首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A soil column method was used to compare the effect of drip fertigation (the application of fertilizer through drip irrigation systems, DFI) on the leaching loss and transformation of urea-N in soil with that of surface fertilization combined with flood irrigation (SFI), and to study the leaching loss and transformation of three kinds of nitrogen fertilizers (nitrate fertilizer, ammonium fertilizer, and urea fertilizer) in two contrasting soils after the fertigation. In comparison to SFI, DFI decreased leaching loss of urea-N from the soil and increased the mineral N (NH4+-N + NO3--N) in the soil. The N leached from a clay loam soil ranged from 5.7% to 9.6% of the total N added as fertilizer, whereas for a sandy loam soil they ranged between 16.2% and 30.4%. Leaching losses of mineral N were higher when nitrate fertilizer was used compared to urea or ammonium fertilizer. Compared to the control (without urea addition), on the first day when soils were fertigated with urea, there were increases in NH4+-N in the soils. This confirmed the rapid hydrolysis of urea in soil during fertigation. NH4+-N in soils reached a peak about 5 days after fertigation, and due to nitrification it began to decrease at day 10. After applying NH4+-N fertilizer and urea and during the incubation period, the mineral nitrogen in the soil decreased. This may be related to the occurrence of NH4+-N fixation or volatilization in the soil during the fertigation process.  相似文献   

2.
Application of urea in lowland rice fields leads to ammonia (NH3) volatilization and environmental pollution, and diminishes nitrogen recovery by rice (Oryza sativa L.). Amending urea with biochar could reduce NH3 loss from urea as well as improve chemical properties of acid soils. An incubation study was conducted using a closed-dynamic air flow system to determine NH3 volatilization from urea and chemical properties of an acid soil (Typic Paleudults). The soil was mixed with three rates of chicken litter biochar (20, 40, and 60 g pot?1) and 1.31 g urea. Mixing an acid soil with biochar (60 g pot?1) in waterlogged to stimulate conditions in paddy condition significantly reduced NH3 loss and total titratable acidity. Biochar application also increased soil pH, total nitrogen, available nitrate, organic matter, total organic carbon, total carbon, available phosphorus, and exchangeable cations. Thus, chicken litter biochar can be used to reduce urea-N loss and ameliorate chemical properties of acid soils. This aspect is being embarked on in our on-going field experiments.  相似文献   

3.
Controlled-release urea (CRU) and its placement method in rice production were investigated during 2007 and 2008 seasons. Controlled-release urea was applied at 62.5, 125, and 187.5 kg nitrogen (N) ha?1, and the urea was 187.5 kg N ha?1. All the CRU treatments were applied to the nursery beds once, and they were brought into the paddy field during transplanting, while the urea treatment was split into three applications from the plowing to the harvest. The results showed that rice seedlings with CRUs germinated and grow well and there was no salt damage at the nursery stage. The CRU treatment with 125 kg N ha?1 had 33% less N than urea treatment (187.50 kg N ha?1), but it produced significantly higher grain and straw yields, higher total N uptake and total apparent N uptake efficiency. In addition, all the CRU treatments effectively decreased floodwater ammonium (NH4 +)-N and nitrate (NO3 ?)-N concentrations, pH, and N runoff.  相似文献   

