首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为提高花椒采摘效率、降低成品成本、保护果农安全,依靠HSV色彩红外识别和小波变换的方式,对成熟花椒果实的颜色形状特征和其成簇结实的特性,设计出一款自动识别花椒采摘机。采摘机主要包括视觉识别部分、机械臂运动部分、果实储存部分和车身带动部分。通过动力学仿真,使各部分相互配合,实现花椒果实视觉识别和定位采摘。此机械基本实现花椒果实的自动采摘,对提高花椒采摘效率、降低成本起到一定的促进作用。  相似文献   

2.
大容差高效草莓采摘末端执行器设计与试验   总被引:1,自引:0,他引:1  
针对目前草莓果实视觉识别中的定位重叠和被遮挡果实的算法复杂、耗时长,末端执行器对定位精度要求高且无法采摘重叠果实和被遮挡果实等问题,设计了一次可采摘多粒果实的大容差末端执行器。该末端执行器采用从下向上拢起果实、在避开障碍后再进行夹持和切割果梗的采摘方式,主要由机械爪拢夹切断机构和垄壁仿形机构组成。将末端执行器安装在采摘机械臂上进行了果实采摘试验。试验结果表明:该末端执行器在定位误差±7mm范围内都能完成采摘,容差范围大;无需进行重叠成熟果实的分割和目标果梗位置的计算,可一次采摘3粒重叠成熟草莓;对含1、2、3粒果实的果实域,采摘一次平均耗时分别为2.00、2.13、2.28s,采摘成功率不低于97.7%。  相似文献   

3.
针对设施番茄采摘存在用工难、用工贵、劳动强度大等问题,文章设计了一种温室番茄采摘机器人。该番茄采摘机器人主要由视觉系统、末端执行器、机械臂、底盘和辅助照明机构等组成,并基于各设计结构完成温室番茄采摘的工作流程设计。该采摘机器人通过ZED 2i双目立体相机对番茄果实进行识别与定位后,机械臂引导末端执行器完成番茄果实的采摘。试验结果表明,视觉系统与各模块之间运行良好,单果采摘耗时约为18 s,采摘成功率达88%。  相似文献   

4.
为了实现果树果实的自动化采摘,基于视觉定位原理,设计了采摘机器人。采用模糊控制的方法,提高了机械手定位精度,进而提升果实采摘成功率。对机械臂进行运动学分析,建立采摘终端位置与控制舵机和推杆长度之间的关系。计算械臂末端果实采摘机构和目标果实在成像平面上的差值,采用小步长算法,将该差值调整为0,进而通过调整小臂长度实现采摘。采用模糊控制的方法,建立角位移偏差e和偏差变化率ec与3个模型调整量之间模糊规则,使舵机模糊控制模型具有自适应能力,提高控制精度,从而提高采摘成功率。  相似文献   

5.
为减轻柑橘采摘过程中劳动强度大、效率低及传统采摘器易损伤果实从而影响果实保鲜及品相等问题,设计了一种可高效、安全、精准地实现快速采摘柑橘果实的采摘器。采摘器通过光学视觉、机械视觉双视觉辅助定位系统,对果实进行精准定位,由漏斗式捕捉口对果实进行捕获,由双圆盘滑切锯片将果梗切断,果实落入缓冲管道中。试验结果表明:柑橘采摘器可以有效提高采摘效率,减轻果农的采摘劳动强度。  相似文献   

6.
张勤  庞月生  李彬 《农业机械学报》2023,54(10):205-215
准确识别定位采摘点,根据果梗方向,确定合适的采摘姿态,是机器人实现高效、无损采摘的关键。由于番茄串的采摘背景复杂,果实颜色、形状各异,果梗姿态多样,叶子藤枝干扰等因素,降低了采摘点识别准确率和采摘成功率。针对这个问题,考虑番茄串生长特性,提出基于实例分割的番茄串视觉定位与采摘姿态估算方法。首先基于YOLACT实例分割算法的实例特征标准化和掩膜评分机制,保证番茄串和果梗感兴趣区域(Region of interest, ROI)、掩膜质量和可靠性,实现果梗粗分割;通过果梗掩膜信息和ROI位置关系匹配可采摘果梗,基于细化算法、膨胀操作和果梗形态特征实现果梗精细分割;再通过果梗深度信息填补法与深度信息融合,精确定位采摘点坐标。然后利用果梗几何特征、八邻域端点检测算法识别果梗关键点预测果梗姿态,并根据果梗姿态确定适合采摘的末端执行器姿态,引导机械臂完成采摘。研究和大量现场试验结果表明,提出的方法在复杂采摘环境中具有较高的定位精度和稳定性,对4个品种的番茄串采摘点平均识别成功率为98.07%,图像分辨率为1 280像素×720像素时算法处理速率达到21 f/s,采摘点图像坐标最大定位误差为3像素...  相似文献   

