首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To determine prevalence and clinical features of pituitary pars intermedia dysfunction (PPID) in horses with laminitis. DESIGN: Case series. ANIMALS: 40 horses with laminitis. PROCEDURES: Horses with laminitis that survived an initial episode of pain and were not receiving medications known to alter the hypothalamic-pituitary-adrenal axis were tested for PPID by evaluation of endogenous plasma ACTH concentration. Signalment, suspected cause, month of onset and duration of laminitis, Obel grade of lameness, pedal bone rotation, physical examination findings, results of endocrine function tests, treatment, outcome, and postmortem examination findings were recorded. RESULTS: Prevalence of PPID as defined by a single high plasma ACTH concentration was 70%. Median age of horses suspected of having PPID (n = 28) was 15.5 years, and median age of horses without PPID (12) was 14.5 years. Laminitis occurred most frequently in horses with and without suspected PPID during September and May, respectively. Chronic laminitis was significantly more common in horses suspected of having PPID. In horses suspected of having PPID, the most common physical examination findings included abnormal body fat distribution, bulging supraorbital fossae, and hirsutism. Five horses suspected of having PPID had no clinical abnormalities other than laminitis. Seventeen horses suspected of having PPID that were treated with pergolide survived, and 3 horses that were not treated survived. CONCLUSIONS AND CLINICAL RELEVANCE: Evidence of PPID is common among horses with laminitis in a primary-care ambulatory setting. Horses with laminitis may have PPID without other clinical signs commonly associated with the disease.  相似文献   

2.
Reasons for performing study: Insulin resistance (IR) is a risk factor for pasture‐associated laminitis in equids and alimentary carbohydrate overload may trigger laminitis. Whether glucose metabolism responses to carbohydrate overload are more pronounced in insulin‐resistant horses requires further study. Hypothesis: Horses pretreated with endotoxin to alter insulin sensitivity differ significantly in their glucose and insulin responses to carbohydrate overload. Methods: Horses (n = 24) were divided into 3 groups. A lipopolysaccharide (LPS; n = 8) group that received endotoxin as an 8 h 7.5 ng/kg bwt/h i.v. continuous rate infusion, an oligofructose (OF; n = 8) group that received an infusion of saline followed by 5 g/kg bwt OF via nasogastric intubation, and a LPS/OF (n = 8) group that received LPS followed 16 h later by OF. Glucose and insulin dynamics were evaluated at ‐24 h and 48 h using the frequently sampled i.v. glucose tolerance test and minimal model analysis. Physical examinations and haematology were performed and the severity of laminitis assessed. Results: Horses receiving LPS developed leucopenia and both LPS and OF induced clinical signs consistent with systemic inflammation. Insulin sensitivity significantly decreased (P<0.001) over time, but responses did not differ significantly among groups. Time (P<0.001) and treatment × time (P = 0.038) effects were detected for the acute insulin response to glucose, with mean values significantly increasing in LPS and LPS/OF groups, but not the OF group. Five horses in the LPS/OF group developed clinical laminitis compared with 0 and 2 horses in the LPS and OF groups, respectively. Conclusions: Endotoxaemia and carbohydrate overload reduce insulin sensitivity in horses. Endotoxin pretreatment does not affect the alterations in glucose metabolism induced by carbohydrate overload. Potential relevance: Insulin sensitivity decreases after carbohydrate overload in horses, which may be relevant to the development of pasture‐associated laminitis.  相似文献   

