首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the use of ultrasonography‐guided percutaneous splenic injection of agitated saline and heparinized blood for the diagnosis of portosystemic shunts (PSS) in 34 dogs. Agitated saline mixed with 1 ml of heparinized autologous blood was injected into the spleen of 34 sedated dogs under sonographic guidance. The transducer was then sequentially repositioned to visualize the portal vein, the caudal vena cava, and the right atrium through different acoustic windows. It was possible to differentiate between intrahepatic and extrahepatic shunts depending on the entry point of the microbubbles into the caudal vena cava. Portoazygos shunts and portocaval shunts could be differentiated based on the presence of microbubbles in the caudal vena cava and/or the right atrium. In one dog, collateral circulation due to portal hypertension was identified. In dogs with a single extrahepatic shunt, the microbubbles helped identify the shunting vessel. The technique was also used postoperatively to assess the efficacy of shunt closure. All abnormal vessels were confirmed by exploratory laparotomy or with ultrasonographic identification of the shunting vessel. Ultrasound‐guided transsplenic injection of agitated saline with heparinized blood should be considered as a valuable technique for the diagnosis of PSS; it is easy to perform, safe, and the results are easily reproducible.  相似文献   

2.
Mesenchymal stem cells have been proposed to treat liver disease in the dog. The objective of this study was to compare portal, systemic intravenous and splenic injections for administration of mesenchymal stem cells to target the liver in healthy beagle dogs. Four healthy beagle dogs were included in the study. Each dog received mesenchymal stem cells via all three delivery methods in randomized order, 1 week apart. Ten million fat‐derived allogeneic mesenchymal stem cells labeled with Technetium‐99m (99mTc)‐hexamethyl‐propylene amine oxime(HMPAO) were used for each injection. Right lateral, left lateral, ventral, and dorsal scintigraphic images were obtained with a gamma camera equipped with a low‐energy all‐purpose collimator immediately after injection and 1, 6, and 24 h later. Mesenchymal stem cells distribution was assessed subjectively using all four views. Pulmonary, hepatic, and splenic uptake was quantified from the right lateral view, at each time point. Portal injection resulted in diffuse homogeneous high uptake through the liver, whereas the systemic intravenous injection led to mesenchymal stem cell trapping in the lungs. After splenic injection, mild splenic retention and high homogeneous diffuse hepatic uptake were observed. Systemic injection of mesenchymal stem cells may not be a desirable technique for liver therapy due to pulmonary trapping. Splenic injection represents a good alternative to portal injection. Scintigraphic tracking with 99mTc‐HMPAO is a valuable technique for assessing mesenchymal stem cells distribution and quantification shortly after administration. Data obtained at 24 h should be interpreted cautiously due to suboptimal labeling persistence.  相似文献   

3.
Doppler ultrasonography was used to evaluate the portal vein in 14 dogs before, immediately after and four weeks after a partial ligation of a congenital extrahepatic portocaval shunt. By four weeks after the operation, the hepatofugal or zero flow in the portal vein segment cranial to the shunt origin had become a hepatopetal flow in 13 of the dogs, which became clinically healthy. The other dog continued to have a hepatofugal flow in the portal vein cranial to the origin of the shunt and continued to show clinical signs of hepatic encephalopathy. The shunt remained functional in six of the dogs, and three of them developed portosystemic collaterals in addition. In the other eight dogs the patent shunt was non-functional, because a hepatopetal flow was detected in the shunt adjacent to the portal vein. This flow was the result of the splenic vein entering the shunt, and the splenic blood dividing; some flowed via the shunt towards the portal vein, preventing the portal blood from shunting, and the rest flowed via the attenuated shunt segment to the caudal vena cava. Shunting of the splenic venous blood was clinically insignificant.  相似文献   

