首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Influence of nitrogen and cytokinin applications on the development of flag leaves and grains of wheat In two experiments spring wheat cv. Solo was grown in hydroculture under greenhouse conditions. The influence of cytokinin applications during grain filling period (Cy: 0 – 100 μg BA/l nutrient solition) combined with different nitrogen supply (N: 0, 0.25, 0.50 and 4.0/1.3 mMol/l) was studied in regard to the development of flag leaves and grains. As to flag leaf, only N was capable to increase specific fresh and dry matter and delay the decrease during development. Similar changes in the chlorophyll content, photosynthesis and N-content of leaves and grains, resp., could be induced by either N or Cy. Grain growth and grain N-content was favoured by N, with the first effect becoming visible early and the second late in the grain filling period. At maturity Cy gave the same effects, but time course was slightly modified. At high doses of N (4.0/1.3 mMol/l) Cy-applications reduced chlorophyll content, photosynthesis and N-content of leaves and grains. This gave rise to the conclusion that cytokinins limit the corresponding physiological processes only if nitrogen nutrition is low.  相似文献   

2.
The balance between leaf senescence, induced by phosphorus deficiency, and grain growth was examined in wheat plants grown in sand with high (control) and low phosphorus (low‐P) nutrition. Foliar applications of P were made prior to anthesis and at early and mid grain development. Low‐P plants were also given an additional dose of P via the roots at mid grain development.

Foliar applications of P had no effect on leaf function (net CO2 exchange rate), or grain development in control plants. However, P applied to the flag leaf of low‐P plants delayed senescence and thus increased leaf area duration, but this did not result in a significant increase in grain yield per ear. Phosphorus applied to the ear surface (the glumes) of low‐P plants increased the concentration of P in the grain, but did not increase the number of cells per grain, or the grain yield per ear. The late application of P via the roots also delayed senescence in low‐P plants, but did not cause an increase in yield.

These experiments indicate that grain growth in low‐P plants is not limited by the level of supply of photosynthate, or the availability of P during the actual period of grain development. Phosphorus translocated to the grain late in plant development is used inefficiently in plants that are adequately supplied with phosphorus and in plants suffering from P deficiency.  相似文献   

3.
To investigate the genotypic differences of dry matter (DM) and nitrogen (N) accumulation and remobilization as well as the photosynthetic characteristics of flag leaf during grain filling under water-limited conditions, nine winter wheat cultivars were planted under two irrigation treatments including W0 (no irrigation applied during spring) and W2 (1500 m3 ha?1 applied 50% at stem elongation and 50% at anthesis). Results showed that cultivar and irrigation significantly affected the accumulation and remobilization of DM and N as well as the photosynthetic characteristics of flag leaf. No irrigation in spring on average decreased the photosynthetic rate of flag leaf, accelerated leaf senescence, and consequently decreased the accumulation of DM and N, but increased the ear distribution ratio and the remobilization and contribution of DM and N in leaf and stem to grain. Maintaining high photosynthetic activity and promoting DM and N distribution in ear and the remobilization of DM and N in leaf and stem may lead to higher grain filling rate and lower yield loss under water-limited conditions in North China Plain.  相似文献   

4.
The association between functional traits and nitrogen use efficiency (NUE) was investigated to assist the breeding of nitrogen (N) use-efficient bread wheat (Triticum aestivum ssp. aestivum) varieties. This study combined results from a climate chamber experiment involving 41 spring wheat varieties and a field experiment involving six winter and six spring wheat varieties grown with and without the application of mineral N fertiliser. The climate chamber experiment was analysed by partial least squares (PLS) regression, with several predictors and NUE as response, to identify traits related to NUE. Specific hypotheses were then tested in the field experiment. The PLS indicated six traits of particular importance for overall NUE: leaf chlorophyll (SPAD value) of the top leaf at stem elongation, grains ear?1, ears pot?1, straw biomass pot?1, days between emergence and anthesis, and days between emergence and completed senescence. In the field experiment, the SPAD value of flag leaves of winter wheat around anthesis was positively correlated with NUE and total grain N, at both N levels. Fast development was positively correlated with high NUE and N uptake efficiency in spring wheat. Early senescence of the flag leaf was positively correlated with grain N concentration and negatively correlated with grain-specific N efficiency in winter wheat at low N fertilisation levels. The results indicate that high SPAD value of the top leaf might be a candidate trait that could be used in wheat breeding for improved NUE, while genetic variation in senescence could possibly be used to tailor varieties for different end-use quality when grown at low N. More studies are needed to validate these findings in other environments and for other genotypes.  相似文献   