3.
Reasons for performing study: Pituitary pars intermedia dysfunction (PPID) is a common endocrinopathy, frequently diagnosed via plasma adrenocorticotropic hormone (ACTH) concentrations. Seasonal variation in plasma ACTH concentrations has been described in normal horses prompting caution in diagnosing PPID at certain times of the year. The aims of this study were to determine appropriate reference intervals for equine plasma ACTH throughout the year; and to examine the circannual variation of plasma ACTH concentrations in PPID cases. Hypothesis: Plasma ACTH can be used as a test for PPID throughout the year with the use of appropriate reference intervals. Methods: Data for reference interval calculations were obtained from samples collected from inpatients of Liphook Equine Hospital (non‐PPID group, n = 156). Data from PPID cases (n = 941) were obtained from samples submitted to the Liphook Equine Hospital Laboratory from horses with a clinical suspicion of PPID found to have plasma ACTH concentrations greater than our upper reference interval for that time of year. Results: Upper limits for reference interval of plasma ACTH were 29 pg/ml between November and July and 47 pg/ml between August and October. Circannual variation in plasma ACTH occurred in both non‐PPID and PPID horses with the highest ACTH concentrations found between August and October in both groups (P<0.0001). The greatest difference between the 2 populations also occurred between August and October. Conclusions: Plasma ACTH can be used for the diagnosis and monitoring of PPID throughout the year with the use of appropriate reference intervals. These findings demonstrate an increase in pituitary gland secretory activity during the late summer and autumn in both normal and PPID cases.  相似文献   

4.
Background: Determination of adrenocorticotropic hormone (ACTH) concentration is a commonly used test in the evaluation of endocrine causes of equine laminitis, but the concentration in healthy horses can be high at certain times of year, which alters the specificity of the ACTH test. Objective: To determine if circulating concentrations of ACTH, cortisol, glucose, insulin, and thyroxine vary month to month in healthy horses and in horses with equine metabolic syndrome (EMS). Animals: Nine healthy adult horses were studied on their farm/stable over the course of 1 year. After the diagnosis of EMS, 10 laminitic horses residing at the same farm/stable were also studied. Methods: Prospective study of healthy and laminitic horses. Plasma/serum samples were analyzed for concentrations of hormones and glucose. Results: ACTH was the only analyte to show a discrete seasonal pattern, with concentrations in healthy and EMS horses frequently outside of the reference range (9–35 pg/mL) in August through October. Insulin was elevated (>40 μIU/mL) in EMS horses during most months and median serum glucose was generally higher in EMS horses (100 mg/dL, range, 76–163 mg/ dL) than in controls (94 mg/dL, range, 56–110 mg/dL), but no seasonal patterns for insulin or glucose were found. Conclusions and Clinical Importance: An increased ACTH concentration in horses in late summer or autumn should be interpreted with caution. In contrast, insulin concentration is maintained within the reference range throughout the year in healthy horses, thus an increased insulin concentration at any time of year should raise suspicions of EMS, ECD, or both.  相似文献   

5.
Background: Plasma α‐melanocyte‐stimulating hormone (α‐MSH) and adrenocorticotropin (ACTH) concentrations in horses vary with season, confounding diagnostic testing for pituitary pars intermedia dysfunction (PPID). Hypothesis: The goals of this study were to determine whether seasonal variation in plasma α‐MSH and ACTH concentrations in horses is influenced by geographic location, breed, or PPID. Animals: Healthy light breed horses residing in Florida, Massachusetts, and Finland (n = 12 per group); healthy Morgan horses (n = 13); healthy ponies (n = 9) and horses with PPID (n = 8). Methods: Monthly plasma α‐MSH and ACTH concentrations were measured by radioimmunoassay. Nonlinear regression analysis was used to estimate the time of peak hormone concentrations. Mean hormone concentrations in fall and nonfall months were compared. Results: The fall peak plasma α‐MSH concentration occurred earlier in horses residing at more northern locations. Mean seasonal α‐MSH concentrations were similar in all healthy groups at all locations, but in the fall, plasma ACTH concentrations were higher in horses living in more southern locations. Plasma ACTH but not α‐MSH concentrations were higher in Morgan horses compared with light breed horses from the same location. Hormone concentrations of ponies did not differ from those of horses during either season. Concentrations of both hormones were high in the fall compared with the spring in horses with PPID. Conclusions and Clinical Importance: These findings suggest geographic location of residence and breed may affect the onset, amplitude, or both of the seasonal peak of pars intermedia (PI) hormones and should be considered when performing diagnostic testing for PPID. Horses with PPID maintain seasonal regulation of PI hormone output.  相似文献   

