首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six cadaver forelimbs were imaged in two high‐field magnetic resonance (MR) systems and one low‐field MR system following the creation of osteochondral defects on the palmar distal aspect of the third metacarpal bone. The following sequences were performed using all three systems: proton density (PD) turbo spin echo, T2* gradient echo (GRE), T2‐weighted fast spin echo, and short tau inversion recovery. In addition, 3D T1 GRE sagittal standard and motion insensitive sequences were obtained using the low‐field system. PD fat saturated and 3D T1‐weighted spoiled GRE images with and without fat suppression were acquired with the high‐field systems. Lesions were measured and assigned a confidence score. The images obtained using high‐field systems (1.0 and 1.5 T) more accurately represented the osteochondral defects when compared with low‐field system (0.27 T) images. The largest difference was observed when evaluating articular cartilage defects, which were not identified on the low‐field images. Sequence selection affected the appearance of the lesions. On all systems the turbo and fast spin echo sequences more accurately represented the lesion size and shape when compared with the GRE sequences. The T1 GRE sequence is the only sequence that appears to allow visualization of the articular cartilage on the low‐field images, but is limited in providing adequate cartilage visualization. Confidence scores were greater on the high‐field systems when compared with the low‐field system.  相似文献   

2.
3.
Reasons for performing study: Marginal osteophytes represent a well known component of osteoarthritis in man and animals. Conversely, central subchondral osteophytes (COs), which are commonly present in human knees with osteoarthritis, have not been reported in horses. Objectives: To describe and compare computed radiography (CR), single‐slice computed tomography (CT), 1.5 Tesla magnetic resonance imaging (MRI), and histological features of COs in equine metacarpophalangeal joints with macroscopic evidence of naturally‐occurring osteoarthritis. Methods: MRI sequences (sagittal spoiled gradient recalled echo [SPGR] with fat saturation, sagittal T2‐weighted fast spin echo with fat saturation [T2‐FS], dorsal and transverse T1‐weighted gradient‐recalled echo [GRE], and sagittal T2*‐weighted gradient echo with fast imaging employing steady state acquisition [FIESTA]), as well as transverse and reformatted sagittal CT, and 4 computed radiographic (CR) views of 20 paired metacarpophalangeal joints were acquired ex vivo. Following macroscopic evaluation, samples were harvested in predetermined sites of the metacarpal condyle for subsequent histology. The prevalence and detection level of COs was determined for each imaging modality. Results: Abnormalities consistent with COs were clearly depicted on MRI, using the SPGR sequence, in 7/20 (35%) joints. They were identified as a focal hypointense protuberance from the subchondral plate into the cartilage, at the palmarodistal aspect (n = 7) and/or at the very dorsal aspect (n = 2) of the metacarpal condyle. COs were visible but less obvious in 5 of the 7 joints using FIESTA and reformatted sagittal CT, and were not identifiable on T2‐FS, T1‐GRE or CR. Microscopically, they consisted of dense bone protruding into the calcified cartilage and disrupting the tidemarks, and they were consistently associated with overlying cartilage defects. Conclusions: Subchondral osteophytes are a feature of osteoarthritis of equine metacarpophalangeal joints and they may be diagnosed using 1.5 Tesla MRI and CT. Potential relevance: Central subchondral osteophytes on MRI represent indirect evidence of cartilage damage in horses.  相似文献   