7.
面向柑橘采摘,构建以上位机、RealSense Camera R200深度相机、VS-6556垂直多关节工业用机械臂、三指柔性手爪等组成的采摘机器人硬件平台。以Windows10为开发环境,采用librealsense相机软件开发工具包、OpenCV计算机视觉库、TensorFlow-GPU和Keras深度学习框架、ORIN2机械臂控制软件开发工具包、Arduino IDE函数库以及SerialPort串口通信软件开发工具包等,研究基于深度相机、机械臂二次开发的采摘控制系统设计,包括视觉识别定位、手爪动作控制、机械臂运动控制以及采摘控制等模块的程序设计。采摘控制系统柑橘定位试验和柑橘采摘试验的测试结果显示,在实验室环境下面对随机布置的柑橘,视觉识别定位模块的平均定位精度误差为1.22 cm,采摘过程中柑橘识别成功率达到100%,平均识别时间约为47 ms,机器人柑橘采摘成功率达到80%,平均采摘时间约为15.2 s,验证了采摘机器人平台控制系统程序的可行性,表明所开发的采摘控制系统能够正确、高效地完成整个柑橘采摘作业流程。  相似文献   

8.
高架栽培草莓采摘机器人系统设计   总被引:1,自引:0,他引:1  
为了提高草莓采收自动化水平,针对高架栽培草莓设计了自动采摘机器人系统,其采用无线遥控和语音提示相结合的人机交互方式,可以对机器人本体两侧果实同时进行采摘。该系统采用机器视觉和声纳测距相结合的方式实现了自主导航,通过双目视觉相机对果实进行识别和空间定位,由关节型机械臂操纵末端执行器进行定位。系统末端执行器采用果实吸附、果柄夹持和电热切割的方式对果实进行柔性操作。针对系统控制方案,制定了采摘机器人系统作业流程,并对机械臂末端运动路径节点和时间节拍进行规划,防止与周围环境发生运动干涉,保证机器人作业效率。试验结果表明,草莓采摘机器人系统末端定位平均误差小于2.2mm,单次采摘作业平均耗时10.99s。  相似文献   

9.
荔枝采摘机械手视觉定位系统设计   总被引:2,自引:0,他引:2  
建立了基于双目立体视觉的荔枝采摘机械手视觉定位系统.通过对成熟荔枝颜色特征的分析,选取YCbCr颜色模型进行处理,利用Otsu算法结合模糊C均值聚类法(FCM)对荔枝果实和果梗进行了分割,实验结果表明:有效识别果实和果梗的正确率为94.2%.通过计算果实质心与果梗的距离最大值确定荔枝采摘点,利用基于色调空间的彩色图像匹配法和极限约束法进行果梗采摘点的立体匹配,实现了采摘点的空间定位.通过定位误差分析,采用直线插值法进行定位误差补偿,定位实验结果表明:定位的深度误差小于10 mm,能满足荔枝机械手视觉精确定位的要求.  相似文献   

10.
为提高采摘设备的执行效率,采用六自由度机械臂、树莓派、Android手机端和服务器设计了一种智能果实采摘系统,该系统可自动识别不同种类的水果,并实现自动采摘,可通过手机端远程控制采摘设备的起始和停止,并远程查看实时采摘视频。提出通过降低自由度和使用二维坐标系来实现三维坐标系中机械臂逆运动学的求解过程,从而避免了大量的矩阵运算,使机械臂逆运动学求解过程更加简捷。利用Matlab中的Robotic Toolbox进行机械臂三维建模仿真,验证了降维求解的可行性。在果实采摘流程中,为了使机械臂运动轨迹更加稳定与协调,采用五项式插值法对机械臂进行运动轨迹规划控制。基于Darknet深度学习框架的YOLO v4目标检测识别算法进行果实目标检测和像素定位,在Ubuntu 19.10操作系统中使用2000幅图像作为训练集,分别对不同种类的果实进行识别模型训练,在GPU环境下进行测试,结果表明,每种果实识别的准确率均在94%以上,单次果实采摘的时间约为17s。经过实际测试,该系统具有良好的稳定性、实时性以及对果实采摘的准确性。  相似文献   