4.
The continuous airflow enclosures with an acid trap method was widely used to investigate ammonia (NH3) volatilization in field; however, it could be time-consuming for the estimation of NH3 volatilization in field with the application of controlled-release urea (CRU) because NH3 volatilization with CRU application could occur during the entire crop growth period. An NH3 volatilization estimation method based on the modified Jayaweera–Mikkelsen (J-M) model combined with the Sherlock–Goh model was used to simulate NH3 volatilization in a paddy field after 255 kg N ha?1 as CRU (polymer-coated urea with the concentration of 43% nitrogen, 100% for basal) and urea (70% for basal, 30% for topdressing) during the rice growth period including flooded and non-flooded periods in Wuxi, China. Results indicated that NH3 volatilization can be modeled with the proposed measure because no significant difference (P< 0.001) was observed between the simulated values and the observed values; the correlation coefficient (r2) was 0.615 for CRU and 0.840 for urea during the flooded period, and 0.991 for CRU and 0.946 for urea during the non-flooded period. Compared with urea, NH3 volatilization was minimized by 43.2% with the application of CRU based on simulated value within the rice growth period, which was 40.40 kg N ha?1 for CRU and 78.62 kg N ha?1 for urea during the flooded period, and 5.52 kg N ha?1 for CRU and 2.33 kg N ha?1 for urea during the non-flooded period. Therefore, CRU could be a promising nitrogen fertilizer to prevent NH3 losses in the rice paddies at the investigated area.  相似文献   

5.
A pot experiment was conducted to test the hypothesis that the interaction of changes in pH and urease activity induced by biochar addition affects ammonia (NH3) volatilization on acid soils following application of urea. The results showed that the difference in accumulative NH3 volatilization between biochar addition rates of 20 and 0 Mg ha–1 was not significant, while the biochar addition rate of 40 Mg ha–1 had 42% higher accumulative NH3 volatilization than the biochar addition rate of 0 Mg ha–1. Soil pH significantly increased with increasing biochar addition rate. The soil urease activity was significantly reduced by biochar addition, but there was no significant difference between biochar addition rates of 20 and 40 Mg ha–1. These results support our hypothesis and suggest that the biochar addition rate may need to be properly selected in order to minimize fertilizer-N loss through NH3 volatilization on urea-fertilized acid paddy soils.  相似文献   

6.
Reducing ammonia (NH3) volatilization is a practical way to increase nitrogen (N) fertilizer use efficiency (NUE). In this field study, soil was amended once with either cotton (Gossypium hirsutum L.) straw (6 t ha?1) or its biochar (3.7 t ha?1) unfertilized (0 kg N ha?1) or fertilized (450 kg N ha?1), and then soil inorganic N concentration and distribution, NH3 volatilization, cotton yield and NUE were measured during the next two growing seasons. In unfertilized plots, NH3 volatilization losses in the straw-amended and biochar-amended treatments were 38–40% and 42–46%, respectively, less than that in control (i.e., unamended soil) during the two growing seasons. In the fertilized plots, NH3 volatilization losses in the straw-amended and biochar-amended treatments were 30–39% and 43–54%, respectively, less than that in the control. Straw amendment increased inorganic N concentrations, cotton yield, cotton N uptake and NUE during the first cropping season after application, but not during the second. In contrast, biochar increased cotton N uptake and NUE during both the first and the second cropping seasons after application. Furthermore, the effects of biochar on cotton N uptake and NUE were greater in the second year than in the first year. These results indicate that cotton straw and cotton straw biochar can both reduce NH3 volatilization and also increase cotton yield, N uptake and NUE. In addition, the positive effects of one application of cotton straw biochar were more long-lasting than those of cotton straw.  相似文献   

7.
The effect of tillage management on NH3-N volatilization and its influence on succeeding corn (Zea mays L.) silage production were studied at the University of Massachusetts Agricultural Experiment Station (South Deerfield, MA) during 2010–2012 growing seasons. Tillage treatments consisted of disking before and after manure application, solid-tine aeration before and after manure application, and no-till management. The greatest NH3-N loss (61 percent) occurred within the first 8 h after slurry manure application regardless of tillage management. The greatest NH3-N emission occurred with surface application (no-till), which ranged between 5.2 and 10.3 kg NH3-N ha?1 (9–20 percent of NH3-N applied) over the 3 years of the study. Immediate incorporation of manure into soil through disking reduced NH3-N loss by 66 to 75 percent. Ammonia loss abatement with aeration before or after manure application ranged from 13 to 41 percent compared with surface manure application. Tillage management did not influence corn silage yield or quality.  相似文献   

