首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaerobic flasks with two different soils contained microorganisms which effectively reduced NO3 to N2 in the absence of C2H2 and in the presence or absence of CO2. In the presence of C2H2, the microorganisms reduced NO3 to N2O and the further reduction of N2O to N2 was temporarily inhibited. This was shown for two partial pressures of C2H2 (0.1 kPa and 1.0 kPa). However. after a maximum of 168 h, microorganisms were able to reduce N2O to N2 in the presence of C2H2. This was shown in the presence of CO2 for both partial pressures of C2H2 and in the absence of CO2 for 1.0 kPa C2H2. The absence of CO2 delayed the complete reduction of N2O. Microorganisms which had reduced N2O in the presence of C2H2 retained this ability for at least 3 days after the original atmosphere containing C2H2 had been removed.  相似文献   

2.
秸秆还田对灌溉玉米田土壤反硝化及N2O排放的影响   总被引:23,自引:3,他引:23  
运用乙炔抑制技术研究了不同施氮水平下秸秆还田对灌溉玉米田土壤反硝化反应和氧化亚氮(N2O)排放的影响。结果表明,土壤反硝化速率及N2O的排放受氮肥施用、秸秆处理方式及其交互作用的显著影响。与秸秆燃烧相比,不施氮或低施氮水平时,秸秆还田可刺激培养初期反硝化反应速率及N2O排放,增加培养期间N2O平均排放通量;高施氮水平时,秸秆还田可降低反硝化反应速率及反硝化过程中的N2O排放。秸秆还田可降低反硝化中N2O/N2的比例。  相似文献   

3.
Summary Nitrapyrin and C2H2 were evaluated as nitrification inhibitors in soil to determine the relative contributions of denitrification and nitrification to total N2O production. In laboratory experiments nitrapyrin, or its solvent xylene, stimulated denitrification directly or indirectly and was therefore considered unsuitable. Low partial pressures of C2H2 (2.5–5.0 Pa) inhibited nitrification and had only a small effect on denitrification, which made it possible to estimate the contribution of denitrification. The contribution of nitrification was estimated by subtracting the denitrification value from total N2O production (samples without C2H2). The critical C2H2 concentrations needed to achieve inhibition of nitrification, without affecting the N2O reductase in denitrifiers, must be individually determined for each set of experimental conditions.  相似文献   

4.
Summary The effect of soil water content [60%–100% water-holding capacity (WHC)] on N2O production during autotrophic nitrification and denitrification in a loam soil was studied in a laboratory experiment by selectively inhibiting nitrification with a low C2H2 concentration (2.1 Pa). Nitrifiers usually produced more N2O than denitrifiers. During an initial experimental period of 0–6 days the nitrifiers produced more N2O than the denitrifiers by a factor ranging from 1.4 to 16.5, depending on the water content and length of incubation. The highest N2O production rate by nitrifiers was observed at 90% WHC, when the soil had become partly anaerobic, as indicated by the high denitrification rate. At 100% WHC there were large gaseous losses from denitrification, while nitrification losses were smaller except for the first period of measurement, when there was still some O2 remaining in the soil. The use of 10 kPa C2H2 to inhibit reduction of N2O to N2 stimulated the denitrification process during prolonged incubation over several days; thus the method is unsuitable for long-term studies.  相似文献   

5.
Soils are the major source of the greenhouse gas nitrous oxide (N2O) to our atmosphere. A thorough understanding of terrestrial N2O production is therefore essential. N2O can be produced by nitrifiers, denitrifiers, and by nitrifiers paradoxically denitrifying. The latter pathway, though well-known in pure culture, has only recently been demonstrated in soils. Moreover, nitrifier denitrification appeared to be much less important than classical nitrate-driven denitrification. Here we studied a poor sandy soil, and show that when moisture conditions are sub-optimal for denitrification, nitrifier denitrification can be a major contributor to N2O emission from this soil. We conclude that the relative importance of classical and nitrifier denitrification in N2O emitted from soil is a function of the soil moisture content, and likely of other environmental conditions as well. Accordingly, we suggest that nitrifier denitrification should be routinely considered as a major source of N2O from soil.  相似文献   