5.
Effects of temporary applications of nitrogen and cytokinins on the development of flag leaf and grain growth in wheat Influence of nitrogen and cytokinin treatments (N, Cy) restricted to the ‘early’ and ‘late’ grain filling period on different developmental processes was examined in two spring wheats grown in hydroculture under nutritional conditions that were nearly optimal for the overall-development. (1) As to the flag leaf, additional early N-supply raised maximum chlorophyll content only slightly, but as late applications strongly delayed pigment destruction and loss of green area. Corresponding treatments with Cy were effective in the same way, but to a lesser degree. The higher efficiency of late applications of N or Cy indicated their limiting function during senescence. (2) Early treatments which increased number of kernels in parts of the ear showed that endogenous N- or Cy-levels were not sufficient for grain setting. Grain growth was stimulated only by early Cy-applications in exp. II in which Cy had no effect on kernel number, whereas late treatments were generally ineffective. Different N-levels in plants obviously did not limit grain growth, but high ones favoured tillering which presumably prevented increase of yield. (3) The genotypes, Solo and Kolibri, although opposite in their character, showed comparable responses to treatments with slight differents only in the extent of the reaction.  相似文献   

6.
Effect of light intensity at varied potassium supply on CO2 assimilation and yield formation of spring wheat .
  • 1 The effect of a varied K+ supply on CO2 assimilation rates and yield formation has been studied at two different light intensities with wheat (Triticum aestivum L.) grown in solution culture. Light intensity was reduced in one treatment by shading the plants with a cloth, which caused a reduction of about 50 % of the light intensity. This shading was applied from the heading stage until grain maturation.
  • 2 Reduced light intensity resulted in remarkably decreased rates of dry matter increments in both K treatments. In the beginning this growth depression, however, was small in the treatment with the higher K supply. At the stage of transition from the vegetative to the reproductive stage the better K+ nutrition obviously could compensate the lacking light to some degree. This favourable K+ effect, however, decreased with the advance of the reproductive phase. Thus at maturation in both K treatments equal quantities of dry matter were harvested. In the treatments with full light the higher K supply resulted in a yield increase at maturation.
  • 3 The CO2 assimilation rates measured at flowering, milk stage and dough stage indicated that rather the K supply than the light intensities influenced the CO2 assimilation. The treatments with the higher K supply showed almost twice as high assimilation rates compared with the treatments with the lower K supply.
  • 4 The reduced light intensity caused a substantial depression in grain yield in both K treatments. The poor grain yield was mainly due to a reduced thousand grain weight and to a less extent to a reduction in the number of ears.
  • 5 As the better K supply resulted in increased CO2 assimilation rates without having an influence on the grain filling of the plants exposed to a lower light intensity, it is concluded that at low light intensities the grain filling is not limited by the supply of grains with photosynthates but probably is affected by other processes.
.  相似文献   

7.
土壤水分对小麦产量和品质的影响   总被引:17,自引:5,他引:12  
姜东燕  于振文 《核农学报》2007,21(6):641-645
本文综述了土壤水分对小麦产量和品质的影响。土壤水分既影响小麦产量,也影响其籽粒品质;土壤水分缺少能够影响器官发育,使叶面积减小,叶绿素含量降低,群体叶片光合性能下降。土壤水分缺少还使开花后的光合产物减少,造成灌浆物质不足,原贮存在营养器官中的物质向籽粒的运转速度加快,贮存物质在粒重中的比例提高,在一定程度上弥补了粒重和产量的降低。同时,土壤水分也影响小麦品质,主要表现在蛋白质和淀粉上。  相似文献   

