首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
丙二醛(MDA)是植物衰老和抗性生理研究中的一个重要指标,传统检测方法程序复杂,检测费时。该研究应用近红外光谱技术实现了除草剂胁迫下大麦叶片丙二醛(MDA)含量的简便、无损、快速检测。采集75个大麦叶片样本的近红外光谱数据,比较了Savitzky-Golay平滑(SG)、变量标准化(SNV)、多元散射校正(MSC)等7种预处理方法,建立了大麦叶片丙二醛含量预测的最优偏最小二乘法(PLS)模型,将PLS提取的特征向量(LV)作为最小二乘-支持向量机(LS-SVM)模型的输入变量,建立了LV-LS-SVM模型。选用回归系数(RC)方法提取原始光谱的特征波长,将其分别作为PLS、MLR和LS-SVM的输入变量建立相应模型。将相关系数(r)和预测集均方根误差(RMSEP)作为模型的主要评价指标。结果表明,LV-LS-SVM模型效果优于PLS模型,LV-LS-SVM模型在SNV及MSC预处理后预测效果相同,其预测的r和RMSEP分别为0.9383和10.4598,获得了满意的预测效果。说明应用光谱技术检测大麦叶片中MDA含量是可行的,且预测精度较高,为大麦生长状况的大田监测及除草剂胁迫对大麦抗性等生理信息的快速检测提供了新的途径。  相似文献   

2.
基于近红外光谱技术的大米品种快速鉴别方法   总被引:9,自引:7,他引:9  
为探索大米无损检测技术,提出了一种基于可见-近红外光谱技术快速、无损鉴别大米品种的新方法。首先采用主成分分析法对大米品种进行聚类,然后利用小波变换技术提取光谱特征信息,把光谱特征信息作为人工神经网络的输入建立品种识别模型,对大米品种进行鉴别。从每种大米60个样本共计180个样本中随机抽取150个样本(每种50个样本)用来建立神经网络模型,剩下的30个大米样本用于预测。品种识别准确率达到100%。说明所提出的方法具有很好的分类和鉴别作用,为大米的品种鉴别提供了一种新方法。  相似文献   

3.
可见-近红外光谱联合随机蛙跳算法检测生物柴油含水量   总被引:2,自引:1,他引:2  
生物柴油是一种优质清洁柴油,可从各种生物质中提炼,其特有的优势受到越来越广泛的关注。该文应用可见-近红外光谱技术原理对生物柴油的含水率进行了检测。配置含水率分别为0、2.5%、5.0%、7.5%和10.0%的试验样品并获取可见-近红外光谱,进行主成分分析,观察不同含水率生物柴油的聚类性,并采用Random Frog算法进行特征波段的提取,最后采用随机蛙跳算法(Random Frog)挑选出的特征波段作为偏最小二乘回归(partial least squares regression,PLSR)和最小二乘支持向量机(least squares-support vector machine,LS-SVM)模型的输入量,建立生物柴油含水量的预测模型。结果发现:采用Random Frog提取出的8条特征波段(563、560、642、565、562、493、559和779 nm)所建立非线性模型LS-SVM所得到的结果较好,其中Random Frog-LS-SVM的结果中R均大于0.95,校正集均方根误差RMSEC=0.722,预测集均方根误差RMSEP=0.520。结果表明采用Random Frog-LS-SVM模型可以准确的预测生物柴油的含水量,为实际应用提供参考。  相似文献   

4.
基于高光谱的三江源区土壤有机质含量反演   总被引:1,自引:0,他引:1  
周伟  谢利娟  杨晗  黄露  李浩然  杨猛 《土壤通报》2021,52(3):564-574
土壤有机质(SOM)是指土壤中各种含碳有机化合物的总称,其动态变化不仅影响农业生态系统的稳定,而且与大气圈和生物圈的碳循环密切相关,对土壤有机碳的大规模快速监测和碳储量核算具有重要意义。本研究于2017年、2018年7月在三江源区野外采集了145个土壤样品,检测了土壤光谱信息。然后将原始光谱反射率数据及其不同数据变换形式下的光谱分别与土壤有机质(SOM)含量进行相关分析,并选取了特征波段,此外利用偏最小二乘回归(PLSR)、支持向量机(SVM)和随机森林(RF)模型对三江源区SOM含量进行建模估算。结果表明,不同深度土壤有机质含量差异明显,且呈逐层下降趋势。而三种建模方法的检验精度分别为:RF> SVM> PLSR,其中RF和一阶微分(FD)组合模拟最好(建模集和验证集的R2、RMSE分别为0.9678、8.9132和0.7841、20.9787)。对于三江源土壤有机质含量反演,不同模型的最佳数据变换方法不同。本研究成果能为后续的高光谱遥感反演提供理论支撑,从而实现三江源区土壤有机质含量的快速检测和实时动态监测。  相似文献   

