首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: The measurement of adrenal gland size on computed tomography (CT) scan has been proposed for the etiological diagnosis of hyperadrenocorticism (HAC) in dogs. Symmetric adrenal glands are considered to provide evidence for ACTH‐dependent hyperadrenocorticism (ADHAC), whereas asymmetry suggests ACTH‐independent hyperadrenocorticism (AIHAC). However, there are currently no validated criteria for such differentiation. Objective: The aim of this retrospective study was to compare various adrenal CT scan measurements and the derived ratios in ADHAC and AIHAC cases, and to validate criteria for distinguishing between these conditions in a large cohort of dogs. Animals: Sixty‐four dogs with HAC (46 ADHAC, 18 AIHAC). Methods: Dogs with confirmed HAC and unequivocal characterization of its origin were included. Linear measurements of adrenal glands were made on both cross‐sectional and reformatted images. Results: An overlap was systematically observed between the AIHAC and ADHAC groups for all measurements tested. Overlaps also were observed for ratios tested. For the maximum adrenal diameter ratio derived from reformatted images (rADR), only 1/18 AIHAC dogs had a rADR within the range for ADHAC. For a threshold of 2.08, the 95% confidence intervals for estimated sensitivity and specificity extended from 0.815 to 1.000 and from 0.885 to 0.999, respectively, for AIHAC diagnosis. Conclusion and Clinical Importance: Measurements from cross‐sectional or reformatted CT scans are of little use for determining the origin of HAC. However, rADR appears to distinguish accurately between ADHAC and AIHAC, with a rADR > 2.08 highly suggestive of AIHAC.  相似文献   

2.
Background: Adrenocorticotropic hormone (ACTH) determination has been used for 30 years to distinguish ACTH-dependent hyperadrenocorticism (ADHAC) from ACTH-independent hyperadrenocorticism (AIHAC) in dogs. However, the few studies that have evaluated its diagnostic accuracy, based in the majority of cases on older assays, have been associated with systematic, but highly variable proportions of misclassified or unclassified cases.
Objective: The purpose of the present study is to evaluate the accuracy of a validated ACTH immunoluminometric assay (ILMA) for differentiating between ADHAC and AIHAC.
Animals: One hundred and nine dogs with hyperadrenocorticism were included: 91 with ADHAC and 18 with AIHAC.
Methods: Retrospective study. Dogs displaying feedback inhibition after the dexamethasone suppression test, adrenal symmetry, or both were considered to have ADHAC. AIHAC was demonstrated by adrenal tumor histology. For each group, ACTH determination by ILMA was reviewed.
Results: In the ADHAC group, plasma ACTH measurements ranged between 6 and 1250 pg/mL (median, 30 pg/mL). In the AIHAC group, all ACTH concentrations were below the lower quantification limit of the assay (<5 pg/mL). The 95% confidence interval was 85–100% for sensitivity and 97–100% for specificity in AIHAC diagnosis.
Conclusion and Clinical Importance: No overlap in ACTH concentrations was observed between dogs with ADHAC and dogs with AIHAC. The use of a new technique with high analytical sensitivity made it possible to use a low threshold (5 pg/mL), avoiding the misclassification of some ADHAC cases with low, but quantifiable concentrations of ACTH. The assessment of ACTH concentrations by ILMA is an accurate tool for differentiating between ADHAC and AIHAC.  相似文献   

3.
Twenty-nine dogs were diagnosed with hyperadrenocorticism (HAC). A single determination of endogenous plasma adrenocorticotropic hormone (ACTH) and adrenal ultrasonography were used in a prospective study to differentiate between pituitary-dependent HAC (PDH) and adrenal-dependent HAC (ADH). In 27 out of the 29 dogs (93 per cent), both endogenous plasma ACTH concentrations and adrenal ultrasonography indicated the same cause of HAC. Twenty-one of the 29 cases (72 per cent) were shown to be pituitary-dependent; all had plasma ACTH concentrations of greater than 28 pg/ml (reference range 13 to 46 pg/ml) and both adrenal glands were ultrasonographically of similar size and of normal shape. All 21 cases responded well to mitotane therapy. Six cases (21 per cent) were shown to be adrenal-dependent; all had plasma ACTH concentrations below the limit of the assay (<5 pg/ml) and the presence of an adrenal mass on ultrasonography. The sensitivity and specificity of adrenal ultrasonography and endogenous ACTH determinations to identify the cause of HAC were demonstrated to be 100 per cent and 95 per cent, respectively, for ADH. These discriminatory tests are more accurate than published figures for dexamethasone suppression testing.  相似文献   