8.
氮硫互作对冬小麦旗叶衰老、产量和氮素利用效率的影响   总被引:2,自引:0,他引:2  
王丽  王东  周杰  韩坤 《土壤学报》2016,53(6):1476-1488
试验采用裂裂区设计,小麦品种(烟农19和汶农6号)为主区,施氮(N)量为裂区,设0(N0)、120(N120)、240(N240)kg hm-2三个施N水平,施硫(S)量为裂裂区,设0(S0)、20(S20)、40(S40)、60(S60)kg hm-2四个施S水平。结果表明,汶农6号开花后旗叶超氧化物歧化酶(SOD)活性、旗叶净光合速率、产量和氮素利用效率均高于烟农19。在一定施氮水平下适量施硫显著提高烟农19和汶农6号小麦开花后旗叶SOD活性和可溶性蛋白质含量,提高旗叶净光合速率和开花后干物质积累量,增加植株地上部氮素积累量和籽粒产量;当施氮水平为120 kg hm-2施硫量超过40 kg hm-2和施氮240 kg hm-2施硫量超过20 kg hm-2时,汶农6号植株地上部氮素积累量仍继续增加,但旗叶抗氧化能力和光合同化能力均无明显提高,籽粒产量不再增加,烟农19号旗叶SOD活性、可溶性蛋白质含量和光合速率均降低,植株地上部氮素积累量和籽粒产量均减少。在同一施氮水平下,两小麦品种氮素利用效率总体表现为随施硫量增加而降低的趋势。在土壤有效硫为38.9~42.1 mg kg-1的条件下,适量施用氮肥和硫肥有利于延缓小麦花后旗叶衰老,提高光合同化能力,增加籽粒产量,但不同品种小麦对氮肥和硫肥施用量的响应不同,氮素利用效率较高的品种在较高的氮硫供给水平下仍有较好的光合同化和产量表现,而氮素利用效率相对低的品种对高氮高硫的适应性较差,后期易早衰,影响产量和氮素利用效率。  相似文献   

9.
目的干热风在我国冬麦区灌浆期频发,对小麦生产造成危害。本试验配制不同新型营养复配剂在小麦灌浆前期进行叶面喷施,研究其对冬小麦干热风抗性的影响,旨在确立减轻干热风灾害高效实用的方法。方法以冬小麦品种‘豫农186’和‘国麦301’为供试材料,在河南农业大学科教园区进行田间试验。花后第14天在叶面喷施5种营养复配剂,即CK (10 mg/kg吐温80)、A (0.2%硫酸锌、0.3%磷酸二氢钾、1%尿素和10 mg/kg吐温80)、B (A + 0.02%壳寡糖)、C (A + 0.1%海洋多糖) 和D (0.3%磷酸二氢钾和10 mg/kg吐温80)。灌浆期内5月9—28日,每隔3天,取样测定旗叶SPAD值、旗叶甜菜碱含量、籽粒灌浆速率、根系活力,收获后测产并考种。结果干热风胁迫下,与喷施A相比,喷施B和C能显著提高小麦灌浆期绿色功能叶数量,显著提高旗叶SPAD值和甜菜碱含量,B处理效果优于C处理。相比于CK,喷施A、B和C营养复配剂均能提高小麦根系活力,三个处理在灌浆期变化不一。喷施其它营养复配剂均能有效提高灌浆速率,B处理效果最显著;喷施B营养总配剂对强势粒灌浆速率的促进作用最大,喷施C营养总配剂对弱势粒灌浆速率的提升效果最好。4个营养复配剂均能增加‘豫农186’和‘国麦301’千粒重和籽粒产量,增幅分别为3.24%~15.0%和3.11%~31.4%,具体表现均为B > C > A > D > CK,其中B、C与A三处理间均差异显著。结论干热风危害下,在常规磷酸二氢钾、硫酸锌、尿素等组成的营养复配制剂中添加壳寡糖和海洋多糖能有效增强根系活力,提高旗叶SPAD值和甜菜碱含量,延缓叶片衰老,促进籽粒灌浆,增加千粒重,提高收获指数,实现减害稳产的目的,添加海洋多糖的效果不如壳寡糖。  相似文献   

10.
干旱对玉米穗发育及产量的影响   总被引:6,自引:2,他引:6  
干旱作为影响玉米产量的环境因素之首,对玉米植株形态、物质积累、生理作用、性器官发育等方面产生影响,最终降低穗粒数、粒重,导致产量降低。以雌雄穗发育为研究重点,本文综述了不同时期干旱对雌雄穗性状及开花吐丝间隔期的影响。玉米开花前遭遇干旱,延缓雌雄穗发育进程,减少分化小花数,增加籽粒败育,导致穗粒数降低;抽雄吐丝期间遭遇干旱,导致雄穗抽出困难、吐丝延迟,使开花吐丝间隔期拉长,严重时导致花粉、花丝超微结构发生改变,影响玉米授粉、受精过程,最终导致秃尖形成,穗粒数降低;灌浆期遭遇干旱导致叶片早衰,光合产物积累不足,籽粒灌浆受阻,粒重降低,最终均会导致产量下降。从源库关系角度分析,玉米灌浆期前干旱导致玉米产量降低的主要原因是穗粒数降低导致的库强不足;而灌浆期干旱主要是叶片早衰等营养器官发育受阻,限制同化物的积累及转运,此时源不足限制了产量的增加。  相似文献   