5.
基于近红外光谱技术的淡水鱼品种快速鉴别   总被引:4,自引:1,他引:4  
为探索淡水鱼品种的快速鉴别方法,该文应用近红外光谱分析技术,结合化学计量学方法,对7种淡水鱼品种的判别分类进行了研究。采集了青、草、鲢、鳙、鲤、鲫、鲂等7种淡水鱼,共665个鱼肉样品的近红外光谱数据,经过多元散射校正(multiplicative scatter correction,MSC)、正交信号校正(orthogonal signal correction,OSC)、数据标准化(standardization,S)等20种方法预处理,在1 000~1 799 nm范围内分别采用偏最小二乘法(partial least square,PLS)、主成分分析(principal component analysis,PCA)和BP人工神经网络技术(back propagation artificial neural network,BP-ANN)、偏最小二乘法和BP人工神经网络技术对7种淡水鱼原始光谱数据进行了鉴别分析。结果表明,近红外光谱数据,结合主成分分析和BP人工神经网络技术建立的淡水鱼品种鉴别模型最优,模型的鉴别准确率达96.4%,对未知样本的鉴别准确率达95.5%。模型具有较好的鉴别能力,采用该方法能较为准确、快速地鉴别出淡水鱼的品种。  相似文献   

6.
为简化鹅肉弹性的可见-近红外光谱模型和提高预测精度,采用联合区间偏最小二乘法(synergyinterval partial least square algorithm,siPLS)结合遗传算法(Genetic algorithm,GA)提取可见-近红外光谱特征波长,用最小二乘支持向量回归(least square support vector for regression,LSSVR)建立鹅肉弹性的预测模型。试验以万能试验机获取恢复距离S作为鹅肉弹性实际值。在模型建立过程中,先利用sym8小波的2层分解对原始的可见-近红外光谱进行光谱预处理;然后用siPLS优选出4个特征光谱子区间(分别为第3、5、9、13子区间),在这4个特征光谱子区间内继续用GA优选出74个特征波长,并建立基于LSSVR的鹅肉弹性的预测模型。模型预测集的决定系数(R2)和预测均方根误差(root mean squarederror of prediction,RMSEP)分别为0.9096和0.0588。试验结果表明,siPLS结合GA法能够有效提取光谱中的鹅肉弹性对应的特征波长,有利于提高LSSVR模型预测鹅肉弹性的精度。  相似文献   

7.
该文提出了一种根据大麦多光谱图像实时识别大麦赤霉病害的方法。首先利用阈值分割以及形态学的处理算法去除大麦穗图像背景和麦芒干扰信息;其次从预处理后的多光谱图像中提取图像的颜色统计特征;最后将这些颜色统计特征数据经过预处理后应用偏最小二乘法(principal component analysis, PLS)进行模式特征分析,经过交互验证法判别选取最佳的主成分数,输入到最小二乘-支持向量机模型(least square-support vector machine, LS-SVM),建立病害识别模型。经过比较发现多元散射校正处理后,最佳主成分为1的最小二乘支持向量机模型对病害的识别准确率最高,达到93.9%。表明利用多光谱成像信息可对大麦赤霉病进行准确识别,为植物病害监测与防治提供了一条新方法。  相似文献   

8.
赣南脐橙园土壤全磷和全钾近红外光谱检测   总被引:3,自引:2,他引:1  
为建立一种能够同时快速检测土壤全磷和全钾的定量估计模型,该文采用近红外漫反射技术对赣南脐橙果园的土壤进行研究,对56个土样风干、过筛,然后进行光谱采集和化学分析。光谱经过Savitzky-Golay平滑后再用一阶微分变换的方法进行预处理,分别应用偏最小二乘回归(partial least square regress PLS)、主成分回归(principal component regression PCR)和最小二乘支持向量机(least squares support vector machine LS-SVM)3种方法,在4 000~7 500 cm-1波数范围内,建立赣南脐橙果园土壤全磷和全钾快速定量检测模型。结果发现在建立土壤全磷模型时,PLS和PCR的预测模型效果均不理想,但LS-SVM建立的模型较为理想, 其预测相关系数(correlation coefficient of prediction RP)为0.884,预测集均方根误差(the root mean square error of prediction RMSEP)为0.341,预测相对分析误差(residual predictive deviation RPD)为2.59。在建立土壤全钾模型时,PLS、PCR和LS-SVM 建立3种模型效果均理想,其中以LS-SVM模型最理想,其预测相关系数(RP)为0.971,预测集均方根误差(RMSEP)为0.714,预测相对分析误差(RPD)为5.12。研究表明,采用LS-SVM建立的土壤全磷和全钾模型对实现土壤全磷和全钾含量快速检测具有可行性。  相似文献   

