首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In desert ecosystems, belowground characteristics are influenced chiefly by the formation and persistence of “shrub-islands of fertility” in contrast to barren plant interspaces. If soil microbial communities are exclusively compared between these two biogeochemically distinct soil types, the impact of characteristics altered by shrub species, especially soil C and N, are likely to be overemphasized and overshadow the role of other characteristics in structuring microbial composition. To determine how belowground characteristics influence microbial community composition, and if the relative importance of these characteristics shifts across the landscape (i.e., between and within shrub and interspace soils), changes in microbial communities across a 3000-year cold desert chronosequence were related to 27 belowground characteristics in surface and subsurface soils. When shrub and interspace communities in surface and subsurface soils were combined across the entire chronosequence, communities differed and were primarily influenced by soil C, NO3 concentrations, bulk density, pH, and root presence. Within shrub soils, microbial communities were shrub species-specific, especially in surface soils, highlighting differences in soil characteristics created by specific shrub species and/or similarity in stresses structuring shrub species and microbial communities alike. Microbial communities in shrub soils were not influenced by soil C, but by NO3 and NH4+ concentrations, pH, and silt in surface soils; and Cl, P, soil N, and NO3 concentrations in subsurface soils. Interspace soil communities were distinct across the chronosequence at both depths and were strongly influenced by dune development. Interspace communities were primarily associated with soil stresses (i.e., high B and Cl concentrations), which decreased with dune development. The distribution of Gram-positive bacteria, Actinobacteria, and fungi highlighted community differences between and within shrub and interspace soils, while Gram-negative bacteria were common in all soils across the chronosequence. Of the 27 belowground characteristics investigated, 13 separated shrub from interspace communities, and of those, only five emerged as factors influencing community composition within shrub and interspace soils. As dunes develop across this cold desert chronosequence, microbial community composition was not regulated primarily by soil C, but by N and P availability and soil stresses in shrub soils, and exclusively by soil stresses in interspace soils.  相似文献   

2.
Summary The effects of different litter input rates and of different types of litter on soil organic matter accumulation and net N mineralization were investigated in plant communities dominated by Erica tetralix L. or Molinia caerulea (L.) Moench. Plots in which the litter on the soil had repeatedly been removed were compared with plots in the same plant community in which litter had been added to the soil. In another treatment, litter was removed and replaced by litter from the other plant community. Net N mineralization was measured in situ after 5 years. Less soil organic matter and soil N was found in plots in which litter had been removed, compared with control plots, or plots to which litter had been added, but these differences were significant for the Erica sp. soils only. Plots in which litter had been replaced and control plots did not differ significantly in the amount of soil organic matter. However, in both plant communities, the differences agreed with the faster decomposition rate of Molinia sp. litter compared with Erica sp. litter. The gravimetric soil moisture content was correlated positively with the amount of soil organic matter, both in the Erica sp. soils and the Molinia sp. soils. Net N mineralization rates (g N m-2) differed significantly between treatments for Erica sp. soils but no for Molinia sp. soils. For Erica sp. soils, net N mineralization rates increased with increasing amounts of soil organic matter and soil N. Replacing the litter with Molinia sp. litter (which differs in chemical composition) had no clear additional effect on the net N mineralization rate.  相似文献   

3.
《Applied soil ecology》2010,46(3):187-192
The influences of winter climate on terrestrial ecosystem processes have been the subject of growing attention, which is necessary to make the predictions about ecological responses to global warming in the future. However, little information can be found about the impacts of a large range of soil temperature fluctuation (e.g. −10 to 5 °C) over winter on the soil nitrogen (N) dynamics in the field. In the present study, we employed an intact soil core in situ incubation technique, and measured soil N mineralization and nitrification rates under three plant communities, i.e. a grassland, a shrub and a plantation, during the non-growing season (October 2004–April 2005) in Inner Mongolia, China. Our results demonstrate the significant effects of different plant communities on soil net N mineralization and the great temporal variations of soil N dynamics during the incubation period. The mean soil net N mineralization rates were 0.93, 0.77 and −1.28 mg N m−2 d−1, respectively, in the grassland, shrub and plantation. The mean soil NH4+-N in the three plant communities declined by 40%, but the mean soil NO3-N increased by 190% by the end of the incubation compared with their initial concentrations at the beginning of incubation. The differences in plant communities significantly affected their soil N mineralization rates, accumulations and turnover rates, which followed the order: grassland > shrub > plantation. During the winter time, the studied soils experienced the three phases consisting of mild freezing (−7 to −2 °C soil), deep freezing (approximately −10 °C soil) and freeze–thaw (−2 to 5 °C soil). The results suggest that temporal variations of soil N mineralization are positively affected by the soil temperature and the soil nitrification is dominant in the N transformation process during the non-growing season. Our study indicates that the soil N mineralization over winter can make a substantial contribution to the mineral N pool that plants are able to utilize in the upcoming spring, but may also pose a great risk of mineral N leaching loss if great rainfalls occur during spring and early summer.  相似文献   

