共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Thirty seven dogs and cats were subjected to lobectomy, partial lobectomy, or pneumonectomy using stapling equipment. The most common indication was neoplasia. No operative, perioperative, or long-term deaths could be attributed to the use of staples: complications were minimal. Staple resection was believed to be safe, fast, and efficient for removal of various segments of canine and feline lung. 相似文献
4.
5.
6.
7.
8.
9.
R. Langhorn J.L. Willesen 《Journal of veterinary internal medicine / American College of Veterinary Internal Medicine》2016,30(1):36-50
Cardiac troponins are sensitive and specific markers of myocardial injury. The troponin concentration can be thought of as a quantitative measure of the degree of injury sustained by the heart, however, it provides no information on the cause of injury or the mechanism of troponin release. Conventionally, the cardiac troponins have been used for diagnosis of acute myocardial infarction in humans and have become the gold standard biomarkers for this indication. They have become increasingly recognized as an objective measure of cardiomyocyte status in both cardiac and noncardiac disease, supplying additional information to that provided by echocardiography and ECG. Injury to cardiomyocytes can occur through a variety of mechanisms with subsequent release of troponins. Independent of the underlying disease or the mechanism of troponin release, the presence of myocardial injury is associated with an increased risk of death. As increasingly sensitive assays are introduced, the frequent occurrence of myocardial injury is becoming apparent, and our understanding of its causes and importance is constantly evolving. Presently troponins are valuable for detecting a subgroup of patients with higher risk of death. Future research is needed to clarify whether troponins can serve as monitoring tools guiding treatment, whether administering more aggressive treatment to patients with evidence of myocardial injury is beneficial, and whether normalizing of troponin concentrations in patients presenting with evidence of myocardial injury is associated with reduced risk of death. 相似文献
10.
11.
12.
13.
14.
15.
Veterinary Research Communications - 相似文献
16.
17.
18.
19.
Mary F. Thompson BVSc ; J. Catharine Scott-Moncrieff MA MS Vet MB Dip ACVIM; Daniel F. Hogan DVM Dip ACVIM 《Journal of Veterinary Emergency and Critical Care》2001,11(2):111-121
Objective: To review the thrombolytic agents most commonly used in humans, their mechanisms of action, potential uses, adverse effects, and reports of their use in dogs and cats.
Human data synthesis: Thrombolytic agents avaliable in human medicine include streptokinase, urokinase, tissueplasminogen activator (t-PA), single-chain urokinase plasma activator (scu-PA) and anisoylated plasminogen-strep-tokinase activator complex (APSAC). These agents were originally used for the management of proximal deep vein thrombosis and severe pulmonary embolism but more recently, use of these drugs has been extended to include the treatment of acute peripheral arterial disease, cerebrovascular disease (stroke) and acute coronary thrombosis. The most predictable side effect associated with the use of thrombolytic therapy is hemorrhage.
Veterinary data synthesis: Clinical experience with thrombolytic agents in small animals is limited to streptokinase and t-PA. It is possible, that as in humans, canine and feline patients with PTE and right ventricular dysfunction may benefit from thrombolytic therapy but there are no veterinary studies to support this theory to date. Successful use of streptokinase has been documented in a small number of canine patients with systemic thromboembolism.63 Thrombolytic therapy is relatively efficacious in cats with aortic thromboemboli but is associated with a high mortality rate. 59,60,64 With regard to use of t-PA in veterinary medicine, the small number of animals treated with varying protocols makes it impossible to provide safe and effective dose recommendations at this time.
Conclusions: Future goals for thrombolytic therapy in veterinary medicine include determination of more specific clinical indications, as well as design of effective protocols that minimize mortality and morbidity. 相似文献
Human data synthesis: Thrombolytic agents avaliable in human medicine include streptokinase, urokinase, tissueplasminogen activator (t-PA), single-chain urokinase plasma activator (scu-PA) and anisoylated plasminogen-strep-tokinase activator complex (APSAC). These agents were originally used for the management of proximal deep vein thrombosis and severe pulmonary embolism but more recently, use of these drugs has been extended to include the treatment of acute peripheral arterial disease, cerebrovascular disease (stroke) and acute coronary thrombosis. The most predictable side effect associated with the use of thrombolytic therapy is hemorrhage.
Veterinary data synthesis: Clinical experience with thrombolytic agents in small animals is limited to streptokinase and t-PA. It is possible, that as in humans, canine and feline patients with PTE and right ventricular dysfunction may benefit from thrombolytic therapy but there are no veterinary studies to support this theory to date. Successful use of streptokinase has been documented in a small number of canine patients with systemic thromboembolism.
Conclusions: Future goals for thrombolytic therapy in veterinary medicine include determination of more specific clinical indications, as well as design of effective protocols that minimize mortality and morbidity. 相似文献