6.
This study aimed to investigate endocrinologic test values and the response to treatment of two commonly encountered causes of endocrinopathic laminitis, equine Cushing's disease (ECD) and equine metabolic syndrome (EMS), in a veterinary practice setting. In particular, the study aimed to determine whether insulin concentration correlated to the severity of clinical laminitis in horses with EMS or ECD. Twenty-five horses were included in the study and assigned to one of three groups: ECD (n = 6), EMS (n = 10), and controls (n = 9). Blood samples were collected at an initial visit and then at regular intervals for the next 12 months. Plasma concentrations of adrenocorticotropin (ACTH), cortisol, and insulin and serum concentrations of glucose and total thyroxine (T4) were obtained. Horses with ECD had significantly higher plasma ACTH concentrations than EMS horses or controls. Horses with EMS and ECD both had significantly higher plasma insulin concentrations than control horses, which was correlated with the Obel grade of laminitis (r = 0.63). After treatment, there was a trend for a reduction in plasma ACTH concentration in horses with ECD. A program of diet and exercise for horses with EMS resulted in reductions in both plasma insulin concentrations and bodyweight, which was variable, depending on the individual. There was a significant correlation between the change in plasma insulin concentration and Obel grade of laminitis (r = 0.69). This study has highlighted the importance of baseline plasma insulin concentration as a potential indicator of the susceptibility of horses to laminitis and the response to a program of diet and exercise.  相似文献   

7.
Background: Results of diagnostic tests for equine pituitary pars intermedia dysfunction (PPID), including endogenous ACTH concentration and the overnight dexamethasone suppression test (DST), are affected by season. New and potentially more sensitive diagnostic tests for equine PPID, such as thyrotropin‐releasing hormone (TRH)‐stimulated ACTH response, have been developed, but have had limited evaluation of seasonality. Objective: Our purpose was to evaluate seasonal changes in plasma ACTH and alpha‐melanocyte‐stimulating hormone (α‐MSH) responses to TRH administration. Animals: Nine, healthy, aged horses with normal DST results. Methods: Synthetic TRH (1 mg) was administered IV. Plasma ACTH and α‐MSH concentrations were measured at 0, 5, 10, 15, 20, 25, 30, 45, 60, and 180 minutes. Testing was performed in February, July, August, September, October, and November. Mean TRH‐stimulated ACTH and α‐MSH concentrations were compared across months and time by repeated measures analysis of variance. Significance was set at the P < .05 level. Results: Concentrations of ACTH and α‐MSH significantly increased after TRH administration. Endogenous and TRH‐stimulated ACTH and α‐MSH concentrations were significantly different across months with higher concentrations in the summer and fall compared with February. Conclusions and Clinical Importance: Plasma ACTH and α‐MSH responses to TRH administration experience seasonal variation, with TRH‐stimulated ACTH and α‐MSH concentrations increasing from summer through fall. These results support previous evidence of a seasonal influence on the equine pituitary‐adrenal axis. More research is warranted with a larger number of horses to determine if seasonal reference ranges for TRH stimulation testing need to be defined.  相似文献   