8.
ABSTRACT

Controlled-release fertilizers (CRF) are used to reduce leaching of nutrients, especially nitrate-nitrogen (NO3 ?-N) to groundwater, caused mainly by application of soluble N fertilizers to sandy soils in Florida. A leaching column study was conducted to evaluate N release and transformation from a CRF (CitriBlen) over a 16-week period when it was applied on the soil surface or incorporated into the soil. When one pore volume of water was applied to column weekly or biweekly, the CRF released urea-N slowly over time with three peaks of release on 3–4, 8, and 12 week after application. Both ammonium-nitrogen (NH4 +-N) and NO3 ?-N were leached in large amounts on week 2, likely from soluble forms of N. Cumulatively, the most leached N at the end of study was in the NH4 + form, followed by the NO3 ? form. The sum of all N forms leached and volatilized accounted for 53–69% of total N applied. Total N recovery was 70% and 93% of total N applied for surface and sub-surface application of the fertilizer, respectively. It was indicated that the better recovery rate found with sub-surface application may have been due to minimized N loss by volatilization. Sub-surface application of fertilizer resulted in more than three times NH4 +-N remained in soil, compared with surface application. On average for both application treatments throughout 16-week period, 5.8 h was required for ammonification and 4.7 d for nitrification to occur after N release from the fertilizer. Characterization of CRFs for specific soil type, leaching volume and cycle, and application manner as well as knowledge of N requirement of the crop will allow for the Best Management Practices of these fertilizers, thus obtaining optimum yields and minimizing nutrient losses from CRFs.  相似文献   

9.
Abstract

Both nitrogen (N) deposition and biochar can affect the emissions of nitrous oxide (N2O), carbon dioxide (CO2) and ammonia (NH3) from different soils. Here, we have established a simulated wet N deposition experiment to investigate the effects of N deposition and biochar addition on N2O and CO2 emissions and NH3 volatilization from agricultural and forest soils. Repacked soil columns were subjected to six N deposition events over a 1-year period. N was applied at rates of 0 (N0), 60 (N60), and 120 (N120) kg Nh a?1 yr?1 without or with biochar (0 and 30 t ha?1 yr?1). For agricultural soil, adding N increased cumulative N2O emissions by 29.8% and 99.1% (< 0.05) from the N60 and N120 treatments, respectively as compared to without N treatments, and N120 emitted 53.4% more (< 0.05) N2O than the N60 treatment; NH3 volatilization increased by 33.6% and 91.9% (< 0.05) from the N60 and N120 treatments, respectively, as compared to without N treatments, and N120 emitted 43.6% more (< 0.05) NH3 than N60; cumulative CO2 emissions were not influenced by N addition. For forest soil, adding N significantly increased cumulative N2O emissions by 141.2% (< 0.05) and 323.0% (< 0.05) from N60 and N120 treatments, respectively, as compared to without N treatments, and N120 emitted 75.4% more (< 0.05) N2O than N60; NH3 volatilization increased by 39.0% (< 0.05) and 56.1% (< 0.05) from the N60 and N120 treatments, respectively, as compared to without N treatments, and there was no obvious difference between N120 and N60 treatments; cumulative CO2 emissions were not influenced by N addition. Biochar amendment significantly (< 0.05) decreased cumulative N2O emissions by 20.2% and 25.5% from agricultural and forest soils, respectively, and increased CO2 emissions slightly by 7.2% and NH3 volatilization obviously by 21.0% in the agricultural soil, while significantly decreasing CO2 emissions by 31.5% and NH3 volatilization by 22.5% in the forest soil. These results suggest that N deposition would strengthen N2O and NH3 emissions and have no effect on CO2 emissions in both soils, and treatments receiving the higher N rate at N120 emitted obviously more N2O and NH3 than the lower rate at N60. Under the simulated N deposition circumstances, biochar incorporation suppressed N2O emissions in both soils, and produced contrasting effects on CO2 and NH3 emissions, being enhanced in the agricultural soil while suppressed in the forest soil.  相似文献   