4.
Production of surface casts and the removal of plant litter from the soil surface by earth-worms had similar seasonal variations, with maximum values in May and minimum values occurring in July and August. Seasonal variations in the total nitrogen (TN) and oxidizable carbon contents of casts were closely related to variations in litter production. The C:N ratio of casts (10.7) was consistently smaller than that of underlying soil material (15.0 and 14.2 for the 0–5 and 18–22 cm depths, respectively), which is probably due to the mineralization of plant-derived organic material during passage through earthworms and utilization of low C:N ratio litter. Seasonal changes in the amounts of inorganic N forms in casts showed a build-up of NH4+N in the cooler winter months (July and August), attaining a maximum of 112 μg.g?1. with a decrease in autumn (April and May) and early spring (September and October), reaching a minimum of 54 μg.g?1. The opposite trend existed for seasonal variations in the NO3?-N content of the casts. Because only minor fluctuations in the amounts of N forms were obtained for underlying soil material during the casting period, the more dramatic changes observed in the casts could not be explained by soil variations. Seasonal variations in urease enzyme activity, associated with fluctuations in organic matter content, were more important than the effect of temperature on enzyme activity in accounting for seasonal variations in the NH4+-N content of casts. It was calculated that 73% of the TN content of litter removed from the surface by earthworms was accumulated in casts, indicating both the importance of earthworms in incorporating litter N with soil material and the inefficiency of N digestion by earthworms.  相似文献   

5.
We studied N mineralization of legume green manures under laboratory and field conditions, and the effects of field green-manuring on the microbiological properties of an acid Alfisol soil. No significant differences were found in the mineralization rates of Sesbania (Sesbania cannabina), sunnhemp (Crotalaria juncea), and cowpea (Vigna unguiculata) green manure. Mineralization was higher in field-capacity moist soil than water-saturated soil. The decomposition of sunnhemp under field wetland conditions, in the absence of a rice crop, was a rapid as it was under in vitro conditions. The decomposition released considerable amounts of mineral N and the level of NH 4 + -N was significantly higher than NO 3 -N. Significant improvements were observed in the microbial biomass, dehydrogenase activity, and bacterial populations in the field soil green-manured for rice for 3 years, compared with fertilized soil.  相似文献   

6.
Changes of land-use type (LUT) can affect soil nutrient pools and cycling processes that relate long-term sustainability of ecosystem, and can also affect atmospheric CO2 concentrations and global warming through soil respiration. We conducted a comparative study to determine NH4+ and NO3 concentrations in soil profiles (0–200 cm) and examined the net nitrogen (N) mineralization and net nitrification in soil surface (0–20 cm) of adjacent naturally regenerated secondary forests (NSF), man-made forests (MMF), grasslands and cropland soils from the windy arid and semi-arid Hebei plateau, the sandstorm and water source area of Beijing, China. Cropland and grassland soils showed significantly higher inorganic N concentrations than forest soils. NO3-N accounted for 50–90% of inorganic N in cropland and grassland soils, while NH4+-N was the main form of inorganic N in NSF and MMF soils. Average net N-mineralization rates (mg kg1 d1) were much higher in native ecosystems (1.51 for NSF soils and 1.24 for grassland soils) than in human disturbed LUT (0.15 for cropland soils and 0.85 for MMF soils). Net ammonification was low in all the LUT while net nitrification was the major process of net N mineralization. For more insight in urea transformation, the increase in NH4+ and, NO3 concentrations as well as C mineralization after urea addition was analyzed on whole soils. Urea application stimulated the net soil C mineralization and urea transformation pattern was consistent with net soil N mineralization, except that the rate was slightly slower. Land-use conversion from NSF to MMF, or from grassland to cropland decreased soil net N mineralization, but increased net nitrification after 40 years or 70 years, respectively. The observed higher rates of net nitrification suggested that land-use conversions in the Hebei plateau might lead to N losses in the form of nitrate.  相似文献   