8.
Equine pituitary pars intermedia dysfunction (PPID) is known to alter glucose/insulin metabolism. This study evaluated changes in parameters relating to glucose/insulin metabolism and determined whether there is a difference between pergolide-treated and untreated animals. We hypothesized that glucose/insulin dynamics in PPID horses receiving pergolide would be different than those in untreated horses. A total of 38 horses with diagnoses of PPID were included in the study (average age: 24 years). A total of 25 horses were untreated; 13 horses were treated with pergolide (>3 months). Parameters relating to glucose/insulin metabolism were determined in all horses, as follows: adrenocorticotropin-releasing hormone (ACTH), insulin, fructosamine, triglyceride, glucose, modified insulin-to-glucose ratio (MIRG), and reciprocal of the square root of insulin (RISQI). A combined glucose-insulin test (CGIT) was performed in 23 horses as not all owners agreed to the testing. Treated animals showed a tendency to have lower ACTH, but results were not significant. All animals had fructosamine levels exceeding reference values (mean value 314 ± 32 μmol/L; reference range: <280 μmol/L). There were no statistically significant differences between insulin, glucose, ACTH, triglycerides concentrations, RISQI/MIRG calculations, and CGIT results of pergolide-treated PPID and those of untreated horses. Five horses (13.2%) had combined hyperglycemia/hyperinsulinemia, whereas 7 horses (18.4%) displayed hyperglycemia, and 3 horses (7.9%) showed hyperinsulinemia alone. Forty percent of the horses with altered glucose/insulin metabolism were treated with pergolide. Based on RISQI and MIRG calculations, 19 animals displayed changes in glucose/insulin metabolism. Fourteen of twenty-three horses (61%) showed signs of insulin resistance in CGIT results. In conclusion, PPID horses frequently show alterations in glucose/insulin metabolism, but no significant differences were found between treated and untreated animals. Changes in insulin/glucose dynamics may not be a useful indicator of response to pergolide treatment.  相似文献   

9.
OBJECTIVE: To determine the metabolic phenotype of a group of laminitis-prone ponies when at pasture in summer, compared with when at pasture in winter. ANIMALS: 40 ponies of various breeds predisposed to recurrent pasture-associated laminitis and 40 unaffected control ponies. PROCEDURES: Body condition score and size of the crest of the neck were assessed, blood samples obtained, and blood pressure measured by use of an indirect oscillometric technique, while ponies were kept on winter pasture (last week of November or beginning of December) and again on summer pasture (June). Serum insulin concentration and plasma glucose, triglyceride, uric acid, and ACTH concentrations were measured. Insulin sensitivity was calculated with proxies derived from basal serum insulin and plasma glucose concentrations. RESULTS: No significant differences were apparent between ponies predisposed to laminitis and control ponies during winter. However, in June, laminitis-prone ponies had increased serum insulin concentration and plasma triglyceride and uric acid concentrations, compared with control ponies. Also, laminitis-prone ponies were relatively insulin resistant, compared with control ponies. Mean blood pressure was significantly higher during summer in laminitis-prone ponies (median [interquartile range], 89.6 mm Hg [78.3 to 96.9 mm Hg]), compared with control ponies (76.8 mm Hg [69.4 to 85.2 mm Hg]). CONCLUSIONS AND CLINICAL RELEVANCE: Summer pastures appear to induce metabolic responses in some ponies, leading to expression of the prelaminitic phenotype, which includes hypertension as well as insulin resistance. Signs of this metabolic syndrome may not be apparent in affected ponies during periods of grazing winter pasture. Understanding this syndrome may enable improved countermeasures to be devised to prevent laminitis.  相似文献   