10.
Leaching of nutrients in soil can change the surface and groundwater quality. The present study aimed at investigating the effects of raw and ammonium (NH4+)-enriched zeolite on nitrogen leaching and wheat yields in sandy loam and clay loam soils. The treatments were one level of nitrogen; Z0: (100 kg (N) ha?1) as urea, two levels of raw zeolite; Z1:(0.5 g kg?1 + 100 kg ha?1) and Z2: (1 g kg?1 + 100 kg ha?1), and two levels of NH4+-enriched zeolite; Z3: (0.5 g kg?1 + 80 kg ha?1) and Z4: (1 g kg?1 + 60 kg ha?1). Wheat grains were sown in pots and, after each irrigation event, the leachates were collected and their nitrate (NO3?) and NH4+ contents were determined. The grain yield and the total N in plants were measured after four months of wheat growth. The results indicated that the amounts of NH4+ and NO3? leached from the sandy loam soil were more than those from the clay loam soil in all irrigation events. The maximum and minimum concentrations of nitrogen in the drainage water for both soils were observed at control and NH4+-zeolite treatments, respectively. Total N in the plants grown in the sandy loam was higher compared to plants grown in clay loam soil. Also, nitrogen uptake by plants in control and NH4+-zeolite was higher than that of raw-zeolite treatments. The decrease in the amount of N leaching in the presence of NH4+-zeolite caused more N availability for plants and increased the efficiency of nitrogen fertilizers and the plants yield.  相似文献   

11.
Abstract

To determine the relationships between microbial biomass nitrogen (N), nitrate–nitrogen leaching (NO3-N leaching) and N uptake by plants, a field experiment and a soil column experiment were conducted. In the field experiment, microbial biomass N, 0.5 mol L?1 K2SO4 extractable N (extractable N), NO3-N leaching and N uptake by corn were monitored in sawdust compost (SDC: 20 Mg ha?1 containing 158 kg N ha?1 of total N [approximately 50% is easily decomposable organic N]), chemical fertilizer (CF) and no fertilizer (NF) treatments from May 2000 to September 2002. In the soil column experiment, microbial biomass N, extractable N and NO3-N leaching were monitored in soil treated with SDC (20 Mg ha?1) + rice straw (RS) at five different application rates (0, 2.5, 5, 7.5 and 10 Mg ha?1 containing 0, 15, 29, 44 and 59 kg N ha?1) and in soil treated with CF in 2001. Nitrogen was applied as (NH4)2SO4 at rates of 220 kg N ha?1 for SDC and SDC + RS treatments and at a rate of 300 kg N ha?1 for the CF treatment in both experiments. In the field experiment, microbial biomass N in the SDC treatment increased to 147 kg N ha?1 at 7 days after treatment (DAT) and was maintained at 60–70 kg N ha?1 after 30 days. Conversely, microbial biomass N in the CF treatment did not increase significantly. Extractable N in the surface soil increased immediately after treatment, but was found at lower levels in the SDC treatment compared to the CF treatment until 7 DAT. A small amount of NO3-N leaching was observed until 21 DAT and increased markedly from 27 to 42 DAT in the SDC and CF treatments. Cumulative NO3-N leaching in the CF treatment was 146 kg N ha?1, which was equal to half of the applied N, but only 53 kg N ha?1 in the SDC treatment. In contrast, there was no significant difference between N uptake by corn in the SDC and CF treatments. In the soil column experiment, microbial biomass N in the SDC + RS treatment at 7 DAT increased with increased RS application. Conversely, extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT decreased with increased RS application. In both experiments, microbial biomass N was negatively correlated with extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT, and extractable N was positively correlated with cumulative NO3-N leaching. We concluded that microbial biomass N formation in the surface soil decreased extractable N and, consequently, contributed to decreasing NO3-N leaching without impacting negatively on N uptake by plants.  相似文献   