7.
We examined effects of wetting and then progressive drying on nitrogen (N) mineralization rates and microbial community composition, biomass and activity of soils from spinifex (Triodia R. Br.) grasslands of the semi-arid Pilbara region of northern Australia. We compared soils under and between spinifex hummocks and also examined impacts of fire history on soils over a 28 d laboratory incubation. Soil water potentials were initially adjusted to −100 kPa and monitored as soils dried. We estimated N mineralization by measuring changes in amounts of nitrate (NO3-N) and ammonium (NH4+-N) over time and with change in soil water potential. Microbial activity was assessed by amounts of CO2 respired. Phospholipid fatty acid (PLFA) analyses were used to characterize shifts in microbial community composition during soil drying. Net N mineralized under hummocks was twice that of open spaces between hummocks and mineralization rates followed first-order kinetics. An initial N mineralization flush following re-wetting accounted for more than 90% of the total amount of N mineralized during the incubation. Initial microbial biomass under hummocks was twice that of open areas between hummocks, but after 28 d microbial biomass was<2 μ g−1 ninhydrin N regardless of position. Respiration of CO2 from soils under hummocks was more than double that of soils from between hummocks. N mineralization, microbial biomass and microbial activity were negligible once soils had dried to −1000 kPa. Microbial community composition was also significantly different between 0 and 28 d of the incubation but was not influenced by burning treatment or position. Regression analysis showed that soil water potential, microbial biomass N, NO3-N, % C and δ15N all explained significant proportions of the variance in microbial community composition when modelled individually. However, sequential multiple regression analysis determined only microbial biomass was significant in explaining variance of microbial community compositions. Nitrogen mineralization rates and microbial biomass did not differ between burned and unburned sites suggesting that any effects of fire are mostly short-lived. We conclude that the highly labile nature of much of soil organic N in these semi-arid grasslands provides a ready substrate for N mineralization. However, process rates are likely to be primarily limited by the amount of substrate available as well as water availability and less so by substrate quality or microbial community composition.  相似文献   

8.
Summary Sandy soils have low reserves of mineral N in spring. Therefore organic-bound N is the most important pool available for crops. The objective of the present investigation was to study the importance of the organic-bound N extracted by electro-ultrafiltration and by a CaCl2 solution for the supply of N to rape and for N mineralization. Mitscherlich-pot experiments carried out with 12 different sandy soils (Germany) showed a highly significant correlation between the organic N extracted (two fractions) and the N uptake by the rape (electroultrafiltration extract: r=0.76***; CaCl2 extract: r=0.76***). Organic N extracted by both methods before the application of N fertilizer was also significantly correlated with N mineralization (electro-ultrafiltration extract: r=0.75***; CaCl2 extract: r=0.79***). N uptake by the rape and the mineralization of organic N increased with soil pH and decreased with an increasing C:N ratio and an increasing proportion of sand in the soils. Ninety-eight percent of the variation in N uptake by the rape was determined by the differences in net mineralization of organic N. This show that in sandy soils with low mineral N reserves (NO inf3 sup- -N, NH 4 + -N) the organic soil N extracted by electro-ultrafiltration or CaCl2 solutions indicates the variance in plant-available N. Total soil N was not related to the N uptake by plants nor to N mineralization.  相似文献   