10.
OBJECTIVE: To compare the effect of thyrotropin-releasing hormone (TRH) administration on endogenous ACTH concentrations in healthy horses and those with pituitary pars inter-media hyperplasia and compare the test with the dexamethasone suppression test (DST). DESIGN: Prospective case series. ANIMALS: 15 horses with clinical signs of pituitary pars intermedia dysfunction (PPID), 4 horses with equivocal signs of PPID, and 29 horses without signs of PPID. PROCEDURES: ACTH concentrations prior to and after administration of TRH were measured 61 times in 48 horses. Results of the DST (cortisol response) were compared with those of the TRH test in 29 horses. Thirty-three horses (24 with no clinical signs of PPID, 5 with clinical signs of PPID, and 4 with equivocal clinical signs of PPID) were euthanized and necropsied and their pituitary glands evaluated. RESULTS: ACTH concentrations increased in all horses, but magnitude and duration of increase were significantly higher in horses with PPID. Endogenous ACTH concentrations were influenced by season. The ACTH baseline concentrations and response to TRH were not correlated with results of the DST. Results of DST were abnormal only in clinically abnormal horses or those with pars intermedia hyperplasia, but were within reference range in 17 of 26 tests in these horses. CONCLUSIONS AND CLINICAL RELEVANCE: The ACTH response to TRH is a useful test for diagnosis of pituitary gland hyperplasia, particularly in horses in which baseline ACTH concentrations are within reference range. The DST was specific but not sensitive and was inconsistent for individuals, and results often did not agree with the TRH test response.  相似文献   

11.
Reasons for performing study: Equine pituitary pars intermedia dysfunction (PPID) is an ageing‐related neurodegenerative disorder. The prevalence and risk factors for PPID using seasonally adjusted basal adrenocorticotropic hormone (ACTH) concentrations in aged horses have not been previously reported. Objectives: To determine the prevalence, risk factors and clinical signs predictive for PPID in a population of horses aged ≥15 years in Queensland, Australia. Methods: Owner‐reported data was obtained using a postal questionnaire distributed to an equestrian group. A subgroup of surveyed owners were visited and a veterinary physical examination performed on all horses aged ≥15 years. Blood samples were analysed for basal plasma alpha melanocyte‐stimulating hormone (α‐MSH) and ACTH concentrations, routine haematology and selected biochemistry. Aged horses with elevations above seasonally adjusted cut‐off values for basal plasma ACTH were considered positive for PPID. Positive horses were compared with their aged counterparts to determine risk factors and clinical signs associated with PPID. Results: Pituitary pars intermedia dysfunction was prevalent in aged horses (21.2%) despite owners infrequently reporting it as a known or diagnosed disease or disorder. Numerous clinical or historical signs were associated with an increased risk of PPID in the univariable model, but only age (odds ratio (OR) 1.18; 95% confidence interval (CI) 1.11–1.25, P<0.001) and owner‐reported history of hirsutism (OR 7.80; 95% CI 3.67–16.57, P<0.001) remained in the final multivariable model. There were no routine haematological or biochemical variables supportive of a diagnosis of PPID. Conclusions and potential relevance: Pituitary pars intermedia dysfunction occurs commonly in aged horses despite under‐recognition by owners. The increased risk of PPID with age supports that this is an ageing associated condition. Aged horses with clinical or historical signs consistent with PPID, especially owner‐reported hirsutism (delayed shedding and/or long hair coat), should be tested and appropriate treatment instituted.  相似文献   