12.
Laboratory studies on a sandy clay loam (Typic Ustochrept) alkaline soil showed that NH3 volatilization loss from surface-applied prilled urea during an 8-dya incubation under aerobic conditions was 27.5% of applied N (400 kg N ha-1) and was reduced to 8.9% when the urea was blended physically with pyrite in a 1:2 ratio; under anaerobic conditions the values for urea and pyrite-urea were 19.3 and 16.9%, respectively. Other treatments tested were urea-gypsum, neemcake-coated urea and polymer-coated urea. A 6% polymer coating showed the least NH3 volatilization under anaerobic conditions and was next best to pyrite-urea under aerobic conditions. A 3% polymer coating was slightly inferior to the 6% coating. Urea-gypsum and neemcake-coated urea did not differ very much from urea alone under anaerobic conditions, but under aerobic conditions neemcake-urea showed a significantly lower total NH3 loss compared to prilled urea alone and urea-gypsum.  相似文献   

13.
Swine lagoon sludge is commonly applied to soil as a source of nitrogen (N) for crop production but the fate of applied N not recovered from the soil by the receiver crop has received little attention. The objectives of this study were to (1) assess the yield and N accumulation responses of corn (Zea mays L.) and wheat (Triticum aestivum) to different levels of N applied as swine lagoon sludge, (2) quantify recovery of residual N accumulation by the second and third crops after sludge application, and (3) evaluate the effect of different sludge N rates on nitrate (NO3-N) concentrations in the soil. Sludge N trials were conducted with wheat on two swine farms and with corn on one swine farm in the coastal plain of North Carolina. Agronomic optimum N rates for wheat grown at two locations was 360 kg total sludge N ha?1 and the optimum N rate for corn at one location was 327 kg total sludge N ha?1. Residual N recovered by subsequent wheat and corn crops following the corn crop that received lagoon sludge was 3 and 12 kg N ha?1, respectively, on a whole-plant basis and 2 and 10 kg N ha?1, respectively, on a grain basis at the agronomic optimum N rate for corn (327 kg sludge N ha?1). From the 327 kg ha?1 of sludge N applied to corn, 249 kg N ha?1 were not recovered after harvest of three crops for grain. Accumulation in recalcitrant soil organic N pools, ammonia (NH3) volatilization during sludge application, return of N in stover/straw to the soil, and leaching of NO3 from the root zone probably account for much of the nonutilized N. At the agronomic sludge N rate for corn (327 kg N ha?1), downward movement of NO3-N through the soil was similar to that for the 168 kg N ha?1 urea ammonium nitrate (UAN) treatment. Thus, potential N pollution of groundwater by land application of lagoon sludge would not exceed that caused by UAN application.  相似文献   

14.
Abstract

Urea applications to soil are subject to loss by ammonia (NH3) volatilization, unless incorporated. It has been proposed that this loss can be reduced by stimulating populations of soil nitrifiers by an ammonium sulfate [(NH4)2SO4] pretreatment two to four weeks before urea application. The objective of this laboratory trial was to evaluate this concept with five diverse soils, two North American Mollisols and three South American Oxisols. The soils were incubated untreated for two weeks, followed by pretreatment with 0 or 5 kg nitrogen (N) ha‐1 as (NH4)2SO4, on a soil surface area basis. After another two weeks of incubation, the soils were treated with the equivalent of 0 or 50 kg N ha‐1 as urea. Ammonia loss was estimated after trapping into phosphoric acid (H3PO4). Ammonium sulfate pretreatment reduced NH3 loss with the two Mollisols and a sandy Oxisol and increased the recovery of the urea application as mineral [ammonium (NH4 +) + nitrate (NO3 )] N in these soils. Little NH3 loss was detected from the two clay Oxisols, and (NH4)2SO4pretreatment did not influence NH3 loss or recovery of urea as mineral N. An example of a cropping system where this concept may have utility is discussed.  相似文献   