4.
Reasons for performing study: To determine the reliability of 2 magnetic resonance imaging (MRI) systems for detection of cartilage and bone lesions of the equine fetlock. Objectives: To test the hypotheses that lesions in cartilage, subchondral and trabecular bone of the equine fetlock verified using histopathology can be detected on high‐ and low‐field MR images with a low incidence of false positive or negative results; that low‐field images are less reliable than high‐field images for detection of cartilage lesions; and that combining results of interpretation from different pulse sequences increases detection of cartilage lesions. Methods: High‐ and low‐field MRI was performed on 19 limbs from horses identified with fetlock lameness prior to euthanasia. Grading systems were used to score cartilage, subchondral and trabecular bone on MR images and histopathology. Sensitivity and specificity were calculated for images. Results: High‐field T2*‐weighted gradient echo (T2*W‐GRE) and low‐field T2‐weighted fast spin echo (T2W‐FSE) images had high sensitivity but low specificity for detection of cartilage lesions. All pulse sequences had high sensitivity and low–moderate specificity for detection of subchondral bone lesions and moderate sensitivity and moderate–high specificity for detection of trabecular bone lesions (histopathology as gold standard). For detection of lesions of trabecular bone low‐field T2*W‐GRE images had higher sensitivity and specificity than T2W‐FSE images. Conclusions: There is high likelihood of false positive results using high‐ or low‐field MRI for detection of cartilage lesions and moderate–high likelihood of false positive results for detection of subchondral bone lesions compared with histopathology. Combining results of interpretation from different pulse sequences did not increase detection of cartilage lesions. MRI interpretation of trabecular bone was more reliable than cartilage or subchondral bone in both MR systems. Potential relevance: Independent interpretation of a variety of pulse sequences may maximise detection of cartilage and bone lesions in the fetlock. Clinicians should be aware of potential false positive and negative results.  相似文献   

5.
Magnetic resonance (MR) imaging of the canine brain is commonly acquired at field strengths ranging from 0.2 to 1.5 T. Our purpose was to compare the MR image quality of the canine brain acquired at 3 vs. 7 T in dogs. Low‐resolution turbo spin echo (TSE) T2‐weighted images (T2W) were obtained in transverse, dorsal, and sagittal planes, and high‐resolution TSE T2W and turbo spin echo proton density‐weighted images were obtained in the transverse and dorsal planes, at both 3 and 7 T. Three experienced reviewers evaluated 32 predetermined brain structures independently and without knowledge of field strength for spatial resolution and contrast. Overall image quality and evidence of artifacts were also evaluated. Contrast of gray and white matter was assessed quantitatively by measuring signal intensity in regions of interest for transverse plane images for the three pulse sequences obtained. Overall, 19 of the 32 neuroanatomic structures had comparable spatial resolution and contrast at both field strengths. The overall image quality for low‐resolution T2W images was comparable at 3 and 7 T. High‐resolution T2W was characterized by superior image quality at 3 vs. 7 T. Magnetic susceptibility and chemical shift artifacts were slightly more noticeable at 7 T. MR imaging at 3 and at 7 T provides high spatial resolution and contrast images of the canine brain. The use of 3 and 7 T MR imaging may assist in the elucidation of the pathogenesis of brain disorders, such as epilepsy.  相似文献   

6.
Magnetic susceptibility artifacts as a result of metal debris from shoeing are a common problem in magnetic resonance imaging of the equine foot. Our purpose was to determine the suitability of radiography as a screening tool for the presence and location of metallic particles in the equine foot and to predict the size of the resultant magnetic susceptibility artifact. Radiography had 100% sensitivity for detection of metal particles ≥1 mm diameter. Metal particles of known diameter were placed within the hoof wall of 22 cadaver feet and scanned with a low‐field strength MR imaging unit (0.21 T). Magnetic resonance images were characterized by a signal void with a hyperintense rim and adjacent image distortion at the level of the known metal location. T2* weighted sequences were the most and fast spin echo (FSE) sequences the least affected. For all four sequences (T1 gradient echo [GRE]; T2*W GRE; T2 FSE; and short tau inversion recovery FSE), linear relationships were observed between particle and resultant artifact size. Magnetic susceptibility artifact size, location and superimposition on clinically relevant anatomic structures can be predicted radiographically for particles larger than 1 mm. If metal debris cannot be removed, the least artifact‐prone FSE sequences should be selected.  相似文献   