11.
设计了一种果实自动采摘机器人,主要包括自动导航系统、采摘系统、运动系统、控制系统及动力系统。自动导航系统主要包括激光雷达导航和GNSS定位导航,可用于建立地图和规划工作路径;采摘系统通过双目立体视觉相机进行果实识别,再通过由六自由度机械臂和两指末端执行器(机械手)组成的执行机构抓紧果梗并剪断,完成果实采摘。试验结果表明,设计开发的机器人可以通过激光雷达导航完成室内工作,剪断并抓取果梗的两指末端执行器可适用于多种果实,上位机软件可以完成图像采集、机械臂控制和机器人工作路线图建立等操作。激光雷达导航试验结果表明,在1m/s的行驶速度下,导航绝对误差小于3.5cm,可满足温室果实采摘的需求。  相似文献   

12.
设计了一种果实自动采摘机器人,主要包括自动导航系统、采摘系统、运动系统、控制系统及动力系统。自动导航系统主要包括激光雷达导航和GNSS定位导航,可用于建立地图和规划工作路径;采摘系统通过双目立体视觉相机进行果实识别,再通过由六自由度机械臂和两指末端执行器(机械手)组成的执行机构抓紧果梗并剪断,完成果实采摘。试验结果表明,设计开发的机器人可以通过激光雷达导航完成室内工作,剪断并抓取果梗的两指末端执行器可适用于多种果实,上位机软件可以完成图像采集、机械臂控制和机器人工作路线图建立等操作。激光雷达导航试验结果表明,在1 m/s的行驶速度下,导航绝对误差小于3. 5 cm,可满足温室果实采摘的需求。  相似文献   

13.
基于激光视觉的智能识别苹果采摘机器人设计   总被引:1,自引:0,他引:1  
为了提高苹果采摘视觉识别系统的精度,增强视觉系统的抗干扰能力和自适应能力,设计了一种新的苹果采摘机器人激光视觉识别系统,可以直接获得层次关系的深度图像,实现了果园非结构化环境中果实的识别与定位。为了测试激光识别系统苹果采摘机器人的采摘效果,在果园中对其采摘性能进行了测试:首先采用高清相机完成了对果实图像的采集,通过图像处理准确地实现了苹果的识别,在遮挡率低于50%时其识别率达到了90%以上;然后利用激光测距方法对苹果进行距离测量,成功定位了果实位置,其响应时间仅为3.58s,动作效率快,实现了苹果的高效率、高精度采摘功能。  相似文献   

14.
为提高苹果采摘的自动化与智能化水平,降低重复繁琐的人工劳动强度,减少对果实的损坏率,研制了一款用于苹果成熟自动检测并采摘的轮式机器人系统。系统由硬件平台和软件平台两部分组成。其中,硬件平台由四轮驱动越野小车、IPC-610L工控机、图像数据采集卡、四自由度机械臂和末端执行器组成;软件平台基于Visual C++6.0开发环境,使用双目立体视觉技术和图像处理技术实现对苹果的识别与定位,再通过机械臂的路径规划实现对苹果的采摘。通过仿真实验和数据分析表明:机器人在无人值守的情况下,能实现自动导航、自动识别、自动采摘苹果等功能,并且识别成功率大于94.00%,采摘成功率达到91.33%,平均采摘周期约为1 1 s,具有较高的准确性及稳定性。  相似文献   

15.
为实现温室草莓采摘机械化和自动化,设计并制作一种应用于日光温室的草莓采摘机器人。该机器人能实现自主路径规划,行走过程中识别成熟草莓并完成采摘。设计以ROS分布式计算系为主控制网络,以激光雷达进行移动机器人的地图构建与定位,双目深度相机实现对成熟草莓的识别和定位,搭载柔性仿生夹爪6自由度机械臂实现目标草莓抓取和放置。设计机器人软件平台,使用改进A*算法实现自主路径规划和导航避障;利用R-FCN目标检测网络和双目视觉技术实现成熟草莓检测及定位。结果表明:该草莓采摘机器人可实现目标检测及定位,检测到的草莓坐标与机器人手爪坐标的误差在4 mm以下,成熟草莓识别率为95%,满足采摘要求。  相似文献   