4.
OBJECTIVE: To evaluate serum 17-hydroxyprogesterone (17-OHP) concentration measurement after administration of ACTH for use in the diagnosis of hyperadrenocorticism in dogs. DESIGN: Prospective study. ANIMALS: 110 dogs. PROCEDURE: Serum 17-OHP concentrations were measured before and after ACTH stimulation in 53 healthy dogs to establish reference values for this study. Affected dogs had pituitary-dependent (n = 40) or adrenal tumor-associated (12) hyperadrenocorticism or potentially had atypical hyperadrenocorticism (5; diagnosis confirmed in 1 dog). In affected dogs, frequency interval and borderline and abnormal serum 17-OHP concentrations after ACTH stimulation were determined. Serum cortisol concentrations were assessed via low-dose dexamethasone suppression and ACTH stimulation tests. RESULTS: In healthy dogs, serum 17-OHP concentration frequency intervals were grouped by sex and reproductive status (defined as < 95th percentile). Frequency intervals of serum 17-OHP concentrations after ACTH stimulation were < 77, < 2.0, < 3.2, and < 3.4 ng/mL (< 23.3, < 6.1, < 9.7, and < 10.3 nmol/L) for sexually intact and neutered females and sexually intact and neutered males, respectively. In 53 dogs with confirmed hyperadrenocorticism, serum cortisol concentrations after ACTH stimulation and 8 hours after administration of dexamethasone and serum 17-OHP concentrations after ACTH stimulation were considered borderline or abnormal in 79%, 93%, and 69% of dogs, respectively. Two of 5 dogs considered to have atypical hyperadrenocorticism had abnormal serum 17-OHP concentrations after ACTH stimulation. CONCLUSIONS AND CLINICAL RELEVANCE: Serum 17-OHP concentration measurement after ACTH stimulation may be useful in the diagnosis of hyperadrenocorticism in dogs when other test results are equivocal.  相似文献   

5.
This retrospective study was performed to investigate the diagnostic efficacy of the chemiluminometric ACTH-measurement to differentiate between pituitary and adrenal dependent hyperadrenocorticism (HAC) in dogs. 49 dogs with pituitary HAC, 10 dogs with adrenal HAC and 1 dog with a combination of both pathologies were included. Dogs with HAC like symptoms, where HAC had been ruled out, served as controls (n = 18). All dogs with adrenal HAC, as well as 9 dogs with pituitary HAC had an ACTH concentration below the detection limit of 2.2 pmol/l (10 pg/dl) plasma. Using 2.2 pmol/l as a cut-off the sensitivity and specificity to diagnose pituitary HAC was 0.82 (95 % CI 0.686 - 0.914) and 1 (95 % CI 0.692 - 1), respectively. With the help of the chemiluminometric assay, a correct classification was possible in 85 % of patients with HAC. As an ACTH-concentration below the detection limit was found in dogs with adrenal as well as pituitary HAC, additional discriminatory tests are necessary in these cases.  相似文献   