11.
不同水、氮处理对济麦20产量和蛋白质品质的影响   总被引:5,自引:2,他引:3  
以强筋小麦济麦20为材料,在防雨棚肥水控制池条件下,研究了不同灌水和施氮处理对小麦产量和蛋白质品质的影响。结果表明,开花期灌水有利于抑制小麦生育后期旗叶叶绿素的降解,提高叶片含氮量,延长旗叶功能期;开花期灌水和灌浆期灌水有利于小麦产量和千粒重的提高,以春季灌3水(春5叶露尖+开花+灌浆)最高;在180kg.N/hm2条件下,籽粒产量及千粒重、容重和穗粒数均高于270kg.N/hm2的处理,对穗粒数的影响达显著水平。籽粒蛋白质及各组分的含量,除球蛋白外,均以B3处理(灌春2叶露尖水和春5叶露尖水)最高;增施氮肥有利于谷蛋白含量的提高。籽粒蛋白质产量以B4处理(春5叶露尖水+开花水+灌浆水)最高,与B2处理(春5叶露尖水+开花水)差异不显著;180kg.N/hm2处理的蛋白质产量高于270kg.N/hm2处理。在本试验条件下,180kg/hm2的施氮量处理结合春5叶露尖灌水和开花期灌水有利于强筋小麦产量和品质的共同提高。  相似文献   

12.
宽幅匀播技术优化了作物群体结构,使小麦显著增产。为了给大面积推广宽幅匀播技术提供理论支撑,以常规条播为对照,采用田间试验研究了旱地冬小麦宽幅匀播的光合效应。结果表明,从拔节期到灌浆期,旱地宽幅匀播冬小麦旗叶叶绿素SPAD值较常规条播高3.1~6.3;盛花期较常规条播小麦旗叶净光合速率(Pn)提高13.4%、气孔导度(Gs)增加34.84%、胞间CO2浓度(Ci)降低16.05%、蒸腾速率(Tr)提高8.47%。宽幅匀播能显著提高小麦叶片叶绿素含量,改善冬小麦光合特性,使小麦叶片能更有效利用胞间CO2,提高光合和运输能力,从而显著增加产量。  相似文献   

13.
Effect of kinetin treatments on the accumulation of assimilates in the ears of spring barley Using individual plants of spring barley, cultivar Emir, during the grain-filling period the attempt was made to increase the production of assimilates and their storage in the ear by exactly timed and located application of kinetin solution. The production of assimilates in the flag leaf and their distribution were controlled by 14CO2-labelling. The experiments showed the following results: 1. Treatments of the whole ear or the growing grain respectively with kinetin solution increased the ability of the ear to attract assimilates and increased the storage of assimilates, formed in the flag leaf. Moreover an increase in the assimilation rate of the flag leaf could be observed. 2. Treatments of the flag leaf blade with kinetin solution induced retention-effects of assimilates in this organ. After a temporary depression a distinct and continuous increase of the assimilation rate became apparent. 3. After treatments of the ear (resp. the grains) as well as after treatments of the flag leaf increasing yields were achieved as the result of increasing thousand-kernel-weights. The results are discussed under physiological and yielding aspects.  相似文献   

14.
以3个不同类型小麦品种为试材,通过对幼苗期根系氮素吸收Vmax和Km的测定及灌浆期剑叶中NR、GS活性的比较分析,初步探讨了黑、紫粒小麦根系对氮素吸收的动力学和同化特性及其与营养品质间的相互关系。结果表明,同普通的白粒小麦相比,黑、紫粒小麦在对氮素的吸收、转运和同化等方面均具有较强的优势,这可能是其蛋白质等营养成分富积的主要原因之一。  相似文献   