7.
8.
Diseases of paranasal sinuses and nasal passages in horses can be a diagnostic challenge because of the complex anatomy of the head and limitations of many diagnostic modalities. Our hypothesis was that magnetic resonance (MR) imaging would provide excellent anatomical detail and soft tissue resolution, and would be accurate in the diagnosis of diseases of the paranasal sinuses and nasal passages in horses. Fourteen horses were imaged. Inclusion criteria were lesions located to the sinuses or nasal passages that underwent MR imaging and subsequent surgical intervention and/or histopathologic examination. A low field, 0.3 tesla open magnet was used. Sequences in the standard protocol were fast spin echo T2 sagittal and transverse, spin echo T1 transverse, short‐tau inversion recovery (STIR) dorsal, gradient echo 3D T1 MPR dorsal (plain and contrast enhanced), spin echo T1 fatsat (contrast enhanced). Mean scan time to complete the examination was 53 min (range 39–99 min). Lesions identified were primary or secondary sinusitis (six horses), paranasal sinus cyst (four horses), progressive ethmoid hematoma (two horses), and neoplasia (two horses). The most useful sequences were fast spin echo T2 transverse and sagittal, STIR dorsal and FE3D MPR (survey and contrast enhanced). Fluid accumulation, mucosal thickening, presence of encapsulated contents, bone deformation, and thickening were common findings observed in MR imaging. In selected horses, magnetic resonance imaging is a useful tool in diagnosing lesions of the paranasal sinuses and nasal passages.  相似文献   

9.
OBJECTIVE: To validate use of magnetic resonance images (MRIs) for measurement of equine articular cartilage and subchondral bone thickness by comparison with measurements in histologic specimens. SAMPLE POPULATION: 32 cadaveric carpal joints from 16 horses. PROCEDURE: Magnetic resonance imaging was performed by use of 3-dimensional fast spoiled gradient echo (SPGR) and T2* 3-dimensional fast gradient echo (GRE) pulse sequences with and without fat saturation. Standard sites on the medial and lateral facets of the intermediate, radial, and third carpal bones were used for subchondral bone and articular cartilage thickness measurements. Digital image analysis software was used for MRI measurements 10 mm from the dorsal extent and perpendicular to the articular surface. Histomorphometric measurements of hyaline, calcified cartilage, and subchondral bone thickness were obtained at selected sites. Comparisons between histomorphometric and MRI measurements and between magnetic resonance pulse sequences were evaluated. RESULTS: There were significant correlations between GRE and SPGR and SPGR and histologic measurements of articular cartilage, with no significant difference between measurements and good agreement. When calcified cartilage was excluded from the histologic measurement, MRI measurements were significantly greater than histologic measurements. For subchondral bone thickness, there was significant correlation between GRE and SPGR but GRE was significantly greater than SPGR measurements. Histomorphometric and MRI measurements were strongly correlated and not significantly different. CONCLUSIONS AND CLINICAL RELEVANCE: Magnetic resonance imaging provides a good representation of cartilage and subchondral bone thickness, supporting its use in the study and clinical diagnosis of osteochondral structure and alteration.  相似文献   

10.
Magnetic resonance (MR) images of the normal eye and orbit of the dog and cat were acquired. T1-weighted, proton-density, and T2-weighed images were obtained in the oblique dorsal, straight sagittal, and oblique sagittal planes. Signal intensity for the various orbital structures differed among the three resonance techniques. T1-weighted images provided the greatest contrast of the retrobulbar structures. T-1 weighted images also had the highest signal to noise ratio, thereby providing the best anatomic detail. Anatomic components of the globe, retrobulbar structures and ocular adnexa were easily seen in all MR sections. The oblique dorsal and oblique sagittal planes were superior for evaluating the optic nerve in its entirety.  相似文献   

11.
12.
The intention of the comparison of both low and high field was to examine which anatomical brain structures of cats were visible on low field images, as in clinical veterinary practice, 3 Tesla (T) magnets were of limited availability. The research was performed on 20 European short‐haired male and female cats, aged 1–3 years, with body weight of 2–4 kg. 0.25 T magnetic resonance images of neurocranium were acquired in all using T2‐weighted fast spin echo sequences with repetition time (TR) of 4010 ms and echo time (TE) of 90 ms in dorsal and transverse plane, and T2‐weighted fast spine echo sequences with TR of 4290 ms and TE of 120 ms in sagittal plane. Based on a detailed catalogue of feline brain structures visible at 3 T in previously published studies, it was examined which structures were visible on low field images. Anatomic structures were identified and compared to assess the reliability of diagnoses made based on low‐field magnetic resonance imaging. In low‐field scans, 92 structures were identified. Elements of auditory, visual, motor pathways, hippocampus and cerebral ventricular system were distinguished. Low‐field as well as high‐field magnetic resonance imaging support the identification of local tissue lesions, metastasis, focal ischaemia and haemorrhage, disorders associated with ventricular system dilation and hydrocephalus. It also produced accurate images of the hippocampus, which contributes to reliable diagnoses of various forms of epilepsy in cats. Due to technical limitations, a low‐field scanner is unlikely to visualize microtraumas, local inflammations, small haematomas or metastatic tumours.  相似文献   