6.
OBJECTIVE: To compare adrenal gland stimulation achieved following administration of cosyntropin (5 microg/kg [2.3 microg/lb]) IM versus IV in healthy dogs and dogs with hyperadrenocorticism. DESIGN: Clinical trial. Animals-9 healthy dogs and 9 dogs with hyperadrenocorticism. PROCEDURES: In both groups, ACTH stimulation was performed twice. Healthy dogs were randomly assigned to receive cosyntropin IM or IV first, but all dogs with hyperadrenocorticism received cosyntropin IV first. In healthy dogs, serum cortisol concentration was measured before (baseline) and 30, 60, 90, and 120 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was measured before and 60 minutes after cosyntropin administration. RESULTS: In the healthy dogs, serum cortisol concentration increased significantly after administration of cosyntropin, regardless of route of administration, and serum cortisol concentrations after IM administration were not significantly different from concentrations after IV administration. For both routes of administration, serum cortisol concentration peaked 60 or 90 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was significantly increased 60 minutes after cosyntropin administration, compared with baseline concentration, and concentrations after IM administration were not significantly different from concentrations after IV administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that in healthy dogs and dogs with hyperadrenocorticism, administration of cosyntropin at a dose of 5 microg/kg, IV or IM, resulted in equivalent adrenal gland stimulation.  相似文献   

7.
OBJECTIVE: To evaluate adrenal sex hormone concentrations in response to ACTH stimulation in healthy dogs, dogs with adrenal tumors, and dogs with pituitary-dependent hyperadrenocorticism (PDH). DESIGN: Prospective study. ANIMALS: 11 healthy control dogs, 9 dogs with adrenal-dependent hyperadrenocorticism (adenocarcinoma [ACA] or other tumor); 11 dogs with PDH, and 6 dogs with noncortisol-secreting adrenal tumors (ATs). PROCEDURE: Hyperadrenocorticism was diagnosed on the basis of clinical signs; physical examination findings; and results of ACTH stimulation test, low-dose dexamethasone suppression test, or both. Dogs with noncortisol-secreting ATs did not have hyperadrenocorticism but had ultrasonographic evidence of an AT. Concentrations of cortisol, androstenedione, estradiol, progesterone, testosterone, and 17-hydroxyprogesterone were measured before and 1 hour after i.m. administration of 0.25 mg of synthetic ACTH. RESULTS: All dogs with ACA, 10 dogs with PDH, and 4 dogs with ATs had 1 or more sex hormone concentrations greater than the reference range after ACTH stimulation. The absolute difference for progesterone, 17-hydroxyprogesterone, and testosterone concentrations (value obtained after ACTH administration minus value obtained before ACTH administration) was significantly greater for dogs with ACA, compared with the other 3 groups. The absolute difference for androstenedione was significantly greater for dogs with ACA, compared with dogs with AT and healthy control dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Dogs with ACA secrete increased concentrations of adrenal sex hormones, compared with dogs with PDH, noncortisol-secreting ATs, and healthy dogs. Dogs with noncortisol-secreting ATs also have increased concentrations of sex hormones. There is great interdog variability in sex hormone concentrations in dogs with ACA after stimulation with ACTH.  相似文献   

8.
Canine hyperadrenocorticism (HAC) is one of the most common causes of general osteopenia. In this study, quantitative computed tomography (QCT) was used to compare the bone mineral densities (BMD) between 39 normal dogs and 8 dogs with HAC (6 pituitary-dependent hyperadrenocorticism [PDH]; pituitary dependent hyperadrenocorticism, 2 adrenal hyperadrenocorticism [ADH]; adrenal dependent hyperadrenocorticism) diagnosed through hormonal assay. A computed tomogaraphy scan of the 12th thoracic to 7th lumbar vertebra was performed and the region of interest was drawn in each trabecular and cortical bone. Mean Hounsfield unit values were converted to equivalent BMD with bone-density phantom by linear regression analysis. The converted mean trabecular BMDs were significantly lower than those of normal dogs. ADH dogs showed significantly lower BMDs at cortical bone than normal dogs. Mean trabecular BMDs of dogs with PDH using QCT were significantly lower than those of normal dogs, and both mean trabecular and cortical BMDs in dogs with ADH were significantly lower than those of normal dogs. Taken together, these findings indicate that QCT is useful to assess BMD in dogs with HAC.  相似文献   