9.
基于高光谱的土壤不同颗粒含量预测分析   总被引:1,自引:0,他引:1  
以典型黄河下游冲积平原区的土壤为研究对象,分析土壤高光谱特征,探讨土壤质地不同粒级颗粒含量的统一估测途径,为土壤质地快速监测评价提供技术支持.选择原始光谱,及其倒数、对数、标准正交变换、多元散射变化、一阶微分、二阶微分共7种光谱变换形式,首先主成分降维,然后分别建立土壤黏粒、粉粒和砂粒含量的支持向量机预测模型,采用决定...  相似文献   

10.
基于高光谱成像的寒地水稻叶瘟病与缺氮识别   总被引:2,自引:2,他引:2  
为进行水稻叶瘟病与养分缺失的区分、实现叶瘟病及时、准确的诊断,以大田试验为基础,利用高光谱成像仪获取2个品种的健康、缺氮、轻度感病和重度感病共4类水稻叶片的反射率光谱,对其光谱特性进行分析,并采用多种预处理方法、分别结合偏最小二乘判别分析(partial least squares-discriminate analysis,PLS-DA)和主成分加支持向量机(principle component analysis-support vector machine,PCA-SVM)方法构建水稻叶瘟病识别模型。试验结果显示6个判别模型都获得了较高的识别准确率,经标准正态变量(standard normal variate,SNV)变换预处理的PLS-DA模型获得了最佳的识别结果,预测准确率达100%,经多元散射校正(multiplicative scatter correction,MSC)预处理的PCA-SVM模型的预测准确率也达到97.5%。本研究为水稻叶瘟病的判别和分级提供了新方法,也为稻瘟病大范围遥感监测提供了基础。  相似文献   

11.
基于GA-LSSVM和近红外傅里叶变换的霉变板栗识别   总被引:6,自引:4,他引:2  
为克服板栗近红外光谱变量多、共线性强等缺点,该文对标准正态变量变换预处理后的板栗近红外光谱进行傅里叶变换,并用不同方法建模,提高识别精度。采用试探法提取近红外光谱傅里叶系数,建立了基于最小二乘支持向量机分类器的霉变板栗识别模型。当提取前35点傅里叶系数时,板栗的平均识别正确率为93.56%;构造GA-LSSVM算法,建立的霉变板栗识别模型所用傅里叶系数减少为13点,对测试集中合格板栗、表面霉变板栗和内部霉变板栗的平均识别正确率分别为95.89%、100%和98.25%,板栗的总体平均识别正确率提高到97.54%。为霉变板栗的识别提供了快速鉴别分析方法。  相似文献   

12.
柑桔黄龙病近红外光谱无损检测   总被引:2,自引:1,他引:2  
为探讨快速无损检测柑桔黄龙病的可行性,应用近红外光谱技术结合机器学习方法进行研究。在4000~9000cm-1光谱范围内,采集黄龙病、缺素和健康3类叶片样本的近红外光谱。采用一阶导数、平滑和多元散色校正组合的光谱预处理方法,消除光谱的基线漂移和散射效应。分别对偏最小二乘判别模型(PLS-DA)的主成分因子数和最小二乘支持向量机(LS-SVM)的输入变量数量、核函数类型及其参数进行了优化,建立了PLS-DA和LS-SVM模型。采用预测集样本,评价模型的预测能力,经比较,采用11个主成分得分向量为输入、线性核函数和惩罚因子为2.25的LS-SVM模型预测效果最佳,模型误判率为0。结果表明采用近红外光谱技术结合最小二乘支持向量机进行柑桔黄龙病无损检测是可行的。  相似文献   

13.
基于可见-近红外光谱技术的蜜源快速识别方法   总被引:8,自引:5,他引:3  
蜂蜜蜜源决定了蜂蜜的药用价值。为了实现快速无损识别蜂蜜蜜源,提出了基于可见-近红外光谱技术结合机器学习的方法来实现蜂蜜蜜源的快速无损识别。该研究采集来自4个蜜源共232份蜂蜜样本光谱数据,随机选取其中212个样本用来构建分类器,剩余20个样本进行分类器泛化学习能力的检验评估。光谱数据预处理采用基线校正,数据标准化和平滑消除干扰和噪声。基于一对多分类规则,采用主成分分析结合贝叶斯线性判别构造线性多分类器,并就分类效果和泛化学习能力与前向神经网络器构成的非线性分类器进行比较。结果表明:基于主成分分析结合贝叶斯线性判别构造的多分类器分类正确率为91.95%,前向神经网络的分类正确率为100%。该研究也表明应用可见-近红外技术对蜂蜜蜜源进行快速分类是可行的。  相似文献   