15.
Field experiments were conducted to determine the effect of nitrogen (N) fertilizer forms and doses on wheat (Triticum aestivum L.) on three soils differing in their ammonium (NH4) fixation capacity [high = 161 mg fixed NH4-N kg?1 soil, medium = 31.5 mg fixed NH4-N kg?1 soil and no = nearly no fixed NH4-N kg?1 soil]. On high NH4+ fixing soil, 80 kg N ha?1 Urea+ ammonium nitrate [NH4NO3] or 240 kg N ha?1 ammonium sulfate [(NH4)2SO4]+(NH4)2SO4, was required to obtain the maximum yield. Urea + NH4NO3 generally showed the highest significance in respect to the agronomic efficiency of N fertilizers. In the non NH4+ fixing soil, 80 kg N ha?1 urea+NH4NO3 was enough to obtain high grain yield. The agronomic efficiency of N fertilizers was generally higher in the non NH4+ fixing soil than in the others. Grain protein was highly affected by NH4+ fixation capacities and N doses. Harvest index was affected by the NH4+ fixation capacity at the 1% significance level.  相似文献   

16.
Measuring ammonia(NH3)volatilization from urea-fertilized soils is crucial for evaluation of practices that reduce gaseous nitrogen(N)losses in agriculture.The small area of chambers used for NH3volatilization measurements compared with the size of field plots may cause significant errors if inadequate sampling strategies are adopted.Our aims were:i)to investigate the effect of using multiple open chambers on the variability in the measurement of NH3volatilization in urea-amended field plots and ii)to define the critical period of NH3-N losses during which the concentration of sampling effort is capable of reducing uncertainty.The use of only one chamber covering 0.015%of the plot(51.84 m2)generates a value of NH3-N loss within an expected margin of error of 30%around the true mean.To reduce the error margin by half(15%),3–7 chambers were required with a mean of 5 chambers per plot.Concentrating the sampling efforts in the first two weeks after urea application,which is usually the most critical period of N losses and associated errors,represents an efficient strategy to lessen uncertainty in the measurements of NH3volatilization.This strategy enhances the power of detection of NH3-N loss abatement in field experiments using chambers.  相似文献   

17.
Pot experiments were conducted on three soils differing in their ammonium (NH4 +) fixation capacity [high = 161 mg NH4-nitrogen (N) kg?1 soil; medium = 31.5 mg NH4-N kg?1 soil; and no = no NH4-N was additionally fixed], and the effect of N fertilizer forms and doses on wheat (Triticum aestivum L.) was investigated. Grain yields responded to almost all forms of N fertilizer with 80, 160, and 240 kg N ha?1 in the high, medium, and no NH4 + fixing soil process, respectively. Agronomic efficiency of applied N fertilizers was significantly greater in the no NH4 + fixing soil. Thousand grain weights (TGW) of wheat grown on the high and medium NH4 + fixing soil decreased with increasing N. Grain protein increased with increasing NH4 + fixation capacity. Nitrogen doses and the forms of N fertilizers affected grain protein at a significance level. The combination of urea + ammonium nitrate (NH4NO3) was most effective in increasing grain protein content.  相似文献   