9.
A number of dogs are seen with clinical signs consistent with hyperadrenocorticism (HAC), supporting CBC and biochemical findings, but the disease cannot be confirmed with either the ACTH stimulation test or the low-dose dexamethasone suppression test (LDDST). Therefore, another screening test is required to aid diagnosis in these atypical cases of HAC. The aim of this study was to investigate whether measuring 17-hydroxyprogesterone (OHP) concentrations could be used in this role. Plasma cortisol and OHP concentrations were measured in dogs with clinical signs suggestive of HAC before and after administration of exogenous ACTH. In dogs with HAC, plasma OHP showed an exaggerated response to ACTH stimulation. This was seen in both typical cases of HAC with a positive cortisol response to ACTH administration and in atypical cases with negative screening test results. The test can be performed on plasma already taken for a conventional ACTH stimulation test. Post-ACTH OHP concentrations decreased after treatment with mitotane or adrenalectomy. These results suggest that OHP measurements can be used as an aid to diagnose and manage canine HAC.  相似文献   

10.
A study was designed to evaluate the response of blood cortisol content in dogs tentatively diagnosed as having hyperadrenocorticism by using the combined dexamethasone suppression/ACTH stimulation test procedure. Four groups of abnormal responses were identified in 54 dogs. In group I (14.8% of the dogs with abnormal responses), the only abnormality was partial suppression with dexamethasone (clinically normal dogs suppressed to less than 10 ng/ml). In group II (29.6%), 2 abnormalities were found: partial suppression with dexamethasone and hyperreactivity to the ACTH stimulation test. In group III (typical pituitary-dependent hypercortisolism, 48.1%), 3 abnormalities were found: base-line hypercortisolemia, partial suppression with dexamethasone, and hyperreactivity to the ACTH stimulation test. In group IV (7.4%), 2 abnormalities were found: base-line hypercortisolemia and partial suppression with dexamethasone. Base-line blood cortisol content was normal in 44.4% of the adrenopathic dogs. A normal response to ACTH stimulation was seen in 25.9% of the dogs, and 74.1% of the dogs hyperreacted to the ACTH stimulation test. All of the adrenopathic dogs were found to suppress partially with dexamethasone. Failure to suppress the adrenal gland completely (less than 10 ng/ml) with dexamethasone was the most consistent finding in adrenopathic dogs when using the combined dexamethasone suppression/ACTH stimulation test procedure. It was concluded that the test procedure is feasible, flexible, and convenient for clinical situations. Also, these results suggested that there may be several stages in the negative feedback failure associated with hyperadrenocorticism in dogs.  相似文献   

11.
Seventeen dogs with hyperadrenocorticism were studied. Three dogs had functioning adrenocortical tumors and 14 had pituitary-dependent hyperadrenocorticism. Each dog was evaluated by determining the endogenous plasma ACTH concentration and by performing 4 tests: ACTH stimulation, dexamethasone screening, dexamethasone suppression, and a 6-hour combined dexamethasone suppression/ACTH stimulation test. The combined test was less reliable as a screening test in diagnosing hyperadrenocorticism than was the dexamethasone screening test or the ACTH stimulation test. Compared with the endogenous plasma ACTH concentration, results of the dexamethasone suppression portion of the combined test were less reliable in distinguishing dogs with adrenocortical tumors from those with pituitary-dependent hyperadrenocorticism. It was concluded that the combined test cannot be recommended for use.  相似文献   