16.
番茄收获机两种果秧分离装置的工作原理及特点   总被引:1,自引:0,他引:1  
<正>1番茄收获机结构及工作原理1.1结构番茄收获机集自走式底盘、收获机采摘头、果实色选分级、气流去杂、震动去土、枝叶果实自动分离、果实收集、收获机械的传感与智能化控制等相关技术为一体。其中光电感应分选系统采用具有国际领先技术的色选仪,能高效的进行异色果及杂质的识别和筛选。果秧分离器也有突破性的设计,能实现往复式间歇单向旋转,且频率可调,更好的适应不同成  相似文献   

17.
实现准确采摘离不开识别和定位这两个关键环节。要实现精确定位首先就必须准确识别果实,确定果实的质心、半径,在此基础上进行三维立体坐标的标定,从而精确计算出果实的空间位置,实现准确采摘。本文在已经获取果实图像的基础上,基于VC++6.0研究果实各种参数提取所需要的图像处理函数,比如阈值变换、窗口变换、中值滤波、梯度锐化、边缘检测、轮廓提取等,以及各种特征参数计算函数,如计算球形果的质心、半径、周长、面积、圆形度、伸长度等的函数。通过对各个果实识别各个环节所需函数来研究采摘机器人的视觉。  相似文献   

18.
在机器人实际采摘果实的作业中,机器人末端臂及末端执行器与果树枝条接触碰撞几率最高,其要具有感知碰撞的能力,从而判断原规划采摘路径的合理性,最终实现避障采摘之目的。为此,提出了一种采摘机器人感知碰撞避障伸缩末端臂,其通过转动关节与机器人大臂连接,整体相对于大臂可以进行仰俯动作,同时本身具有直线伸缩的功能,从而驱动末端执行器实现直线接近待采果实。感知碰撞结构使末端臂在上、左和右3个方向上具有感知危险碰撞的能力。通过试验改进了样机部分结构,伸缩杆运动平稳,感知碰撞结构动作可靠,并可通过调节微动开关的高度位置,能够对不同碰撞力做出反应,发出危险力的开关量信号,以适应多种果蔬的采摘作业。  相似文献   

19.
首先从数学模型建立、正运动学和逆运动学几个方面对水果采摘机械臂总体设计状况进行分析,随后重点分析六自由度水果采摘机械臂的主要结构及参数设计计算,对六自由度水果采摘机械臂的运动和任务进行设计规划,最后分析机具的实际效果及创新点,通过搭建采摘试验平台,对规划设计结果进行综合分析。研究中选取3kg六自由度机械臂作为研究对象,构建机械臂采摘运动模型,随后使用第五关节分离法解决机械臂自适应调整问题,并计算验证机械臂运动中的轨迹,最后使用试验分析方法对采摘效果和时间进行验证分析,采摘机械臂可以直接利用双目识别以及定位系统所提供的坐标,实现运动规划并完成果实采摘。采摘试验分析发现,单果采摘时间为25.5s/个,多果实采摘中使用关节角加权最小设定连续采摘任务,能够促进果实采摘时间的逐渐降低,提升采摘效率,降低生产成本与能耗。  相似文献   

20.
采摘机器人作业环境复杂,视觉系统往往不能准确对待采摘的果树或者果实进行准确的定位。为了提高采摘机器人视觉系统的定位精度,引入了图像边缘检测技术,通过提取待采摘果树或者果实的边缘,计算果实的位置坐标,为采摘机器人的自主行走定位和采摘作业提供可靠数据支持。为了验证方案的可行性,以待采摘果树的特征边缘提取为例,对系统的果树边缘提取的可行性及定位准确性进行了实验。实验结果表明:采用基于图像边缘检测技术的采摘机器人视觉系统可以成功地对果树进行定位,并输出果树的位置坐标,将位置坐标和实测位置坐标进行对比发现,其结果基本吻合,具有较高的定位精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号