4.
Computed tomography angiography, sonography, scintigraphy, and portography can be used to evaluate the portal vasculature to evaluate for a portosystemic shunt (PSS). Time‐of‐flight magnetic resonance angiography (TOF‐MRA) and contrast‐enhanced MRA (CE‐MRA) are other potentially useful techniques. The aim of this study was to evaluate CE‐MRA in 10 dogs suspected of having a PSS. Noncontrast MR images of the abdomen were obtained using a Siemens Symphony MR‐scanner (1.5 T) and a T1‐weighted FLASH‐3D sequence with a very short scan time (about 20 s). After injection of contrast medium, the initial sequence was repeated five times. The sequence with the best contrast medium filling of the portal vasculature was selected subjectively, subtracted from the initial survey image series, and a maximum intensity projection (MIP) of the subtraction data, in multiple views, was created. The cross‐sectional and MIP images were evaluated for abnormal portosystemic vasculature. A single PSS was identified and confirmed at surgery in all dogs. A portocaval shunt was found in five dogs, a portophrenic shunt in three dogs, a portoazygos shunt in one, and a central divisional intrahepatic shunt in one other dog. Based on our results, CE‐MRA is a useful tool for imaging abdominal and portal vasculature and for the diagnosis of a PSS.  相似文献   

5.
Ultrasound-guided percutaneous trans-splenic portal scintigraphy (TSPS) using 99mTcO4(-) has been used to image the portal venous system in normal dogs. Compared with per-rectal portal scintigraphy, it provides higher count density, consistent nuclear venograms of the splenic and portal vein, and significantly decreased radiation exposures. This paper describes the use of TSPS for the diagnosis of portosystemic shunts in 28 dogs. TSPS was performed injecting 70 +/- 28 MBq of 99mTcO4(-) (mean +/- SD) into the splenic parenchyma with ultrasound guidance. A dynamic acquisition at a frame rate of four frames/s for 5 min was initiated after placement of the needle and approximately 2s prior to injection. All dogs had diagnoses confirmed via exploratory laparotomy or ultrasonographic identification of the shunting vessel(s). Three studies (10.7%) were nondiagnostic because of intraperitoneal rather than intrasplenic injection of the radionuclide. Three pathways were recognized on the scintigraphic images: (1) portoazygos shunts--the 99mTcO4(-) bolus traveled dorsally, running parallel to the spine and entering the heart craniodorsally; (2) single portocaval or splenocaval shunts--the 99mTcO4(-) bolus ran from the area of the portal vein/splenic vein junction in a linear fashion toward the caudal vena cava entering the heart caudally; (3) internal thoracic shunt-the 99mTcO4 bolus traveled ventrally along the thorax and abdomen entering the cranial aspect of the heart. Single and multiple shunts were easily distinguished. There were no distinguishing features between single intra and extrahepatic portocaval shunts.  相似文献   

6.
Portal hypertension resulting in ascites and portosystemic shunts leading to hepatoencephalopathy are major clinical manifestations of hepatic circulatory disease. Diffuse liver disease impairing sinusoidal blood flow can induce portal hypertension, portosystemic shunts, or both. The liver may also be involved secondarily in posthepatic hypertension and become the site of ascitic fluid formation. Portosystemic shunts may or may not be associated with portal hypertension. Selective catheterization of the hepatic and portal veins permits one to record pressures and to outline gross and subgross vascular anomalies by injecting contrast medium. Sequential pressure recordings in the caudal vena cava, in a free and wedged hepatic vein position, in the splenic pulp, and directly in the portal vein are the bases for the differentiation of prehepatic, liver-induced, and posthepatic portal hypertension. In addition to localizing the disease process along the postcaval-portal vein axis, pressure measurements are a reliable basis for the prognosis and selection of the most appropriate therapy. In dogs with portacaval shunts, wedge hepatic vein pressure recordings assist in the detection of hepatic sinusoidal anomalies that limit blood flow and preclude surgical ablation of the shunts. The various technics and their suitability for direct and indirect portal vein pressure recording are described and evaluated. Normal portal vein pressure values in 11 dogs and two cats, using different technics, are provided. The clinical usefulness of the various technics of pressure recording and angiography was illustrated in ten dogs with ascites, hepatoencephalopathy, or both.  相似文献   