12.
OBJECTIVE: To describe the clinicopathologic characteristics of dogs with hyperadrenocorticism and concurrent pituitary and adrenal tumors. DESIGN: Retrospective study. ANIMALS: 17 client-owned dogs. PROCEDURE: Signalment, response to treatment, and results of CBC, serum biochemical analysis, urinalysis, endocrine testing, and histologic examinations were obtained from medical records of dogs with hyperadrenocorticism and concurrent adrenal and chromophobe pituitary tumors. RESULTS: On the basis of results of adrenal function tests and histologic examination of tissue specimens collected during surgery and necropsy, concurrent pituitary and adrenal tumors were identified in 17 of approximately 1,500 dogs with hyperadrenocorticism. Twelve were neutered females, 5 were males (3 sexually intact, 2 neutered); and median age was 12 years (range, 7 to 16 years). Hyperadrenocorticism had been diagnosed by use of low-dose dexamethasone suppression tests and ACTH stimulation tests. During high-dose dexamethasone suppression testing of 16 dogs, serum cortisol concentrations remained high in 11 dogs but decreased in 5 dogs. Plasma concentrations of endogenous ACTH were either high or within the higher limits of the reference range (12/16 dogs), within the lower limits of the reference range (2/16), or low (2/16). Adrenal lesions identified by histologic examination included unilateral cortical adenoma with contralateral hyperplasia (10/17), bilateral cortical adenomas (4/17), and unilateral carcinoma with contralateral hyperplasia (3/17). Pituitary lesions included a chromophobe microadenoma (12/17), macroadenoma (4/17), and carcinoma (1/17). CLINICAL IMPLICATIONS: Pituitary and adrenal tumors can coexist in dogs with hyperadrenocorticism, resulting in a confusing mixture of test results that may complicate diagnosis and treatment of hyperadrenocorticism.  相似文献   

13.
OBJECTIVES: To determine the effects of treating canine hyperadrenocorticism (HAC) on parathyroid hormone (PTH), calcium and phosphate concentrations in dogs. METHODS: Serum calcium, phosphate and PTH concentrations were analysed in 22 dogs with HAC before treatment with trilostane and at a median of 210 days after commencing treatment. Pretreatment data were compared with data from an age- and weight-matched group of hospitalised patients, and post-treatment data were compared with pretreatment data. RESULTS: PTH and phosphate concentrations were significantly higher in dogs with HAC compared with control dogs. PTH concentrations reduced significantly with treatment, such that there was no longer a difference between the HAC and control groups. Phosphate concentrations also reduced significantly with treatment but there was still a significant difference between those in dogs with HAC and control dogs. Despite no significant difference between calcium concentrations in the pretreatment HAC and control groups, calcium concentrations increased significantly with treatment. CLINICAL SIGNIFICANCE: These results show that adrenal secondary hyperparathyroidism resolves with treatment and suggest that increased calcium and phosphate levels have a role in its pathogenesis.  相似文献   

14.
The effect of mitotane therapy on adrenal gland size was evaluated in 13 dogs with pituitary dependent hyperadrenocorticism. Ultrasonographic measurements were obtained before and during mitotane therapy. During therapy both adrenal glands were shorter and thinner (median during therapy: left adrenal gland 19.4 mm long, 5.4 mm thick, right adrenal gland 18.1 mm long, 6.1 mm thick) than before mitotane therapy (median before therapy: left adrenal gland 23.6 mm long, 8.3 mm thick, right adrenal gland 21.6 mm long, 8.1 mm thick). Statistical evaluation showed a significant reduction in size. But ultrasonographic measurement of adrenal gland size is not useful in the evaluation of adrenal reserve during mitotane therapy. Inadequate adrenal reserve was not identified and adrenal size measurement by ultrasonography was not helpful to differentiate adequate and inadequate control of adrenal cortisol secretion during mitotane therapy.  相似文献   

15.
OBJECTIVE: To determine whether low doses of synthetic ACTH could induce a maximal cortisol response in clinically normal dogs and to compare a low-dose ACTH stimulation protocol to a standard high-dose ACTH stimulation protocol in dogs with hyperadrenocorticism. DESIGN: Cohort study. ANIMALS: 6 clinically normal dogs and 7 dogs with hyperadrenocorticism. PROCEDURE: Each clinically normal dog was given 1 of 3 doses of cosyntropin (1, 5, or 10 micrograms/kg [0.45, 2.3, or 4.5 micrograms/lb] of body weight, i.v.) in random order at 2-week intervals. Samples for determination of plasma cortisol and ACTH concentrations were obtained before and 30, 60, 90, and 120 minutes after ACTH administration. Each dog with hyperadrenocorticism was given 2 doses of cosyntropin (5 micrograms/kg or 250 micrograms/dog) in random order at 2-week intervals. In these dogs, samples for determination of plasma cortisol concentrations were obtained before and 60 minutes after ACTH administration. RESULTS: In the clinically normal dogs, peak cortisol concentration and area under the plasma cortisol response curve did not differ significantly among the 3 doses. However, mean plasma cortisol concentration in dogs given 1 microgram/kg peaked at 60 minutes, whereas dogs given doses of 5 or 10 micrograms/kg had peak cortisol values at 90 minutes. In dogs with hyperadrenocorticism, significant differences were not detected between cortisol concentrations after administration of the low or high dose of cosyntropin. CLINICAL IMPLICATIONS: Administration of cosyntropin at a rate of 5 micrograms/kg resulted in maximal stimulation of the adrenal cortex in clinically normal dogs and dogs with hyperadrenocorticism.  相似文献   

