplemented to the concentrations of diet 1) resulted in the same performance as diet 1.

6. The results indicate that, when low protein maize‐soyabean meal diets supplemented with EAA and NEAA with 13·31 MJ ME/kg were fed to male and female broiler chicks until 21 d of age, improvements in gain and food/gain ratio were obtained when the dietary threonine content was increased to 7·25 g/kg. When female chicks were fed threonine‐supplemented diets to 28 d of age, improvement in gain and food/gain ratio was obtained when the threonine concentrations were increased to 6·32 g/kg diet.

7. Curves have been fitted to the data, from which a cost‐benefit analyses can be made and an optimum threonine dose calculated, using local prices.  相似文献   


11.
12.
Thurber’s needlegrass (Achnatherum thurberianum [Piper] Barkworth) is an important component of many sagebrush communities in the Intermountain West. Prescribed fall burning is often implemented in sagebrush plant communities to mimic historic wildfires, improve wildlife habitat, and increase livestock forage production. Burning is used because it shifts dominance from sagebrush to herbaceous vegetation. The effects of prescribed fall burning on Thurber’s needlegrass are largely unexplored. The purpose of this study was to determine the response of Thurber’s needlegrass to prescribed fall burning. A randomized block design was used, and each block consisted of a fall burned and unburned (control) Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis [Beetle & A. Young] S. L. Welsh)–bunchgrass communities. Response variables measured in the first and second years after burns were Thurber’s needlegrass community foliar cover and density, vegetative and reproductive biomass, photosynthetic rates, tissue carbon (C) and nitrogen (N) content, and N (15N:14N) and C (13C:12C) isotope ratios. Density of Thurber’s needlegrass in both postburn years and cover in the second postburn year were not different between treatments (P > 0.05), but cover was less in the burned than control treatment in the first postburn year (P = 0.008). Carbon isotope ratios in Thurber’s needlegrass differed between the burn (-25.9 ±  SE) and control (-26.3 ±  SE) treatments in the first postburn year (P = 0.019). Nitrogen isotope ratios indicated nitrogen was more available in the burned than control treatment in both years (P < 0.05). Photosynthetic rates of Thurber’s needlegrass were also generally greater in the burned than control treatment (P = 0.045). Our results suggest burning altered the availability of resources to Thurber’s needlegrass plants. Our results also suggest that prescribed fall burning is not detrimental to Thurber’s needlegrass and, thus, can be used as a method to shift dominance from sagebrush to herbaceous vegetation.  相似文献   

13.
1. A White Leghorn line was selected for part‐record hen‐housed number of eggs from 1962 to 1990. Genetic changes were estimated as deviations from its unselected control line.

2. Over the first 10 generations with selection almost exclusively for number of eggs to the age of 273 d, all traits, except rate of mortality, showed significant changes. Regressions per year were: 273 d production, 3.07 eggs; 497 d production, 5.18 eggs; production from 274 to 497 d, 2.43 eggs; age at first egg, ‐2.33 d; mean weight of first 10 eggs, ‐0.82 g; body weight at 497 d, ‐19.02 g and rate of mortality, 0.19%.

3. Over the rest of the period increasing selection pressure for egg weight has been applied. This resulted in positive changes for this trait and no or small negative changes in egg number.

4. In general, heritabilities and genetic correlations did not change over the period of selection. The heritability of the main trait of selection, production to 273 d was 0.19 ± 0.04 and heritabilities of egg size traits about 0.50.