18.
Spinach (Spinacia oleracea cv. Okame) was grown in hydroponic pot culture with an Enshi nutrient solution amended with 0, 20, or 50% urea with or without nickel addition (Ni; 0.05 mg L-1), while the total concentration of N (17.33 mmol L-1) remained constant in all the cases to evaluate the effect of partial urea application, with or without the addition of Ni, on the absorption of NO3-N, urea-N, NH4-N, minerals (e.g. Ca, K, Mg, P) by plants. Fresh and dry weight of the shoots was highest when a 20% urea solution with Ni addition was used. The variation in spinach yield was related to the absorption of total-N by the plants. The absorption of total-N, attributed mainly to NO3-N and urea-N, differed between the treatments. In the case of short-term absorption, determination by using 15N-urea and 15N-KNO3 showed that, the urea-N absorption significantly increased with the increase in the urea concentration in the nutrient solution. When the urea solutions were used, regardless of Ni addition, the absorption of NO3-N was more than four times higher than that of urea-No The addition of Ni in the urea solutions stimulated and increased both urea-N and NO3-N absorption. In the case of long-term absorption, the NO3-N absorption decreased with the decrease of the NO3-N concentration when NO3-N was partially replaced with urea in the nutrient solution. The addition of Ni in the urea solutions resulted in the increase of the absorption of both urea-N and NO3-N, but the NO3-N absorption remained lower in all the treatments compared to the control. In the urea solutions, the absorption of urea-N with or without the addition of Ni increased at a lower rate over time (sampling stages). Application of urea, with or without the addition of Ni in the nutrient solution, increased Ca absorption but decreased K and Mg absorption, whereas, P absorption was unaffected. It is suggested that spinach could grow adequately in an Enshi nutrient solution modified with 20% urea with the addition of 0.05 mg Ni L-1, when urea totally replaced NH4-N and partially replaced NO3-N.  相似文献   

19.
A field study was conducted in the sub-humid tropical region of India to examine the effect of different nitrogen (N) management strategies on nitrate leaching, nitrous oxide (N2O) emission and N use efficiency in aerobic rice. Treatments were: control (no N), 120 kg N ha?1 applied as prilled urea (PU) in conventional method, 120 kg N ha?1 applied as neem coated urea (NCU) in conventional method, N applied as PU on the basis of leaf colour chart (LCC) reading, N applied as NCU on the basis of LCC reading, and 120 kg N ha?1 applied as PU and farm yard manure (FYM) in 1:1 ratio. Results showed that 3.4–16.1 kg NO3-N ha?1 was leached below 45 cm depth and 0.61–1.12 kg N2O-N ha?1 was emitted from aerobic rice during the growing season. NCU when applied conventionally reduced nitrate-nitrogen (NO3-N) leaching and N2O emission by 18.6% and 21.4%, respectively However when applied on the basis of LCC reading NCU reduced NO3-N leaching by 39.8% as compared to PU applied in conventional method. NCU when applied on the basis of LCC reading synchronized N supply with demand and reduced N loss, which resulted in higher yield and N use efficiency.  相似文献   

20.
Ammonia losses after surface application of fresh chicken slurry (15% solids) and anaer-obically stored chicken slurry (10% solids) to a silty clay soil (pH 6.9) at a rate equivalent to 34 m3 ha?1 were studied in a laboratory incubation experiment. Total NH3-N losses amounted to 29% of the initial uric acid-N+urea-N+NH+4-N content of the fresh slurry and 28% of the initial NH+4-N content of the anaerobic slurry. Peak rates of ammonia volatilization took place between 24 h and 48 h after application of the fresh slurry and within 5 h of application of the anaerobic slurry. The addition of CaCl2 at a rate of 36 mg Ca g?1 (dry wt) slurry decreased peak rates of ammonia volatilization from the fresh slurry by 73% and total losses by 37%. The decrease in total ammonia losses through CaCl2 addition to the anaerobic slurry was only 8 %. The addition of CaCl2 decreased CO2 output from both slurries through precipitation of HCO3? as CaCO3, thereby removing a source of alkalinity from the solution. The failure of the CaCl2 addition to decrease significantly ammonia losses from the anaerobic slurry suggested that HCO3? was an important source of alkalinity driving ammonia volatilization in the fresh slurry, but not in the anaerobic slurry. CaCl2, addition did not affect urea hydrolysis, nor net nitrogen mineralization. The decrease in ammonia loss achieved through CaCl2 addition was however not associated with a parallel increase in ammonium concentrations in the soil. Further experiments showed that the ammonia retained by the CaCl2, was probably fixed by the soil and rendered non-extractable by KCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号