9.
The brigalow clay soils of central Queensland in eastern Australia contain large quantities of nitrate-N in the subsoil beneath shallow rooting cultivated crops. A laboratory incubation study was conducted to determine whether nitrate accumulation at depth beneath these crops was due to in situ nitrogen mineralization. Intact soil cores, 5 cm long and 5 cm diameter, were obtained at four depths to 120 cm beneath cultivated black gram (Vigna mungo) and green panic (Panicum maximum var trichoglume) permanent pasture and incubated for 12 weeks at 60% water-filled pore space and 25°C. Net mineralization of organic N occurred in all soil cores obtained from under black gram with values ranging from 4.3 to 9 mg N kg?1 soil at 12 weeks. Beneath the pasture, net mineralization had not commenced by the end of 12 weeks. Potentially available nitrogen (Na) ranged from 1.2 to 62.7 kg N ha?1 under black gram, and from 10.2 to 136.9 kg N ha?1 under pasture. A significant relationship was observed between Na and total N beneath both crops, and between Na and total C under the pasture. Leaching of N mineralized in the surface layers of soil appears to be the main avenue of nitrate build-up in the subsoil beneath black gram, with subsoil mineralization making only a partial contribution to the accumulated nitrate pool.  相似文献   

10.
In cultivated soils, total soil N, organic C and C-to-N ratios were in the range of 0.24–0.49%, 3.1–5.8% and 10.7–15.0, respectively in the surface horizons and decreased with depth. Native fixed NH+4-N accounted for 2.3–3.0% of total soil N in surface horizons but while the quantities of fixed NH+4-N decreased with depth, the proportion to total soil N increased. Exchangeable NH+4-N ranged from 15 to 32 and NO?3-N from 26 to 73 μg g?1 soil in surface horizons, and both decreased with depth. Exchangeable-N accounted for 1.1–2.4% of total soil N. Over 97% of total soil N was organically bound.Of the total soil N in the surface horizons, 29.0–79.0% was acid hydrolysable and 21.0–71.0% was nonhydrolysable. The range of proportions of each of hydrolysable NH+4-N, hexosamine-N, serine plus threonine α-amino acid-N, identified-N, and unidentified-N to total soil N in the surface horizons were 14.5–22.4, 4.8–9.2, 0.2–5.8, 4.0–16.7, 23.3–48.8, and 0.3–41.5%, respectively. Hydrolysable NH+4-N constituted the largest proportion of the identified-N fraction. Distribution patterns of the organic-N fractions in the profiles varied from soil to soil. Sixteen amino acids were identified which accounted for 82–100% of the α-amino acid-N fraction in the soils; glycine and alanine alone accounted for 35–40%. All the organic-N fractions were transformed to varying degree during aerobic incubation.  相似文献   

11.
Nitrogen mineralization and immobilization were investigated in two soils incubated with ammonium sulphate or pig slurry over a range of temperatures and moisture contents. A reduction in the mineralization of soil organic N was observed in soils incubated with 100 μg NH4+-Ng?1 soil as ammonium sulphate at 30°C but not at lower temperatures. Addition of 100 μg NH4+-N g?1 soil as pig slurry resulted in a period of nett immobilization lasting up to 30 days at 5°C. Although the length of the immobilization phase was shorter at higher temperatures the total N immobilized was similar. The subsequent rate of mineralization in slurry-treated soils was not significantly greater (P = 0.05) than in untreated soils. There was no evidence of any subsequent increased mineralization arising from the immobilized N or slurry organic N for up to 175 days. The rate of immobilization was found to increase with increasing moisture content, though the period of nett immobilization was shorter, so that the amount of N immobilized was similar over a range of moisture contents from 10 to 40%. Approximately 40% of the NH4+-N in the slurry was immobilized under the incubation conditions used.  相似文献   