16.
OBJECTIVES: To assess the effect of canine hyperadrenocorticism (HAC) on parathyroid hormone (PTH), phosphate and calcium concentrations. METHODS: PTH concentrations and routine biochemical parameters were measured in 68 dogs with HAC. Ionised calcium was measured in 28 of these dogs. The results obtained were compared with an age- and weight-matched group of 20 hospital patients that did not show signs of HAC. RESULTS: There were significant differences between the PTH, phosphate, alkaline phosphatase, creatinine and albumin concentrations between the two groups. Total and ionised calcium concentrations were not significantly different. Most of the dogs (92 per cent) with HAC had PTH concentrations that were greater than the reference range (10 to 60 pg/ml), and in 23 dogs they were greater than 180 pg/ml. There were significant positive correlations between the PTH and basal cortisol, post-adrenocorticotropic hormone (ACTH) cortisol and alkaline phosphatase concentrations, and also the phosphate and post-ACTH cortisol concentrations. CLINICAL SIGNIFICANCE: Adrenal secondary hyperparathyroidism is a cause of increased PTH concentrations and may be associated with abnormalities in calcium and phosphate metabolism in dogs with HAC. The findings of this study could explain why canine HAC may cause clinical signs such as calcinosis cutis that are associated with altered calcium metabolism.  相似文献   

17.
Many dogs with chronic illness have serum biochemical abnormalities consistent with hyperadrenocorticism (HAC). Lymphoma (LSA) is a chronic disease of dogs. The purpose of this study was to evaluate adrenocortical screening test results in dogs with LSA to evaluate their specificity. Criteria for inclusion in the study included a diagnosis of LSA, an expected survival time of 16-56 weeks, no glucocorticoid treatment beyond 4 weeks after the initiation of chemotherapy, no evidence of HAC, and owner consent. Post-ACTH stimulation plasma cortisol concentrations (PACs), urine cortisol : creatinine (UC : Cr) ratios, and maximal left adrenal width measurements were performed at the time of LSA diagnosis before the initiation of chemotherapy and at 16, 24, 32, 40, and 52 weeks or until the loss of remission or the development of another disease. Ten dogs met the criteria for inclusion. Forty-two PACs were performed; 1 abnormal, 2 borderline, and 39 normal values were detected. Thirty-five maximal left adrenal width measurements were obtained; 0 abnormal, 5 borderline, and 30 normal measurements were detected. Thirty-six UC : Cr ratios were obtained, with 26 abnormal, 4 borderline, and 6 normal values detected and 9 of 10 dogs having at least 1 abnormal value. These data suggest that in dogs with LSA, the UC : Cr ratio frequently is abnormal and may not be a specific test for HAC, or it may be the most sensitive test for increases in cortisol secretion due to chronic illness. Maximal left adrenal width measurements and PACs were almost always normal and may be more specific for HAC or less sensitive for demonstrating chronic increases in cortisol secretion.  相似文献   