6.
Thiosulfate and CS2 inhibit nitrification. The effect of the addition of thiosulfate on the turnover of inorganic N compounds was tested in an Egyptian and a German arable soil under nitrifying and denitrifying conditions. For nitrification, the soils were amended with NH inf4 sup+ and incubated under aerobic conditions. For denitrification, the soils were amended with NO inf3 sup- and incubated under anaerobic conditions. In both cases, the thiosulfate decreased with time while tetrathionate accumulated to an intermediate extent. Both compounds disappeared completely after <25 days. Production of CS2 was not observed. Carbonyl sulfide was produced only in the Egyptian soil, but production decreased with increasing amounts of added thiosulfate. Under nitrifying conditions, the addition of increasing amounts of thiosulfate (25, 50, and 100 g S g-1 dry weight) resulted in decreasing rates of NH inf4 sup+ oxidation to NO inf3 sup- ; it also resulted in an increasing intermediate accumulation of NO inf2 sup- and NO, and in an increasing production of N2O. Under denitrifying conditions, the addition of increasing amounts of thiosulfate did not significantly affect the rate of NO inf3 sup- reduction, and resulted in an increasing intermediate accumulation of NO inf2 sup- and of NO only in the German soil in which the production of N2O was slightly inhibited by thiosulfate. These results demonstrate that the nitrification of NH inf4 sup+ and NO inf2 sup- was inhibited by increasing concentrations of thiosulfate and/or tetrathionate without involving the formation of volatile S compounds as potential nitrification inhibitors. Denitrification was not affected by the addition of thiosulfate.  相似文献   

7.
8.
Sandy loam soil was amended with different concentrations of glucose and was incubated at different pO2 levels. Under many conditions of incubation time and treatment, N2 ase activity as determined by 1-h aerobic C2H2 reduction assay (flushed with Ar:O2, 4:1 before assay) was significantly less than that determined by means of ambient assay (carried out at the pO2 of incubation without flushing with Ar:O2, 4:1 before assay). The difference between the N2ase activity in aerobic assay and that in ambient assay increased with decreasing glucose and O2 concentrations imposed during incubation. The inhition in aerobic assays was analogous to O2-induced shut-off of N2ase and amounted to 75 per cent inhibition after incubation at 0.06 atm pO2 of samples amended with 0.75% glucose (w/w). Similar O2 inhibition was observed after amendment with mannitol and with lactate. Times of incubation were chosen such that development of anaerobic N2ase activity was either absent or too low to account for the observed effects of O2 during assay. It was shown that 0.05 atm pC2H2 was adequate for routine 1-h assays of the soil system employed. Individual soil samples could be subjected to repeated 1-h assays (with removal of C2H2 and C2H4 by evacuation after each assay) thus avoiding side-effects of long exposure to C2H2.  相似文献   

9.
10.
Experiments were conducted to study the effects of a range of CO2 concentrations (ambient to 100%) on nitrification, denitrification and associated nitrous oxide (N2O) production in a silt loam soil. It was found that increase in CO2 concentration from 0.3 to 100% CO2 increasingly retarded the rate of nitrification. No nitrification occurred at 100% CO2. Nitrous oxide production associated with nitrification increased as CO2 increased from 0.3 to 2.6% and tended to be greater as CO2 concentration increased to 73%. At 100% CO2, no N2O was produced during 7 days at 25°C.Carbon dioxide did not affect N2O production or reduction in a saturated NO3?amended soil or the rate of N2O reduction in anaerobic environments.  相似文献   

11.
Laboratory incubation experiments were conducted to study the influence of easily oxidizable C (glucose) and mineral N (NH4+ and NO3-) on N2O emission, evolution of CO2 and consumption of O2. A flush of N2O was always observed during the first few hours after the start of soil incubation, which was significantly higher with NH4+ compared to NO3- applications. The increase in N2O emission was attributed mainly to enhanced soil respiration and subsequent O2 limitation at the microsite level. Application of NH4+ helped to develop denitrifying populations since subsequent additions of NO3- and a C source significantly enhanced N2O emissions. In soils treated with NH4+, N2O emissions declined rapidly, which was related to decreasing concentrations of easily oxidizable C. Addition of glucose in different amounts and pre-incubation of soil for different lengths of time (to create variation in the amount of easily oxidizable C) changed the pattern of N2O emissions, which was ascribed to changes in soil respiration.  相似文献   