12.
《Soil & Tillage Research》2007,92(1-2):109-119
Soil compaction may affect N mineralization and the subsequent fate of N in agroecosystems. Laboratory incubation and field experiments were conducted to determine the effects of surface soil compaction on soil N mineralization in a claypan soil amended with poultry litter (i.e., Turkey excrement mixed with pine shavings as bedding). In a laboratory study, soil from the surface horizon of a Mexico silt loam soil was compacted to four bulk density levels (1.2, 1.4, 1.6 and 1.8 Mg m−3) with and without poultry litter and incubated at 25 °C for 42 days. A field trial planted to corn (Zea mays L.) was also conducted in 2002 on a Mexico silt loam claypan soil in North Central Missouri. Soil was amended with litter (0 and 19 Mg ha−1) and left uncompacted or uniformly compacted. Soil compaction decreased soil inorganic N by a maximum of 1.8 times in the laboratory study; this effect was also observed at all depths of the field trial. Compacted soil with a litter amendment accumulated NH4+-N up to 7.2 times higher than the noncompacted, litter-amended soil until Day 28 of the laboratory incubation and in the beginning of the growing season of the field study. Ammonium accumulation may have been due to decreased soil aeration under compacted conditions. Application of litter increased soil N mineralization throughout the growing season. In the laboratory study, soil inorganic N in unamended soil was negatively correlated with soil bulk density and the proportion of soil micropores, but was positively related with soil total porosity and the proportion of soil macropores. These results indicate that soil compaction, litter application and climate are interrelated in their influences on soil N mineralization in agroecosystems.  相似文献   

13.
Information on temporal and spatial patterns of N mineralization is critical in designing tree-crop mixed systems that could maximize N uptake while minimizing N loss. We quantified N mineralization rates in a pecan (Carya illinoensis K. Koch)–cotton (Gossypium hirsutum L.) alley cropping system in northwestern Florida with (non-barrier) and without tree-crop belowground interactions (barrier separating the root systems of pecan and cotton). Monthly rates of mineralization were estimated using buried bag incubations over a 15-month period. In addition, seasonal mineralization rates and cotton lint yield on soils supplied with two sources of N—inorganic fertilizer and organic poultry litter—were assessed. Results indicated that temporal variations in net NH4 and NO3 accumulation and mineralization rates were driven primarily by environmental factors and to a lesser degree by initial soil NH4 and NO3 levels. Mineralization varied by belowground interaction treatment during the initial growing season, when the non-barrier treatment exhibited a higher mineralization rate than the barrier treatment, likely due to reduced nutrient uptake by cotton in the non-barrier or a higher degree of immobilization in the barrier treatment. Mineralization during the second growing season was similar for both treatments. Source of N had no effects on N transformation in the soil. Lint yield reductions were observed in the non-barrier treatment during both years compared to the barrier treatment, likely due to interspecific competition for water. Yield differences between treatments in the second growing season were likely compounded by a diminishing pre-study fallow effect. Source of N was found to have a significant effect on cotton yield, with inorganic fertilizer resulting in 39% higher lint compared to poultry litter in the barrier treatment.  相似文献   

14.
Forest soils contain a variable amount of organic N roughly repartitioned among particles of different size, microbial biomass and associated with mineral compounds. All pools are alimented by annual litter fall as main input of organic N to the forest floor. Litter N is further subject to mineralization/stabilization recognized as the crucial process for the turnover of litter N. Although it is well documented that different soil types have different soil N stocks, it is presently unknown how different soil types affect the turnover of recent litter N. Here, we compared the potential mineralization of the total soil organic N with that of recent litter-released N in three beech forests varying in their soil properties. Highly 15N-labelled beech litter was applied to stands located at Aubure, Ebrach, Collelongo, which differ in humus type, soil type and soil chemistry. After 4-5 years of litter decomposition, the upper 3 cm of the organo-mineral A horizon was sampled and the net N mineralization was measured over 112 days under controlled conditions. The origin of mineralized N (litter N versus soil organic N) was calculated using 15N labeling. In addition, soils were fractionated according to their particle size (>2000 μm, 200-2000 μm, 50-200 μm, <50 μm) and particulate organic matter (POM) was separated from the mineral fraction in size classes, except the <50 μm fraction. Between 41 and 69% of soil organic N was recovered as POM. Litter-released 15N was mainly to be found in the coarse POM fractions >200 μm. On a soil mass basis, N mineralization was two-fold higher at Aubure and Collelongo than at Ebrach, but, on a soil N basis, N mineralization was the lowest at Collelongo and the highest at Ebrach. On a soil N (or 15N) basis, mineralization of litter 15N was two to four-fold higher than mineralization of the average soil N. Furthermore, the δ15N of the mineral N produced was closer to that of POM than to that of the mineral-bound fraction (<50 μm). Highest rates of 15N mineralization happened in the soil with the lowest N content, and we found a negative relationship between accumulations of N in the upper A horizon and the mineralization of 15N from the litter. Our results show that mineral N is preferentially mineralized from POM in the upper organo-mineral soil irrespective of the soil chemistry and that the turnover rate of litter N is faster in soils with a low N content.  相似文献   