12.
13.
Six mature stock-type geldings with maintenance only requirements were used in a randomized cross-over design to determine the effect of sward height on pasture plant nonstructural carbohydrate (NSC) concentrations and blood glucose and insulin concentrations. Horses were randomly assigned to one of two tall fescue (Lolium arundinaceum Schreb cv Max-Q, Pennington Seed, Madison, GA) grazing cells (0.37 ha) having two different sward heights for a period of 7 days: (1) short (approximately 15 cm; n = 3) or tall (between 30 and 40 cm; n = 3). After the first 7-day period, treatment groups were reversed by moving horses to ungrazed cells having similar characteristics to those used in the first 7 days, so that all horses receive all treatments resulting in six observations per treatment. Both short and tall grazing cells were mowed to a height of approximately 15 cm 32 days before the experiment starts. The short grazing cells were removed to approximately 15 cm at 11 days before the start of the first 7-day period and again 1 day before the start of each 7-day period. All horses had access to pasture for 10 h/d beginning at 8 AM and ending at 6 PM. Although not at pasture, all horses were individually housed in 3.7 × 12.2 m partially covered pens containing automatic water troughs and a crushed stone surface. Herbage mass (kg DM/ha) was determined by use of a falling plate meter for each pasture to ensure that both groups of horses had adequate dry matter to provide grazing for at least 7 days. On day 7 of each period, jugular venous blood samples were collected from each horse before being turned out to pasture, and then at 2, 4, 6, and 8 hours after turn-out. Pasture samples were also collected from each grazing cell at the same time blood samples were taken. Serum and plasma from blood samples were harvested and analyzed for insulin and glucose concentrations, respectively. Pasture samples were analyzed for water soluble carbohydrate (WSC), ethanol soluble carbohydrate (ESC), and starch. The sum of WSC and starch were used as an estimate of NSC. Area under the curve (AUC) and peak concentration were calculated for both plasma glucose (PPG) and serum insulin (PSI) concentration and were analyzed using analysis of variance for randomized cross-over designs. Pasture WSC, ESC, starch, and NSC concentrations were analyzed using analysis of variance for randomized complete block design. A P value of < .05 was considered significant. Mean pasture plant NSC, WSC, and ESC concentrations were lower (P < .001) in short as compared with tall. Pasture plant starch concentration was not different between treatments. Mean pregrazing plasma glucose concentrations, PPG concentrations, and plasma glucose AUC were not affected by treatment. Mean pregrazing serum insulin concentrations were not affected by treatment. Mean PSI and insulin AUC were greater (P < .01) when horses grazed tall, as compared with short. In conclusion, decreasing the sward height by mowing pasture decreased NSC, WSC, and ESC concentrations and subsequently decreased the postprandial insulin response of horses grazing the pasture. These findings may be important in developing strategies aimed at preventing insulin resistance in grazing horses.  相似文献   

14.
Reasons for performing study: The sensitivity and specificity of basal plasma α‐melanocyte‐stimulating hormone (α‐MSH) and adrenocorticotrophic hormone (ACTH) for the diagnosis of pituitary pars intermedia dysfunction (PPID) has not been evaluated in a population‐based study. Objectives: To evaluate basal plasma α‐MSH and ACTH concentrations for the diagnosis of PPID in a population of horses aged ≥15 years. Methods: Owner‐reported data were obtained using a postal questionnaire distributed to an equestrian group. A subgroup of surveyed owners was visited and veterinary examination performed on horses aged ≥15 years. Blood samples were analysed for plasma α‐MSH and ACTH concentrations. Seasonally adjusted cut‐off values for α‐MSH and ACTH concentrations for the diagnosis of PPID were obtained using Youden index values against a clinical gold standard diagnosis (hirsutism plus 3 or more clinical signs of PPID). Results: α‐melanocyte‐stimulating hormone and ACTH were highly correlated with each other and with clinical and historical indicators of PPID. The increase in both α‐MSH and ACTH with increasing numbers of clinical signs in affected horses supports a spectrum of disease. Both variables were affected by season, with derived cut‐off values being higher in autumn compared with other seasons. Sensitivity and specificity were moderate and good in nonautumn seasons (59 and 93%, respectively) for α‐MSH using a cut‐off of 52.0 pmol/l. Sensitivity and specificity were good in nonautumn seasons (80 and 83%, respectively) for ACTH using a cut‐off of 29.7 pg/ml. For both α‐MSH and ACTH, sensitivity and specificity were close to 100% for samples obtained during the autumn period. Conclusions and potential relevance: Basal plasma α‐MSH and ACTH had moderate‐to‐good sensitivity and specificity for the diagnosis of PPID, which improved substantially during the autumn period, suggesting this may be the ideal time to test. Further studies to develop seasonally adjusted reference intervals for different geographical locations are warranted.  相似文献   