7.
We evaluated transplenic injection of iodinated contrast medium for computed tomography (CT) assessment of the portal vasculature. Specific aims were to: (1) establish a protocol for transplenic transplenic CT portography using a 40-row multidetector scanner; (2) compare transplenic CT portography to dual-phase CT angiography in terms of image quality, opacification of the portal system, and contrast enhancement of the portal vasculature and liver; (3) compare personnel exposure during transplenic CT portography and transplenic portal scintigraphy. Seven juvenile dogs underwent transplenic portal scintigraphy, CT angiography, and transplenic CT portography. Transplenic portal scintigraphy and CT angiography were performed using previously established protocols. For transplenic CT portography, a 20- or 22 gauge needle attached to an extension set was placed into the splenic parenchyma using CT guidance. Iodinated contrast medium (175 mg I/ml) was administered, and CT acquisition was started at the time of the injection. Transplenic CT portography was simple, rapid and provided more intense enhancement of the splenic and portal veins, with a lower contrast medium dose (median dose: 525 mg I for transplenic CT portography, 7700 mg I for CT angiography), but caused inconsistent intrahepatic portal branches and parenchymal opacification due to streamlining and streak artifacts. Despite significantly lower attenuation values in the portal vein, CT angiography provided sufficient enhancement for vessel identification and more consistent parenchymal hepatic enhancement. Personnel radiation exposure rate was higher during transplenic CT portography (0.0725 mSv/min) compared with transplenic portal scintigraphy (0.000125 mSv/min). As transplenic CT portography requires an average injection time of 1 min per study; over 650 [corrected] studies must be performed before reaching the maximum permissible whole body dose of 0.05 [corrected] Sv.  相似文献   

8.
This report details a bubble echocardiographic study carried out during the surgical treatment of a congenital single extrahepatic portosystemic shunt (PSS) in a Labrador Retriever. After celiotomy, agitated saline was injected through a jejunal vein and microbubbles appeared rapidly in the right cardiac chambers. The test confirmed the presence of a PSS, helping the surgeon to identify the vessel concerned and to rule out a second shunt. Successively, portography confirmed what the exploratory celiotomy had revealed before with the aid of the bubble study: a single shunt was located between the portal vein and the right renal vein. It was completely ligated, as all the criteria for this solution were met. Intraoperative contrast echocardiography (ICE) was easy to perform, helpful and undemanding. It is proposed here as an intraoperative ancillary test to diagnose all PSS and to confirm successful treatment when complete shunt closure is possible.  相似文献   

9.
The purpose of this investigation was to develop a safe and reliable technique for percutaneous catheterization of the portal vein via a major splenic vein using ultrasound guidance. Three separate catheter systems were evaluated on five anesthetized dogs. At least five attempts at catheterization of the splenic vein and subsequently the portal vein were attempted on each animal. Following the procedure the dogs were necropsied to assess for intrasplenic and intraabdominal hemorrhage. A technique using an introducer system and a large catheter was not successful on seven attempts. A technique using an over the needle catheter was successful in gaining access to the splenic vein on two out of five attempts; however the catheter could not be advanced into the portal vein. A technique utilizing 19 or 17 gauge needles with 22 or 19 catheter through-the-needle-catheters was successful in catheterization of the splenic vein and advancement to the portal vein on twelve of fifteen attempts. The smaller gauge needle and catheter system provided for easier access to the splenic vein and subsequent catheter manipulation facilitating access to the portal circulation.  相似文献   

10.
OBJECTIVE: To determine ultrasonographic abnormalities in dogs with hyperammonemia. DESIGN: Retrospective study. ANIMALS: 90 client-owned dogs with hyperammonemia. PROCEDURE: Ultrasonography of the abdominal vessels and organs was performed in a systematic way. Dogs in which the ultrasonographic diagnosis was a congenital portosystemic shunt were included only if they underwent laparotomy or necropsy. Dogs in which the abdominal vasculature appeared normal and dogs in which the ultrasonographic diagnosis was acquired portosystemic shunts and portal hypertension were included only if liver biopsy specimens were submitted for histologic examination. RESULTS: Ultrasonography excluded portosystemic shunting in 11 dogs. Acquired portosystemic shunts were found in 17 dogs, of which 3 had arterioportal fistulae and 14 had other hepatic abnormalities. Congenital portosystemic shunts were found in 61 dogs, of which 19 had intrahepatic shunts and 42 had extrahepatic shunts. Intrahepatic shunts originated from the left portal branch in 14 dogs and the right portal branch in 5. Extrahepatic shunts originated from the splenic vein, the right gastric vein, or both and entered the caudal vena cava or the thorax. Ultrasonography revealed splenic-caval shunts in 24 dogs, right gastric-caval shunts in 9 dogs, splenic-azygos shunts in 8 dogs, and a right gastric-azygos shunt in 1 dog. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that ultrasonography is a reliable diagnostic method to noninvasively characterize the underlying disease in dogs with hyperammonemia. A dilated left testicular or ovarian vein was a reliable indicator of acquired portosystemic shunts.  相似文献   