13.
We compared the ability of 1.5 T magnetic resonance imaging (MRI), computed tomography (CT), and computed radiography (CR) to evaluate noncartilaginous structures of the equine metacarpophalangeal joint (MCP), and the association of imaging changes with gross cartilage damage in the context of osteoarthritis. Four CR projections, helical single‐slice CT, and MRI (T1‐weighted gradient recalled echo [GRE], T2*‐weighted GRE with fast imaging employing steady‐state acquisition [FIESTA], T2‐weighted fast spin echo with fat saturation, and spoiled gradient recalled echo with fat saturation [SPGR‐FS]) were performed on 20 racehorse cadaver forelimbs. Osteophytosis, synovial effusion, subchondral bone lysis and sclerosis, supracondylar lysis, joint fragments, bone marrow lesions, and collateral desmopathy were assessed with each modality. Interexaminer agreement was inferior to intraexaminer agreement and was generally moderate (i.e., 0.4<κ<0.6). Subchondral bone sclerosis scores using CT or MRI were correlated significantly with the reference quantitative CT technique used to assess bone mineral density (P<0.0001). Scores for subchondral lysis and osteophytosis were higher with MRI or CT vs. CR (P<0.0001). Although differences between modalities were noted, osteophytosis, subchondral sclerosis, and lysis as well as synovial effusion were all associated with the degree of cartilage damage and should be further evaluated as potential criteria to be included in a whole‐organ scoring system. This study highlights the capacity of MRI to evaluate noncartilaginous changes in the osteoarthritic equine MCP joint.  相似文献   

14.
REASONS FOR PERFORMING STUDY: Foot pain is a common cause of equine lameness and there have been significant limitations of the methods available for the diagnosis of the causes of foot pain (radiography, nuclear scintigraphy and ultrasonography). Until recently, magnetic resonance imaging (MRI) in the horse has been limited to examination of cadaver limbs. OBJECTIVES: Our purpose was to 1) describe MRI of the foot in live horses, 2) describe MRI findings in horses with foot pain in which a definitive diagnosis could not be established by alternative means and 3) correlate MRI findings with other methods of clinical investigation. METHODS: The feet of 15 horses with unilateral (12) or bilateral (3), forelimb (14) or hindlimb (1) lameness associated with foot pain of previously ill-defined origin were examined using MRI. The horses were examined in right lateral recumbency under general anaesthesia, with the feet positioned in the isocentre of a flared end 1.5 Tesla GE Signa Echospeed magnet. Images were obtained in sagittal, transverse and dorsal planes using 3-dimensional (3D) T2* gradient echo (GRE), spoiled gradient echo, fat-saturated 3D T2* GRE and short inversion recovery sequences. Image acquisition took approximately 1 h. RESULTS: Abnormalities of the distal interphalangeal joint (DIP) cartilage and/or subchondral bone, periarticular osteophyte formation, distension of the DIP joint capsule with or without synovial proliferation, distension of the navicular bursa with or without evidence of chronic inflammation, surface and core lesions in the deep digital flexor tendon, abnormal signal within the navicular bone, evidence of mineralised fragments in the distal sesamoidean impar ligament, irregular outline of and signal in the medial cortex of the distal phalanx, and an abnormal signal on the dorsal aspect of the distal phalanx consistent with laminitis were identified. CONCLUSIONS: MRI permits the diagnosis of a variety of lesions involving different structures within the foot that cannot be diagnosed using other means, thus enhancing our knowledge of the causes of foot pain. Potential relevance: With further experience it is likely that lesions involving other structures will also be identified. Long-term follow-up data is required to determine the prognosis for the injuries described.  相似文献   