15.
Mineralization of organic matter and microbial activities in an intensively cultivated acid, N-rich peat soil planted with Salix sp. cv. aquatica were examined for 3 yr. The soil was amended with wood ash or NPK fertilizers providing N as ammonium nitrate or urea. The wood ash amendment (10 tons ha?1) increased soil pH from 4.6 to 5.5 and increased markedly all microbial activities measured, resulting in increased mineralization and N availability, and in loss of 9% total soil N during the first year. The addition of ammonium nitrate caused a corresponding though less pronounced increase in N mineralization. Cellulose decomposition increased in all amended soils, reaching rates 53–86% higher than in non-amended soil. Potential N2 fixation (C2H2 reduction) by free-living organisms was increased by the ash-amendment. Potential denitrification rates were positively correlated (r = 0.98) with the presence of water-soluble organic-C, which was more abundant in ash-amended and non-amended soils than in the soils fertilized with N.  相似文献   

16.
Organic N solubilized by NH3(aq) was extracted from 15N-labelled or unlabelled soil, concentrated and added to non-extracted soil, which was incubated under aerobic conditions at 27±1°C. Gross N mineralization, gross N immobilization, and nitrification in soils with or without addition of unlabelled soluble organic N were estimated by models based on the dilution of the NH 4 + or NO inf3 sup- pools, which were labelled with 15N at the beginning of incubation. Mineralization of labelled organic N was measured by the appearance of label in the mineral N pool. Although gross N mineralization and gross N immobilization were increased in two soils between day 0 and day 7 following addition of unlabelled organic N solubilized by NH3(aq), there was no increase in net N mineralization. Solubilization of 15N-labelled organic N increased and the 15N enrichment of the soluble organic N decereased as the concentration of NH3(aq) added increased. A constant proportion of approximately one-quarter of the labelled organic N added at different rates to non-extracted soil was recovered in the mineral N pool after an incubation period of 14 days, and the availability ratios calculated from net N mineralization data were 1.1:1 and 2.1:1 for 111 and 186 mg added organic-N kg-1 soil, respectively, indicating that the mineralization of organic N was increased by solubilization.  相似文献   

17.
N mineralization process (ammonification plus nitrification) in the surface 0-5 cm soil layers under shifting cultivation in northern Thailand was studied. Labile pool of organic matter extracted with a K2S04 solution at 1l0°C in an autoclave (fraction A) or by shaking at room temperature (fraction B) was used as factor to evaluate the N mineralization process which was examined in an incubation experiment. In the soils, in which the N mineralization pattern was fitted to a first order kinetics model, the content of (organic + NH4 +)-N in fraction B determined the initial rate of N mineralization. The soils, which showed a short lag time of less than 7 d both in the N mineralization and nitrification processes, had a high ratio of organic C to (organic + NH4 +)-N in fraction B, exceeding the value of 7. The soils, which showed a long lag time of more than 7 d only in the nitrification process, had a low pH(KCI) (less than 4.2). Thus, the rate of N mineralization was affected by the labile pool in fraction B or soil pH. On the other hand, there was a correlation between the N 0 + N max (inorganic N at 0 d + maximum amount of mineralizable N) value and the labile pool in the fraction A, suggesting that the N 0 + N max value depended on the contents of the labile pool.  相似文献   

18.
Juan  Yinghua  Tian  Lulu  Sun  Wentao  Qiu  Weiwen  Curtin  Denis  Gong  Liang  Liu  Yan 《Journal of Soils and Sediments》2020,20(1):143-152
Purpose

Seasonal freezing-thawing cycles (FTCs) are common phenomena in middle- and high-latitude regions that may have a strong effect on soil nitrogen (N) mineralization. As yet, little information is available about N mineralization of cultivated soils affected by FTCs, especially during non-growing seasons. It is proposed that N transformation of boreal farmland soil should be well responsive to FTCs because their microbial community and physiochemical characteristics are easily influenced by human agricultural activities. To examine this hypothesis, laboratory simulation experiments were carried out to investigate the effects of different amplitudes, frequencies, and moisture regimes of FCTs on soil N mineralization dynamics, to provide a better understanding of the mechanisms influencing the effect of FTCs on soil N availability during the non-growing season.