11.
Extrahepatic‐congenital portosystemic shunt is a vascular anomaly that connects the portal vein to the systemic circulation and leads to a change in hepatic microvascular perfusion. However, an assessment of hepatic microvascular perfusion is limited by conventional diagnostic modalities. The aim of this prospective, exploratory study was to assess hepatic microvascular perfusion in dogs with extrahepatic‐congenital portosystemic shunt using contrast‐enhanced ultrasonography (CEUS) using perfluorobutane (Sonazoid®). A total of 17 dogs were included, eight healthy dogs and nine with extrahepatic‐congenital portosystemic shunt. The time‐to‐peak (TTP), rising time (RT), and rising rate (RR) in the hepatic artery, portal vein, and hepatic parenchyma, as well as the portal vein‐to‐hepatic parenchyma transit time (ΔHP‐PV) measured from time‐intensity curve on CEUS were compared between healthy and extrahepatic‐congenital portosystemic shunt dogs. The RT of the hepatic artery in extrahepatic‐congenital portosystemic shunt dogs was significantly earlier than in healthy dogs (P = 0.0153). The TTP and RT of the hepatic parenchyma were significantly earlier in extrahepatic‐congenital portosystemic shunt dogs than in healthy dogs (P = 0.0018 and P = 0.0024, respectively). ΔHP–PV was significantly shorter in extrahepatic‐congenital portosystemic shunt dogs than in healthy dogs (P = 0.0018). CEUS effectively revealed changes in hepatic microvascular perfusion including hepatic artery, portal vein, and hepatic parenchyma simultaneously in extrahepatic‐congenital portosystemic shunt dogs. Rapid hepatic artery and hepatic parenchyma enhancements may reflect a compensatory increase in hepatic artery blood flow (arterialization) caused by a decrease in portal vein blood flow and may be used as an additional diagnostic test to distinguish extrahepatic‐congenital portosystemic shunt dogs from healthy dogs.  相似文献   

12.
13.
Background: Contrast‐enhanced ultrasonography with perflubutane microbubbles improves the diagnostic accuracy to differentiate benign and malignant focal liver lesions in dogs. Hypothesis: Perflubutane microbubbles‐enhanced ultrasonography is useful for differentiation of benign from malignant focal splenic lesions in dogs. Animals: Twenty‐nine clinical dogs with single or multiple focal splenic lesions detected by conventional ultrasonography. Methods: Prospective clinical observational study. Perflubutane microbubbles‐enhanced ultrasonography was performed in 29 dogs with focal splenic lesions. Qualitative assessment of the enhancement pattern was performed in the early vascular, late vascular, and parenchymal phases. Results: In the early vascular phase, a hypoechoic pattern was significantly associated with malignancy (P= .02) with sensitivity of 38% (95% confidence interval [CI], 25–38%) and specificity of 100% (95% CI, 84–100%). In the late vascular phase, a hypoechoic pattern was significantly associated with malignancy (P= .001) with sensitivity of 81% (95% CI, 66–90%) and specificity of 85% (95% CI, 65–95%). There was no significant difference between malignant and benign lesions during the parenchymal phase. Conclusions and Clinical Importance: Hypoechoic splenic nodules in the early and late vascular phases with perflubutane microbubbles‐enhanced ultrasonography are strongly suggestive of malignancy in dogs.  相似文献   