14.
邵平  王钧  王星丽  瞿亮  孙培龙 《核农学报》2015,29(3):499-505
为了满足食用菌提取物实际生产监管需要,本研究采用近红外漫反射光谱技术对来自不同地区的灵芝和云芝提取物样品进行定性识别研究。在800~2 750nm波段范围,采集灵芝和云芝提取物的漫反射光谱,应用主成分聚类分析和偏最小二乘判别法分别建立识别模型,用146个样品进行建模和48个外部样品集进行验证。结果表明:采用主成分聚类判别分析法,灵芝和云芝提取物的判别界线清晰,正确率达到88.54%;采用偏最小二乘判别法,建立的鉴别分类模型能较好地对灵芝和云芝提取物进行鉴别,校正集和预测集样品的识别正确率均为100%。因此,近红外结合主成分聚类分析和偏最小二乘判别法识别灵芝和云芝提取物是可行的,同时研究结果为灵芝和云芝提取物的快速识别提供了理论依据和使用方法。  相似文献   

15.
青砖茶压制压力优化及GCG近红外快速检测模型建立   总被引:1,自引:1,他引:0  
青砖茶压制压力的选择至关重要,为探求压力与青砖茶品质及内含成分间的相互关系,并尝试对关键成分进行快速预测。以青砖茶为研究对象,设置了5个等级的压力值,通过感官审评和相关关系法分析了最佳压力值与品质和内含成分间的相关关系;应用标准变量变换、多元散射校正、一阶导数和二阶导数及组合方法进行降噪处理,应用反向区间偏最小二乘法筛选特征光谱区间并进行主成分分析,将主成分分别输入到3种信息传递函数的jump connection nets结构人工神经网络中建立定量分析模型。结果表明,最佳压力值为18 MPa;关键内含成分为:没食子儿茶素没食子酸酯(Gallocatechin Gallate,GCG)(P<0.05);最佳预处理方法:多元散射校正+一阶导数组合方法;特征光谱区间:9 734.9~10 000,8 924.9~9 191.1,5 368.9~5 638.8,7 011.9~7 281.9,6 190.4~6 460.4,4 821.2~5 091.2,9 194.9~9 461.1,7 559.6~7 829.6,5 916.5~6 186.5 cm-1,前3个主成分累积贡献率为97.82%,以应用tanh传递函数建立的GCG人工神经网络模型结果最佳(Rp2=0.980,RMSEP=0.027),并有较好的实际应用效果(Rp2=0.948,RMSEP=0.041)。研究结果为其它重量规格青砖茶产品的研发和品质的快速检测奠定了理论基础。  相似文献   

16.
基于近红外光谱土壤水分检测模型的适应性   总被引:11,自引:7,他引:4  
由于土壤水分的近红外光谱定量分析模型精度依赖于样品状态,故土壤水分定量分析模型的适应性极其重要。以湖北地区的3种土壤为研究对象,利用偏最小二乘法交叉验证建立了处理后样品下的土壤水分分析模型,模型预测值与标准值的决定系数R2为0.9946,交叉验证预测均方差为0.801%,模型预测决定系数R2为0.9919,预测均方差为0.912%;利用主成分分析了未处理土壤样品与处理土壤样品得分图的差异,结果表明定量分析模型对未处理样品的预测精度降低;采用斜率/截距的方法修正了12个未处理样品的模型预测值,预测平均绝对值误差从0.78%降低到0.38%,结果表明斜率/截距校正法能较好的提高近红外光谱土壤水分定量分析模型的适应性。  相似文献   

17.
近红外光谱技术定量分析玉米杂交种纯度   总被引:2,自引:2,他引:0  
摘要:应用近红外光谱分析技术结合定量偏最小二乘法对先玉335杂交种纯度进行了定量分析,将不同年份和来源的杂交种和其母本种子粉碎后混合,按0.5%的梯度获得纯度80~100%范围内的样本123份(每梯度按年份和来源设置3个重复)后采集光谱。结果表明:采用散射校正预处理,4 000~8 000 cm-1光谱范围时建模效果较适宜(建模集∶检验集=3∶1),建模集内部交叉决定系数达96.06%,校正标准差1.18%,平均相对误差1.03%;检验集的决定系数均达到95.02%,校正标准差1.28%,平均相对误差1.12%。采用不同比例的建模样品和检验样品时,建模集和检验集的决定系数均在94%以上,证明了近红外光谱技术定量测定玉米杂交种纯度的可行性以及所建模型的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号