15.
以抗倒春寒能力强的小麦品种“烟农19”(YN19)和抗倒春寒能力弱的小麦品种“新麦26”(XM26)为供试材料,利用人工气候箱开展盆栽低温模拟实验。实验设置对照(日均气温15℃,夜间最低温度11℃,CK)和低温(-4℃,LT)两个温度处理,设置常规施磷(基肥:拔节肥为10:0,R1)和磷肥后移(基肥:拔节肥为5:5,R2)两种施磷肥模式,低温处理时长为4h·d-1。测定小麦开花期和灌浆期旗叶光合、抗氧化生理指标及成熟期产量并进行分析,以探明磷素后移对药隔期倒春寒下小麦旗叶生长的缓解机理。结果表明:(1)LT处理较CK处理,供试两品种旗叶叶绿素相对含量(SPAD值)、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)均显著下降(P<0.05),胞间CO2浓度(Ci)显著上升。(2)LT处理与CK比较,供试两品种旗叶抗氧化酶(SOD、CAT)活性显著下降,丙二醛(MDA)含量显著增加。(3)本实验条件下,LT处理使供试两品种穗粒数、千粒重及单茎产量较CK显著降低。(4)LTR2与LTR1比较,XM26开花期和YN19灌浆期旗叶SPAD值分别显著提高了7.3%和10.1%;XM26...  相似文献   

16.
Previous studies have indicated that under hydroponic conditions, spring wheat (Triticum aestivum) plants produce higher grain yields, more tillers, and increased dry matter when continuously supplied with mixtures of NO3 and NH4 than when supplied with only NO3. The objective of this study was to determine if mixed N needs to be available before or after flowering, or continuously, in order to elicit increases in growth and yield of wheat. During vegetative development, plants of the cultivar ‘Marshal’ were grown in one of two nutrient solutions containing either a 100/0 or 50/50 mixture of NO3 to NH4 and, after flowering, half the plants were switched to the other solution. At physiological maturity, plants were harvested, separated into leaves, stems, roots, and grain and the dry matter and N concentration of each part determined. Yield components and the number of productive tillers were also determined. Availability of mixed N at either growth stage increased grain yield over plants receiving continuous NO3, but the increase was twice as large when the mixture was present during vegetative growth. When the N mixture was available only during vegetative growth the yield increase was similar to that obtained with continuous mixed N. The yield increases obtained with mixed N were the result of enhanced tillering and the production of more total biomass. Although plants receiving a mixed N treatment accumulated more total N than those grown solely with NO3, the greatest increase occurred when mixed N was available during vegetative growth. Because availability of mixed N after flowering increased the N concentration over all NO3 and pre‐flowering mixed N plants, it appears that the additional N accumulation from mixed N needs to be coupled with tiller development in order to enhance grain yields. These results confirm that mixed N nutrition increases yield of wheat and indicate that the most critical growth stage to supply the N mixture to the plant is during vegetative growth.  相似文献   

17.
Influence of an exogenously changed source-sink relationship on the number of endosperm cells and grain development in spring wheat In 2 years pot experiments with spring wheat the source-sink ratio was changed by shading the plants at different times after anthesis, by removal of flag leaf blades, and by phytohormone treatment of the ear. The effect of the different treatments was recorded by determining the number of endosperm cells per grain, the single grain weight and the grain yield. In grains of normally illuminated plants the maximum number of endosperm cells was reached 2 to 3 weeks after anthesis. The storage of assimilates within these cells depends on the intensity of illumination during the entire grain filling period. Shading the plants between anthesis and maturity led to a 23 to 34% decrease in grain yield, but only to a 7 to 16% decrease in the number of endosperm cells. The same drop in the endosperm cell number was observed in plants shaded for only 15 days from the start of anthesis. A subsequent period of normal illumination till maturity led to a marked increase in the single grain weight. No decrease in the endosperm cell number was seen in plants shaded from the 15th day after anthesis till maturity. There was, however, a 12–13% reduction in the single grain weight and grain yield in these plants as compared with the control. Removal of the flag leaf at anthesis reduced the number of endosperm cells by 6 to 11%, the single grain weight by 10 to 29% and the grain yield by 15 to 25%. CCC and Ancymidol treated plants in the shading trials showed the same decrease in the endosperm cell number but a more pronounced reduction in the single grain weight compared with control plants. Their reactions to the various shading trials followed the same general pattern as the control plants. The results of the shading experiments confirm that the endosperm cell number is not the only determinating factor for the single grain weight. The application of kinetin and abscisic acid to the ear had no effect on the number of endosperm cells and single grain weight. Abscisic acid, however, reduced the number of graines per ear.  相似文献   