Materials and methods

In a laboratory simulation study, cultivated black soil (BL) and brown soil (BR) (Haplic Phaeozems and Haplic Luvisols, respectively; World Reference Base for Soil Resources 1988) were collected from two provincial experimental stations to assess the dynamics of N mineralization under four FTC factors (five levels for freezing temperature, two levels for thawing temperature, five levels for freezing-thawing frequency, and three levels for soil moisture regime).

Results and discussion

There were marked variations in inorganic N pools, microbial biomass N (MBN), and net N mineralization rate (NNMR) for both soils during the FTCs. In both soils, ammonium N (NH4-N) and nitrate N (NO3-N) concentrations, as well as NNMR, significantly increased with the decrease in freezing temperature, but the opposite was observed for MBN. However, fluctuating thawing temperature had no significant influence on the available N forms measured. As FTCs’ frequency increased, the NH4-N, NO3-N concentrations, and NNMR substantially decreased in both soils, while the MBN concentration initially increased and then declined, reaching the peak at the sixth FTC. The available N fractions in both soils had different response patterns as soil water content rose, showing a considerable increase of NH4-N, a distinct decrease of NO3-N, a steady increase for NNMR, and an initial increase followed by a decreasing trend for MBN.

Conclusions

This study has demonstrated that FTCs during the non-growing season in temperate regions can accelerate N mineralization via increases in freezing-thawing amplitude and freezing-thawing duration. Therefore, there is a potential risk of N losses over the early spring thawing period.

  相似文献   

19.
Transformations of nitrogen (N) from poultry litter (PL), dairy manure compost (DMC), anaerobically digested fiber (ADF), Perfect Blend 7–2–2 (PB), a compost/litter mixture (C/L), dried distillers grains from ethanol production (DG), and mustard meal from biodiesel production (MM) applied to a Quincy fine sand were investigated in an incubation experiment over 210 days. The cumulative release totals of available N after 210 days were 61, 61, 56, 44, 29, 2, and –2% for the total N in MM, PB, DG, PL, C/L, DMC, and ADF, respectively. With application of MM and DG, ammonium (NH4-N) accumulated initially in the soil with very little nitrification, possibly because of inhibition of nitrification related to chemical compounds in the amendments. Mineralization of organic N to NH4-N and nitrate (NO3-N) was relatively slow from MM- and DG-amended soils, indicating the potential for using biofuel by-products as slow-release N sources for plants.  相似文献   

20.
长期施肥对土壤氮矿化的影响   总被引:14,自引:1,他引:14  
Two field experiments were conducted in Jiashan and Yuhang towns of Zhejiang Province, China, to study the feasibility of predicting N status of rice using canopy spectral reflectance. The canopy spectral reflectance of rice grown with different levels of N inputs was determined at several important growth stages. Statistical analyses showed that as a result of the different levels of N supply, there were significant differences in the N concentrations of canopy leaves at different growth stages. Since spectral reflectance measurements showed that the N status of rice was related to reflectance in the visible and NIR (near-infrared) ranges, observations for rice in 1 nm bandwidths were then converted to bandwidths in the visible and NIR spectral regions with IKONOS (space imaging) bandwidths and vegetation indices being used to predict the N status of rice. The results indicated that canopy reflectance measurements converted to ratio vegetation index (RVI) and normalized difference vegetation index (NDVI) for simulated IKONOS bands provided a better prediction of rice N status than the reflectance measurements in the simulated IKONOS bands themselves. The precision of the developed regression models using RVI and NDVI proved to be very high with R2 ranging from 0.82 to 0.94, and when validated with experimental data from a different site, the results were satisfactory with R2 ranging from 0.55 to 0.70. Thus, the results showed that theoretically it should be possible to monitor N status using remotely sensed data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号