12.
《Soil biology & biochemistry》2001,33(12-13):1723-1732
Nitrifier denitrification is the pathway of nitrification in which ammonia (NH3) is oxidized to nitrite (NO2) followed by the reduction of NO2 to nitric oxide (NO), nitrous oxide (N2O) and molecular nitrogen (N2). The transformations are carried out by autotrophic nitrifiers. Thus, nitrifier denitrification differs from coupled nitrification–denitrification, where denitrifiers reduce NO2 or nitrate (NO3) that was produced by nitrifiers. Nitrifier denitrification contributes to the development of the greenhouse gas N2O and also causes losses of fertilizer nitrogen in agricultural soils. In this review article, present knowledge about nitrifier denitrification is summarized in order to give an exact definition, to spread awareness of its pathway and controlling factors and to identify areas of research needed to improve global N2O budgets. Due to experimental difficulties and a lack of awareness of nitrifier denitrification, not much is known about this mechanism of N2O production. The few measurements carried out so far attribute up to 30% of the total N2O production to nitrifier denitrification. Low oxygen conditions coupled with low organic carbon contents of soils favour this pathway as might low pH. As nitrifier denitrification can lead to substantial N2O emissions, there is a need to quantify this pathway in different soils under different conditions. New insights attained through quantification experiments should be used in the improvement of computer models to define sets of conditions that show where and when nitrifier denitrification is a significant source of N2O. This may subsequently render the development of guidelines for low-emission farming practices necessary.  相似文献   

13.
土壤是产生N2O的最主要来源之一。硝化和反硝化反应是产生N2O的主要机理,由于硝化和反硝化微生物同时存在于土壤中,因而硝化和反硝化作用能同时产生N2O。N2O的来源可通过使用选择性抑制剂,杀菌剂以及加入的标记底物确定。通过对生成N2O反应的每一步分析,主要从抑制反应发生的催化酶和细菌着手,总结了测量区分硝化、反硝化和DNRA反应对N2O产生的贡献方法。并对15N标记底物法,乙炔抑制法和环境因子抑制法作了详细介绍。  相似文献   

14.
土壤是产生N2O的最主要来源之一.硝化和反硝化反应是产生N2O的主要机理,由于硝化和反硝化微生物同时存在于土壤中,因而硝化和反硝化作用能同时产生N2O.N2O的来源可通过使用选择性抑制剂,杀菌剂以及加入的标记底物确定.通过对生成N2O反应的每一步分析,主要从抑制反应发生的催化酶和细菌着手,总结了测量区分硝化、反硝化和DNRA反应对N2O产生的贡献方法.并对15N标记底物法,乙炔抑制法和环境因子抑制法作了详细介绍.  相似文献   

15.
土壤是产生N2O的最主要来源之一。硝化和反硝化反应是产生N2O的主要机理,由于硝化和反硝化微生物同时存在于土壤中,因而硝化和反硝化作用能同时产生N2O。N2O的来源可通过使用选择性抑制剂,杀菌剂以及加入的标记底物确定。通过对生成N2O反应的每一步分析,主要从抑制反应发生的催化酶和细菌着手,总结了测量区分硝化、反硝化和DNRA反应对N2O产生的贡献方法。并对15N标记底物法,乙炔抑制法和环境因子抑制法作了详细介绍。  相似文献   

16.
Seasonal and annual N2O fluxes from urine-affected pasture were approximated with a mechanistic model based on Michaelis-Menten kinetics. The model combined the effects of soil nitrate-N, soil ammonium-N, soil temperature and soil moisture (all from the top 5cm) to calculate N2O emissions from nitrification (F nit ) and denitrification (F den ), with total N2O emission being the sum of the two (F tot =F nit +F den ). Best results were obtained when different kinetic parameters were used for periods of constant soil moisture conditions and after heavy rainfalls when a rapid change of the soil moisture status occurred. Modelled N2O emissions over a year were within the range of uncertainties of measured N2O emissions. Results indicate that the spatial variability of N2O emissions at times when all the model inupt variables were constant may be related to microorganism growth dynamics or enzyme production rates. Received: 2 October 1995  相似文献   