15.
Whole body magnetic resonance imaging (whole body MR imaging) could potentially provide accurate cancer staging as a single imaging modality. This study was done to develop a whole body MR imaging protocol for a 1.5T MR instrument using four normal Beagle dogs (Phase 1) and then to assess the protocol's feasibility in cancer-bearing dogs (Phase II). In Phase I, anesthetized dogs were placed in dorsal recumbency with limbs flexed along the torso. T1, T2, and short tau inversion recovery sequences were acquired by spin echo or fast spin echo, and also using the more rapid single shot fast spin echo and gradient echo pulse sequences. Three large overlapping fields of view (FOV) were used to visualize the entire body and the sagittal and dorsal imaging planes were compared. Relative examination time, image quality, organ visibility and signal intensity were evaluated. Phase I results were used to establish a protocol that balanced image quality with examination time. In Phase II, whole body MR imaging was done on 10 dogs with cancer. Examination times were 60-75 min. Image quality was sufficient for all known lesions to be visualized, including mass lesions, pulmonary infiltrate, and lymphadenomegaly. Skeletal detail was sufficient to visualize known neoplastic lesions of the appendicular skeleton, yet it was suboptimal because of the large FOV and use of the body coil. Additional modifications of a whole body MR imaging protocol and continued technological improvements in MR imaging will further increase its potential for veterinary cancer staging.  相似文献   

16.
Increased signal intensity in one of the collateral ligaments of the distal interphalangeal (DIP) joint of sound horses in images acquired using a low-field magnet with vertical orientation of the magnetic field was investigated as a possible manifestation of the magic angle effect. Three isolated equine digits were imaged using the following pulse sequences: (1) spin echo T1, (2) turbo spin echo proton density and T2, and (3) 3D gradient echo T1, in different positions by mildly changing the orientation of the long axis of the digit, in the dorsal plane, relative to the magnetic field. The signal intensity in a ligament was significantly increased when the ligament orientation relative to the magnetic field was 55±10°. The signal intensity was markedly increased in pulse sequences with short echo time (TE) 5.0, 4.9, and 3.9 times increased, respectively, for 3D gradient echo T1, spin echo T1, and turbo spin echo proton density) and to a lesser extent with pulse sequences with a longer TE (1.8 times increased for turbo spin echo T2). These changes are characteristic of the magic angle effect. Because of the anatomic orientation of the collateral ligaments of the DIP joint, a slight deviation of the long axis of the digit in the dorsal plane, from the ideal horizontal position, will induce an increased signal intensity that can be confused with desmitis. Careful positioning of the foot in magnetic resonance imaging systems where B 0 is perpendicular to the long axis of the digit is critical to prevent the occurrence of the magic angle effect.  相似文献   

17.
The purpose of this study was to describe the normal magnetic resonance (MR) imaging characteristics of the palmar structures of the equine podotrochlear apparatus by means of retrospective evaluation of MR imaging studies of 16 cadaver limbs. The articular aspect of the distal sesamoid bone was not evaluated in this study. Equine digits were imaged with a human knee radiofrequency coil in a 1.5 T magnetic field, using spin echo (SE) T1-weighted, turbo spin echo proton density (TSE PD)-weighted with and without fat saturation (FS), and FS TSE T2-weighted sequences. The limbs were dissected after imaging to validate the absence of gross abnormalities of the flexor aspect of the distal sesamoid bone, of the deep digital flexor tendon, and the distal impar sesamoidean ligament. Seven deep digital flexor tendons were subjected to histologic examination to exclude any microscopic tendon pathology. The anatomic structures of the podotrochlear apparatus were easily identified on MR images. Compact bone of the flexor cortex of the distal sesamoid bone had low intensity signal on all sequences. In 11 digits an increased signal was seen within the thickness of the sagittal eminence of the flexor cortex in SE T1-weighted images and in TSE PD-weighted images without FS. Trabecular bone had a granular appearance and high signal in SE T1-weighted sequences and TSE images without FS. The deep digital flexor tendon had low signal on FS T2-weighted images, while on short echo time sequences (T1- and PD-weighted sequences), the tendon signal varied depending on the relative orientation between its fibers and the static magnetic field. Seven tendons had stippled appearance due to small intratendonous foci of slightly increased signal on transverse T1-weighted images. MR imaging provides a thorough evaluation of the anatomical structure of the podotrochlear apparatus: A good knowledge of the MR imaging appearance and anatomy and an awareness of potential pitfalls will improve diagnostic specificity for the detection of pathologic changes.  相似文献   