15.
Equine metabolic syndrome (EMS) is important because of its association with laminitis. Obesity and insulin resistance are two important components of EMS, and the underlying cause of this syndrome is likely to be enhanced metabolic efficiency. Affected horses are often referred to as “easy keepers” because they require fewer calories to maintain body condition, and enhanced metabolic efficiency is an inherent risk factor for EMS that may be genetically determined. Pony breeds, Morgan horses, and Paso Finos are predisposed to EMS, but this problem can be prevented through effective management. Overfeeding, abundant pasture grass, and inadequate exercise are risk factors that relate to modern management practices. Obesity and adiposity induce insulin resistance, and recent research suggests that this is the determinant of laminitis susceptibility in ponies. Increased plasma insulin concentrations are detected in most affected horses and ponies, so this serves as a useful screening test for EMS. Physical characteristics also should be examined because horses with EMS exhibit regional adiposity in the form of a cresty neck or abnormal adipose tissue deposits close to the tailhead. All horses with enhanced metabolic efficiency, obesity, or regional adiposity should be screened for EMS. The combined intravenous glucose−insulin test can be performed to diagnose insulin resistance in mildly affected horses and quantify insulin sensitivity. Most horses with EMS can be effectively managed by reducing caloric intake, decreasing the starch and sugar content of the diet, increasing exercise, and limiting or eliminating access to pasture, but medical therapy is warranted in select cases.  相似文献   

16.
Identification of ponies (Equus caballus) at increased risk of pasture-associated laminitis would aid in the prevention of the disease. Insulin resistance has been associated with laminitis and could be used to identify susceptible individuals. Insulin resistance may be diagnosed by feeding supplementary water-soluble carbohydrate (WSC) and measuring blood glucose and insulin concentrations. The aim of this study was to assess the glycemic and insulinemic responses of 7 normal (NP) and 5 previously laminitic (PLP), mixed breed, native UK ponies fed glucose, fructose, and inulin [1 g/(kg(.)d) for 3 d] or no supplementary WSC (control) in spring and fall after a 7-d adaptation to a pasture or hay diet. Blood samples were taken for 12 h after feeding on each day, and baseline and peak concentrations and area under the curve (AUC) for glucose and insulin were recorded. Linear mixed models were used for statistical analysis. Differences between PLP and NP groups were most marked after glucose feeding with differences in peak glucose (P = 0.02) and peak insulin (P = 0.016) concentrations. Season and diet adaptation also affected results. Peak concentrations of glucose and insulin occurred 2 to 4 h after WSC feeding. Peak insulin concentration was greater and more variable in fall, particularly in PLP adapted to fall pasture. Baseline glucose and insulin concentrations varied between individuals and with season and diet adaptation but were not greater in PLP than NP. Insulin AUC was greater in PLP than NP after feeding both glucose and fructose (P = 0.017), but there were no differences between PLP and NP in glucose AUC. Glycemic and insulinemic changes were less (P ≤ 0.05) after feeding fructose than glucose, although differences between PLP and NP were still evident. Minimal changes in glucose and insulin concentrations occurred after inulin feeding. Measurement of peak insulin 2 h after feeding of a single dose of glucose (1 g/kg) may be a simple and practical way to aid identification of laminitis-prone ponies before the onset of clinical disease, particularly when ponies are adapted to eating fall pasture.  相似文献   

17.
Plasma levels of adrenocorticotropic hormone (ACTH), cortisol and catecholamines were used to study the role of the sympatho-adrenal system in equine grass sickness. Statistical evaluation determined differences of hormone levels between seven horses with grass sickness (one acute, five subacute and one chronic), six horses with colic (one with laminitis) and 16 control horses before and after mild stress. Plasma levels of the hormones were higher in horses with acute and subacute grass sickness than in the other groups. No differences were detected between horses with colic and stressed control horses but some hormone levels differed between control and colic horses and control horses before and after stress. It is possible that hyperactivation of the sympatho-adrenal system is caused by stress but it is uncertain whether the stress is only a result of the severity of the disease or also plays a role in its aetiology.  相似文献   