17.
18.
Summary The effect of increasing oxygen concentrations (0, 5, 10 and 20 Vol% O2) on total denitrification and N20 release was studied in model experiments using a neutral pH loamy soil relatively rich in easily decomposable organic matter and supplied with nitrate (300 g nitrate N/g dry soil). The sterilized soil was inoculated with three different denitrifying bacteria (Bacillus licheniformis,Aeromonas denitrificans andAzospirillum lipoferum) and incubated (80% WHC, 30°C). The gas volume was analysed for O2, CO2, N2O, NO and N2 by gas chromatography and the soil investigated for changes in ammonium, nitrite, nitrate, pH, total N and C as well as water-extractable C. WithB. licheniformis andAeromonas denitrificans total denitrification increased remarkably with increasing pO2 as the result of intensified mineralization.Azospirillum lipoferum, however, showed the highest activity at 5 vol% O2. WithB. licheniformis N2O was released only in anaerobic conditions and at 5 Vol% O2 (maximum) or 10 Vol% 02, but not at 20 Vol%, whereasAeromonas denitrificans produced N2O only in the presence of He gas (maximum) or at 5 Vol% O2. In contrast to these bacteria, N2O production withAzospirillum lipoferum was restricted to 10 Vol% O2 (maximum) and to 20 Vol% 02, with some traces at 5 vol% O2. With a certain set of conditions, total denitrification and N2O formation seem to be governed by the mineralization rate of the organisms in question. The increased demand for electron acceptors by a high turnover rate rather than the presence of anaerobic conditions seems to have determined the rate of denitrification.  相似文献   

19.
Reduction of nitrous oxide (N2O) is an autonomous respiratory pathway. Nitrous oxide is an alternative electron acceptor to O2 when intensive biological activity and reduced diffusivity result in an O2 deficit. Hypoxic or anoxic micro sites may form even in well-aerated soils, and provide a sink for N2O diffusing through the gas-filled pore space. We reproduced similar in vitro conditions in suboxic (0.15% O2) flow-through incubation experiments with samples from a Stagnosol and from a Histosol. Apparent half-saturation constants ( k m) for N2O reduction were similar for both soils and were, on average, 3.8 μmol mol−1 at 5°C, 5.1 μmol mol−1 at 10°C, and 6.9 μmol mol−1 at 20°C. Respiration of N2O was estimated to contribute a maximum proportion of 1.7% to total respiration in the Stagnosol (pH 7.0) and 0.9% in the Histosol (pH 2.9).  相似文献   

20.
 Soils are a major source of atmospheric NO and N2O. Since the soil properties that regulate the production and consumption of NO and N2O are still largely unknown, we studied N trace gas turnover by nitrification and denitrification in 20 soils as a function of various soil variables. Since fertilizer treatment, temperature and moisture are already known to affect N trace gas turnover, we avoided the masking effect of these soil variables by conducting the experiments in non-fertilized soils at constant temperature and moisture. In all soils nitrification was the dominant process of NO production, and in 50% of the soils nitrification was also the dominant process of N2O production. Factor analysis extracted three factors which together explained 71% of the variance and identified three different soil groups. Group I contained acidic soils, which showed only low rates of microbial respiration and low contents of total and inorganic nitrogen. Group II mainly contained acidic forest soils, which showed relatively high respiration rates and high contents of total N and NH4 +. Group III mainly contained neutral agricultural soils with high potential rates of nitrification. The soils of group I produced the lowest amounts of NO and N2O. The results of linear multiple regression conducted separately for each soil group explained between 44–100% of the variance. The soil variables that regulated consumption of NO, total production of NO and N2O, and production of NO and N2O by either nitrification or denitrification differed among the different soil groups. The soil pH, the contents of NH4 +, NO2 and NO3 , the texture, and the rates of microbial respiration and nitrification were among the important variables. Received: 28 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号