5. The genetic correlation between egg production to 273 d and mean weight of first 10 eggs was estimated as ‐0.37 ± 0.06 but from the observed response a realised genetic correlation of ‐0.97 was calculated.  相似文献   


14.
A comparison of animal gains and vegetation trends was made from 2002–2008 between a continuous season-long stocking (SLS) system and a modified intensive–early stocking system (IES) with late-season grazing (IES 1.6× + 1; 1.6 times the number of animals of the SLS system from May 1 to July 15, and 1 times the number of animals of SLS from July 15 to October 1) on shortgrass native rangeland of western Kansas. The continuous season-long stocked system placed animals at a density of 1.37 ha · steer?1 from May through October, or 2.63 animal unit months (AUM) · ha?1, whereas the intensive–early stocked system with late-season grazing (3.33 AUM · ha?1) stocked pastures at 0.85 ha · steer?1 from May through the middle of July, and then stocked pastures at 1.37 ha · steer?1 for the remainder of the grazing season by removing the heaviest animals mid-July each yr. Average daily gains (0.78 vs. 0.70 kg · d?1, P = 0.039) and total animal gain (58 vs. 52 kg, P = 0.042) were different between the continuous season-long stocked and the intensive–early stocked animals during the first half of the grazing season. No difference was found between average daily gain (0.61 vs. 0.62 kg · d?1, P = 0.726) and total animal gain (48 vs. 49 kg, P = 0.711) for the continuous season-long stocked and intensive–early stocked with late-season grazing animals during the last half of the season. Total individual animal gain (106 vs. 101 kg, P = 0.154) and average daily gain (0.70 vs. 0.66 kg · d?1, P = 0.152) was not different between the continuous season-long stocked and the intensive–early stocked system animals that were on pasture the entire grazing season. Total beef gain on a land-area basis (96 vs. 77 kg · ha?1, P = 0.008) was greater for the modified intensive–early stocked system with late-season grazing with greater animal densities. Changes in residual biomass and most key vegetation components at the end of the grazing season were not different between the two systems.  相似文献   

15.
Piñon–juniper is a major vegetation type in western North America. Effective management of these ecosystems has been hindered by inadequate understanding of 1) the variability in ecosystem structure and ecological processes that exists among the diverse combinations of piñons, junipers, and associated shrubs, herbs, and soil organisms; 2) the prehistoric and historic disturbance regimes; and 3) the mechanisms driving changes in vegetation structure and composition during the past 150 yr. This article summarizes what we know (and don't know) about three fundamentally different kinds of piñon–juniper vegetation. Persistent woodlands are found where local soils, climate, and disturbance regimes are favorable for piñon, juniper, or a mix of both; fires have always been infrequent in these woodlands. Piñon–juniper savannas are found where local soils and climate are suitable for both trees and grasses; it is logical that low-severity fires may have maintained low tree densities before disruption of fire regimes following Euro-American settlement, but information is insufficient to support any confident statements about historical disturbance regimes in these savannas. Wooded shrublands are found where local soils and climate support a shrub community, but trees can increase during moist climatic conditions and periods without disturbance and decrease during droughts and following disturbance. Dramatic increases in tree density have occurred in portions of all three types of piñon–juniper vegetation, although equally dramatic mortality events have also occurred in some areas. The potential mechanisms driving increases in tree density—such as recovery from past disturbance, natural range expansion, livestock grazing, fire exclusion, climatic variability, and CO2 fertilization—generally have not received enough empirical or experimental investigation to predict which is most important in any given location. The intent of this synthesis is 1) to provide a source of information for managers and policy makers; and 2) to stimulate researchers to address the most important unanswered questions.  相似文献   

16.
17.
18.
19.
20.
1. The importance of MHC genes and background genes in controlling disease resistance, including resistance to avian coccidiosis, has not been clarified in meat‐type chickens.

2. The role of class IV MHC genes in resistance to Eimeria acervulina was assessed in F2 progeny of a cross between 2 meat‐type lines, selected divergently for immune response to Escherichia coli.

3. Disease susceptibility was assessed by lesion score, body weight, packed cell volume and carotene absorption.

4. Chickens with the “K” class IV MHC haplotype had lower lesion scores than chickens with “F” and “A” haplotypes.

5. Plasma carotene concentrations were higher in chickens with “K” haplotype and lower in chickens with “F” and “A” haplotypes whereas body weight and packed cell volume were less sensitive measures of Eimeria infection.

6. Eimeria acervulina resistance appears to be associated with MHC class IV genes; information about MHC haplotypes may be useful in selecting for increased resistance of meat‐type chickens to coccidiosis.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号