14.
Gradual occlusion of the splenic vein, using a specialized device (ameroid constrictor), was evaluated experimentally in three normal beagle dogs. Splenoportograms were used to verify that total occlusion of the splenic vein had occurred in all dogs within 4 to 5 weeks after application of the device. The ameroid constrictor (AC) was also evaluated as a method of gradual vascular occlusion in 12 dogs and two cats with single, extrahepatic, portosystemic shunts (PSS). Serum bile acid (SBA) concentrations were measured and portal scintigraphy (PS) was performed on all 14 animals preoperatively and 10, 20, 30, and 60 days postoperatively. Two dogs (14%) died from portal hypertension in the early postoperative period. One dog and one cat developed multiple acquired PSS, confirmed by mesenteric portography 90 days after the operation. Portal scintigraphy confirmed total occlusion of the primary shunt in the other 10 animals. Shunt fractions (SF), as measured by PS on postoperative days 30 and 60, declined significantly from preoperative values. Significant decreases were noted between preoperative and postoperative values for preprandial SBA on postoperative day 60 and for postprandial SBA on postoperative day 30. SBA concentrations did not correlate with SF. Based on this study, gradual vascular occlusion using the AC is recommended as a method for treatment of single, extrahepatic, PSS.  相似文献   

15.
Liver anatomy, particularly its vascularization, has been investigated in many studies in dogs. Knowledge of blood flow from the main tributaries of the portal vein (PV) is necessary to explain the preferential sites of secondary lesions within the liver based on the site of the initial malignant lesion. How these flows come together was established in an earlier ex vivo study. Here, we highlight in vivo the blood flows from the main PV tributaries and their distribution in the liver of normal dogs. Portographs of the main PV tributaries were obtained in seven dogs after injection of an angiographic contrast medium. After euthanasia, the livers and their portal vascularization (PV and tributaries) were extracted for a comparative corrosion cast study. Flows were demonstrated in the cranial mesenteric vein, caudal mesenteric vein and splenic vein. However, no proper flow could be distinguished for the gastroduodenal and ileocolic veins. All these tributaries primarily supply the lateral liver lobes (right or left). Most of our observations indicate that the cranial mesenteric, caudal mesenteric and splenic veins primarily supply the right lateral lobe and the caudate process of the caudate lobe and secondarily the left lateral lobe, left medial lobe and the quadrate lobe. The two other tributaries (gastroduodenal and ileocolic veins) primarily supply the right lateral lobe and the caudate process of the caudate lobe.  相似文献   

16.
A dual-phase computed tomography (CT) angiographic technique was developed to image the hepatic and portal vascular systems using a nonselective peripheral injection of contrast medium. The arterial phase of the dual-phase scan imaged the hepatic arteries and veins, and the portal phase imaged the portal vein as well as its tributaries and branches. There were three steps involved in acquiring the dual-phase scan: a survey helical scan for orientation, a dynamic scan for timing, and finally the dual-phase helical scan. Five normal dogs were imaged using a helical scan technique. The timing of the arterial and portal phases of the scan was calculated using time vs. attenuation graphs generated from a dynamic scan. The median time of appearance of contrast medium in the cranial abdominal aorta was 8.6 s and the median time of appearance of contrast medium in the hepatic artery occurred 0.4 s later. The median time of peak enhancement in the cranial abdominal aorta was 12.0 s. The median time of appearance of contrast medium in the portal vein was 14.6 s and median time of peak enhancement was 33.0 s. The dual-phase scans provided excellent vascular opacification. The hepatic arteries, hepatic veins, cranial and caudal mesenteric veins, splenic vein, gastroduodenal vein, and portal vein branches were all consistently well defined. Dual-phase CT angiography is a minimally invasive technique which provides an excellent three-dimensional representation of portal and hepatic vascular anatomy.  相似文献   