18.
The purpose of the present study was to describe normal magnetic resonance (MR) imaging anatomy of the equine larynx and pharynx and to present the optimal protocol, sequences, and possible limitations of this examination technique. Using a 0.3 T unit, the laryngeal and pharyngeal regions was imaged in two horses. The protocol consisted of sagittal and transverse T2-weighted (T2w) fast spin echo, transverse T1-weighted (T1w) spin echo, and dorsal high-resolution T1w gradient echo (both pre- and postcontrast enhancement) sequences. Euthanasia was performed at the end of the imaging procedure. Macroscopic anatomy of the cadaver sections were compared with the MR images in transverse, midsagittal, and parasagittal planes. There was good differentiation of anatomic structures, including soft tissues. The laryngeal cartilages, hyoid apparatus, and upper airway muscle groups with their attachments could be clearly identified. However, it was not always possible to delineate individual muscles in each plane. Most useful were both T2w and T1w transverse sequences. Intravenous application of contrast medium was helpful to identify blood vessels. The MR images corresponded with the macroscopic anatomy of cadaver sections.  相似文献   

19.
Susceptibility artifacts caused by ferromagnetic implants compromise magnetic resonance imaging (MRI) of the canine stifle after tibial plateau leveling osteotomy (TPLO) procedures. The WARP‐turbo spin echo sequence is being developed to mitigate artifacts and utilizes slice encoding for metal artifact reduction. The aim of the current study was to evaluate the WARP‐turbo spin echo sequence for imaging post TPLO canine stifle joints. Proton density weighted images of 19 canine cadaver limbs were made post TPLO using a 3 Tesla MRI scanner. Susceptibility artifact sizes were recorded and compared for WARP vs. conventional turbo spin echo sequences. Three evaluators graded depiction quality for the tibial tuberosity, medial and lateral menisci, tibial osteotomy, and caudal cruciate ligament as sufficient or insufficient to make a diagnosis. Artifacts were subjectively smaller and local structures were better depicted in WARP‐turbo spin echo images. Signal void area was also reduced by 75% (sagittal) and 49% (dorsal) in WARP vs. conventional turbo spin echo images. Evaluators were significantly more likely to grade local anatomy depiction as adequate for making a diagnosis in WARP‐turbo spin echo images in the sagittal but not dorsal plane. The proportion of image sets with anatomic structure depiction graded adequate to make a diagnosis ranged from 28 to 68% in sagittal WARP‐turbo spin echo images compared to 0–19% in turbo spin echo images. Findings indicated that the WARP‐turbo spin echo sequence reduces the severity of susceptibility artifacts in canine stifle joints post TPLO. However, variable depiction of local anatomy warrants further refinement of the technique.  相似文献   

20.
Janet S.  Muleya  BVM  MVM  Yasuho  Taura  DVM  Ph.D.  Munekazu  Nakaichi  DVM  PhD.  Sanenori  Nakama  DVM  Ph.D.  Akira  Takeuchi  DVM  Ph.D. 《Veterinary radiology & ultrasound》1997,38(6):444-447
The study was carried out to evaluate the applicability of magnetic resonance imaging (MRI) in detecting tumors in the abdomen of the dog. Abdominal ultrasound and MRI were performed on 8 dogs having a mass lesion on abdominal radiography. MR images were obtained in the transverse, sagittal and dorsal planes using T1- and T2-weighted spin echo pulse sequences. There was good visual correlation of the lesion site by MRI and ultrasonography (US).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号