18.
Background : Acute phase proteins (APPS) include haptoglobin (Hp), C-reactive protein (CRP) and serum amyloid A (SAA). Increased Hp concentrations may be induced by endogenous or exogenous glucocorticoids in dogs. Objectives : To assess whether control of hyperadrenocorticism (HAC) affects the concentrations of Hp, CRP, SAA, alkaline phosphatase (ALKP) and cholesterol, to determine whether these analytes can be used to assess control of HAC following trilostane treatment, and whether a combination of these tests offers a valid method of assessing disease control. Methods : Hp, CRP, SAA, ALKP and cholesterol were assessed in 11 dogs with spontaneous HAC before and after treatment with trilostane. Adequate control of HAC was defined as post-ACTH cortisol less than 150 nmol/l. Results : Significant reductions in Hp, ALKP, cholesterol and SAA (P<0·05) but not of CRP were found after control of HAC. Only Hp, cholesterol and ALKP were moderately informative (Se & Sp>0·7) of disease control when compared to adrenocorticotropin or corticotropin (ACTH) stimulation test. SAA and CRP were unhelpful (Se & Sp<0·7). The analysis of the combination of the analytes did not improve the correlation with ACTH stimulation test. Clinical Relevance : Relying on these analytes does not provide additional information over ACTH stimulation test results when assessing control of HAC treated with trilostane.  相似文献   

19.
OBJECTIVE: To determine the efficacy of trilostane, a 3beta-hydroxysteroid dehydrogenase inhibitor, in dogs with pituitary-dependent hyperadrenocorticism (PDH). ANIMALS: 11 dogs with PDH. PROCEDURE: The initial dose of trilostane was 30 mg, PO, q 24 h for dogs that weighed < 5 kg and 60 mg, PO, q 24 h for dogs that weighed > or = 5 kg. A CBC count, serum biochemical analyses, urinalysis, ACTH stimulation test, and ultrasonographic evaluation of the adrenal glands were performed in each dog 1, 3 to 4, 6 to 7, 12 to 16, and 24 to 28 weeks after initiation of treatment. RESULTS: All dogs responded well to treatment. All had reductions in polyuria-polydipsia and panting and an increase in activity. Polyphagia decreased in 9 of 10 dogs, and 9 of 11 dogs had improvement of coat quality and skin condition. Concentration of cortisol after ACTH stimulation significantly decreased by 1 week after initiation of treatment. After treatment for 6 months, clinical signs resolved in 9 dogs. In the other 2 dogs, marked clinical improvement was reported for 1 dog, and moderate improvement was reported in the other dog. Ultrasonographically, there was a considerable change in the parenchyma and an increase in size of the adrenal glands. Adverse effects consisted of 1 dog with transient lethargy and 1 dog with anorexia. CONCLUSIONS AND CLINICAL RELEVANCE: Trilostane is an efficacious and safe medication for treatment of dogs with PDH. Additional studies in a larger group of dogs and characterization of progressive changes in adrenal glands are needed.  相似文献   

20.
A retrospective study on stored plasma from normal dogs and dogs with pituitary dependent hyperadrenocorticism (PDH), pituitary dependent hyperadrenocorticism controlled by mitotane (o,p'-DDD),* iatrogenic hyperadrenocorticism, and hypoadrenocorticism was conducted to determine if alterations in aldosterone production exist in these disorders. The plasma aldosterone concentration (PAC) was measured by radioimmunoassay immediately before and 1 hour after adrenocorticotropic hormone (ACTH) administration (0.5 IU/kg, intravenously [IV]). PACs increased significantly when ACTH was administered to normal dogs. Dogs with PDH had a lower baseline PAC, but their PAC increased to levels similar to that of normal dogs after ACTH administration. In dogs with PDH controlled by o,p'-DDD therapy, the response to ACTH was significantly less than that of normal dogs or dogs with untreated PDH. Dogs with iatrogenic hyperadrenocorticism had a lower baseline and post-ACTH PAC than normal dogs. Dogs with hypoadrenocorticism had a normal basal PAC, but showed no significant increase in PAC following ACTH administration. These findings suggest that PACs are significantly altered in a variety of adrenal diseases, and that the ACTH stimulation test may be useful when evaluating aldosterone secretion in adrenopathic disorders. In addition, at therapeutic dosages, o,p'-DDD treatment was associated with a decrease in basal and post-ACTH PACs in dogs with PDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号