18.
No detailed comparative data are available on the hormonal parameters of horses suffering from a number of diseases. The aim of our study was to measure concentrations of cortisol, adrenocorticotropic hormone (ACTH), serotonin, adrenaline and noradrenaline in horses with various diseases and following surgery, to assess the response of the HPA axis and adrenal medulla. Blood samples were obtained from six groups of horses comprising a total of 119 animals as follows: laminitis, acute abdominal syndrome (AAS), castration surgery, acute diseases, chronic diseases and healthy controls. Serum hormonal concentrations were determined for each group for comparison. Statistically significant differences between all groups and controls were found for cortisol, ACTH (except for castration), serotonin and adrenaline concentrations but only in horses with laminitis and AAS for noradrenaline. No statistically significant differences were found between males and females. The largest changes in the pituitary-adrenal axis activity occurred mainly in acute diseases, laminitis and in the AAS group.  相似文献   

19.
The objective of this study was to gain an understanding of the pharmacokinetic and pharmacodynamic properties of pergolide in horses with PPID after of long‐term oral administration. Six horses with confirmed PPID were treated with pergolide (Prascend®) at 1 mg/horse po q24 h for 2 months, followed by 2 mg/horse po q24 h for 4 months. Following the last dose, plasma samples were collected for measurement of pergolide using an LC/MS/MS method and ACTH measurement using a chemiluminescent immunoassay. Noncompartmental and compartmental pharmacokinetic analyses were performed, as well as pharmacodynamic assessment of the effect of plasma pergolide concentrations on plasma ACTH concentrations. Pergolide effectively decreased plasma ACTH concentration in aged horses with PPID, with similar pharmacokinetic properties as reported in young horses, including an approximate terminal half‐life of 24 h. Plasma ACTH concentration increased by 50% in 3/6 horses at 2 days and 6/6 horses 10 days after discontinuing drug administration. Pergolide was quantified in all horses at 2 days and in none at 10 days after last dose. In summary, after discontinuing pergolide treatment, plasma ACTH concentration increased while pergolide was still quantifiable in some horses. Once‐daily dosing of pergolide is likely appropriate in most horses with PPID for regulating the plasma ACTH concentration.  相似文献   

20.
Reasons for performing study: Obesity and insulin resistance are risk factors for laminitis in equids and supplements containing chromium and magnesium might improve insulin sensitivity. Hypothesis: A supplement containing chromium, magnesium and other nutraceuticals would alter morphometric measurements, blood variables, and insulin sensitivity in laminitic obese horses. Methods: Twelve previously laminitic obese (body condition score ≥ 7/9) horses were randomly allocated to treatment (n = 6) and control (n = 6) groups and 2 obese horses with clinical laminitis were included in the treatment group. Treated animals received 56 g supplement with 0.25 kg oats once daily for 16 weeks. The supplement contained chromium (5 mg/day as yeast), magnesium (8.8 g/day as oxide/proteinate), and other nutraceuticals. Insulin‐modified frequently sampled i.v. glucose tolerance tests were performed with hay provided at 0, 8 and 16 weeks, and insulin sensitivity was estimated by minimal model analysis. Physical measurements were collected at the same points. Horses were not exercised. Results: Hyperinsulinaemia (>30 µu/ml) was detected in 12 of 14 horses prior to treatment. Glucose and insulin data from one mare with clinical laminitis were excluded because of persistent pain. Mean ± s.d. insulin sensitivity was 0.64 ± 0.62 × 10?4 l/min/mu prior to treatment for the remaining 13 horses. Time and treatment × time effects were not significant for any of the variables examined, with the exception of resting insulin concentrations, which significantly increased over time (P = 0.018). Health status remained the same. Conclusions: The supplement containing chromium and magnesium evaluated in this study did not alter morphometric measurements, blood variables, resting insulin concentrations or insulin sensitivity in laminitic obese horses. Potential relevance: Additional research is required to determine the appropriate use of chromium and magnesium supplements in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号