17.
A noninvasive method for quantifying adrenal gland vascular patterns could be helpful for improving detection of adrenal gland disease in dogs. The purpose of this retrospective study was to compare the contrast‐enhanced ultrasound (CEUS) characteristics of adrenal glands in 18 dogs with pituitary‐dependent hyperadrenocorticism (PDH) vs. four clinically healthy dogs. Each dog received a bolus of the contrast agent (SonoVue®, 0.03 ml/kg of body weight) into the cephalic vein, immediately followed by a 5 ml saline flush. Dynamic contrast enhancement was analyzed using time–intensity curves in two regions of interest drawn manually in the caudal part of the adrenal cortex and medulla, respectively. In healthy dogs, contrast enhancement distribution was homogeneous and exhibited increased intensity from the medulla to the cortex. In the washout phase, there was a gradual and homogeneous decrease of enhancement of the adrenal gland. For all dogs with PDH, there was rapid, chaotic, and simultaneous contrast enhancement in both the medulla and cortex. Three distinct perfusion patterns were observed. Peak perfusion intensity was approximately twice as high (P < 0.05) in dogs with PDH compared with that of healthy dogs (28.90 ± 10.36 vs. 48.47 ± 15.28, respectively). In dogs with PDH, adrenal blood flow and blood volume values were approximately two‐ to fourfold (P < 0.05) greater than those of controls. Findings from the present study support the use of CEUS as a clinical tool for characterizing canine adrenal gland disease based on changes in vascular patterns.  相似文献   

18.
A scanning protocol for the systematic ultrasonographic examination of the portal system in dogs was developed. Seven planes were used to image the portal system. With the dogs in left lateral recumbency, 3 transverse planes obtained via the right intercostal spaces were used to visualize the portal vein and right portal branch, and a longitudinal plane obtained with the transducer caudal to the last right rib was used to visualize the portal bifurcation. With the dogs in dorsal recumbency, a longitudinal plane was used as an alternative method of visualizing the portal vein and its bifurcation. Finally, with the dogs in right lateral recumbency, longitudinal planes obtained with the transducer in the left flank were used to visualize the hepatic artery, the left renal vein, and the left testicular or ovarian vein. To diagnose or rule out portosystemic shunting, the right portal branch, the left testicular or ovarian vein, the portal vein immediately caudal to the portal bifurcation, and the portal vein at the level of the celiac artery should be examined with this scanning protocol.  相似文献   

19.
Gross Anatomy of the Canine Portal Vein   总被引:1,自引:0,他引:1  
The gross anatomy of the portal vein of 21 dogs was studied by venous portography, corrosion casting, and gross dissection. The portal vein in all specimens originated by confluence of the cranial and caudal mesenteric veins. Its large tributaries were the splenic and gastroduodenal veins, which entered the portal vein between its origin and the hepatic porta. At the hepatic porta, the portal vein divided into a short right branch and a larger left branch. The right branch ramified in the caudate process of the caudate lobe and in the right lateral lobe of the liver. The left branch was essentially the continuation of the portal vein from which successive branches passed to each of the remaining lobes of the liver and the papillary process of the caudate lobe.  相似文献   

20.
OBJECTIVE: To evaluate the effect of cisterna chyli ablation (CCA) and thoracic duct ligation (TDL) on abdominal lymphatic drainage in normal dogs. STUDY DESIGN: Experimental study. ANIMALS: Nine female beagle dogs. METHODS: TDL was performed in 3 dogs and was combined with CCA (CCA-TDL) and local omentalization in 6 dogs. Contrast lymphangiography was attempted in all dogs immediately before and after TDL. Dogs were reanesthetized at 31-37 days for lymphatic studies by new methylene blue (NMB) injection into a mesenteric lymph node and by contrast lymphangiography. RESULTS: In 6 CCA-TDL dogs, 2 had direct shunting of contrast from the lymphatic system into major abdominal veins, 3 had contrast material that dissipated into abdominal vessels within the mesenteric root, and 1 had shunting into the azygous vein. NMB was not observed within the omental pedicle after CCA-TDL. Chylous drainage was by the azygous vein in all 3 TDL dogs. CONCLUSIONS: CCA-TDL disrupted chylous drainage to the thoracic duct and resulted in direct intraabdominal lymphaticovenous anastomoses identified by shunting of lymphatic flow directly into the abdominal vasculature in 5 of 6 CCA-TDL dogs. Omentalization of the cisternal ablation site was not beneficial in augmenting extrathoracic lymphatic drainage and is not recommended with CCA-TDL. CLINICAL RELEVANCE: CCA-TDL represents a novel approach to surgical redirection of chylous drainage to the venous circulation outside of the thorax and may be useful in the treatment of spontaneous chylothorax in the dog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号