18.
Single plant traits such as green biomass, spike dry weight, biomass, and nitrogen (N) transfer to grains are important traits for final grain yield. However, methods to assess these traits are laborious and expensive. Spectral reflectance measurements allow researchers to assess cultivar differences of yield‐related plant traits and translocation parameters that are affected by varying amounts of available N. In a field experiment, six high‐yielding wheat cultivars were grown with N supplies of 0, 100, 160, and 220 kg N ha–1. Wheat canopies were observed spectrally throughout the grain‐filling period, and three spectral parameters were calculated. To describe the development of the vegetative plant parts (leaves + culms) and the spikes, plants were sampled four times during grain filling. Dry weights and the relative dry‐matter content were recorded for leaves + culms and spikes. The N status of the plants was assessed by measuring the total N concentration and by calculating the aboveground N uptake. Good correlations were found between spectral indices and single plant traits throughout grain filling but varied with N supply and development stage. The normalized difference vegetation index, NDVI, was strongly affected by the saturation effects of increased N concentration. The red‐edge inflection point, REIP, predicted plant traits with r2 values up to 0.98. However, in plants with advanced senescence, the REIP was less efficient in describing plant traits. The NIR‐based index R760/R730 was closely related to yield‐related plant traits at early grain filling. Compared to the REIP, the R760/R730 index was resistant to strong chlorophyll decays being able to predict plant traits at late grain filling, with r2 values of up to 0.92. Spectral reflectance measurements may represent a promising tool to assess phenotypic differences in yield‐related plant traits during grain filling.  相似文献   

19.
Abstract

Winter wheat was grown at five different experimental sites using various nutrient combinations of two nitrogen (N) and three calcium (Ca) doses. The three youngest leaves, including the flag leaf were sampled at anthesis together with the flag leaf post‐anthesis and the grain at final harvest. The leaves were weighed and their mineral nutrient contents analyzed and the grain was also weighed. Of the nine equations that were fitted the potential (log y versus log x) most consistently had the best correlation and, thus, best represents the relationships between leaf dry weights, while the inverse in both variables was best for estimating grain weight from leaf weight. The nutrient content of the leaves was related to leaf dry weight according to the following sequence of maximum R: ? (R = 0.703), potassium (K) (R = 0.580), Ca (R = 0.444), phosphorus (P) (R = 0.359), iron (Fe) (R = 0.291), and magnesium (Mg) (R = 0.290). The square‐root and the quadratic equations best reflected the maximum and minimum values for ? and K, respectively. Highly significant relationships between Ca and Mg, and leaf dry weight were less frequent. The leaf nutrients correlated with grain weight in the following order: Mg (R max = 0.521), ? (0.455), Ca (0.434), Fe (0.348), ? (0.346), ?n (0.339, and ? (0.323). Of these nutrients, only Ca affected grain weight according to a parabolic equation (quadratic or square‐root) while the rest were best fitted by logarithmic functions, both on X and Y or one variable separately and by a straight‐line in one instance.

The square‐root and the quadratic permit the calculation of the optimum concentration of nutrients, and thus, leaf nutritional diagnosis. The flag leaf at anthesis gives the most opportunities for this.  相似文献   

20.
In the present study, plant traits related to the photosynthetic capacity at the whole plant level were compared during grain filling in two maize genotypes with different nitrogen (N) efficiency. The plants were grown in a greenhouse in large root containers and supplied either with suboptimal or optimal rates of N fertilizer. Suboptimal N supply reduced total plant biomass at maturity (47 days (d) after flowering) by 29 % for the efficient genotype and by 36 % for the inefficient genotype. Suboptimal N supply reduced leaf growth of both genotypes. The reduction of leaf area was less severe in the N‐efficient genotype, despite of lower N content in the leaves. This indicates lower sensitivity of leaf growth towards internal N limitation in the efficient genotype. At low N supply, the green leaf area per plant gradually decreased after flowering in both genotypes, because of loss of chlorophyll during leaf senescence. The rate of net photosynthesis per unit leaf area (A) was reduced at low in comparison with high N supply. The ratio of A/leaf N content or leaf chlorophyll content was higher in the efficient genotype, indicating more efficient utilization of internal N for photosynthesis. At the end of grain filling, low N supply led to enhanced intercelluar CO2 concentrations (Ci) in the leaves, indicating limitation of CO2 assimilation by carboxylation rather than by stomatal resistance. The N deficiency‐induced increase of Ci was less pronounced in the efficient genotype. Furthermore, higher photosynthetic rate of the efficient genotype at suboptimal N supply was associated with lower contents of reducing sugars and sucrose in the leaves, whereas starch content was higher than in the inefficient genotype. The ability to avoid excessive sugar accumulation in the leaves under N deficiency might be related to higher photosynthetic N efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号