首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Marek's disease (MD), a highly cell-associated and contagious disease of chickens caused by Marek's disease virus (MDV) can result in neural lesions, immunosuppression and neoplasia in chicken. The Meq gene is an important oncogene in the MDV genome, and it is expressed highly in MD tumor tissues and MD T-lymphoblastoid cell lines. An experiment was conducted to elucidate the role of Meq in MD tumor transformation. RNA interference technology was used to block its expression, and then analyzed the biological effects of Meq knockdown on the MD tumor cell line MSB1. A small interfering RNA with an interference efficiency of 70% (P<0.01) was transfected into MSB1 cells to knock down the expression of Meq gene. The cell proliferation, cycle and apoptosis were detected post-Meq knockdown. The results showed that MSB1 cell proliferation was downregulated remarkably at 48 h (P<0.01), 60 h (P<0.05) and 72 h (P<0.01) post-Meq knockdown. The cell cycle was unaffected (P>0.05). B-cell lymphoma 2 gene (BCL2) was anti-apoptotic and caspase-6 was the effector in the apoptosis pathway. The activity of caspase-6 was upregulated (P<0.05) significantly and BCL2 gene expression was downregulated (P<0.05) significantly post-Meq knockdown, suggesting cell apoptosis might be induced. MSB1 cell migration did not exhibit any obvious change (P>0.05) post-Meq knockdown, but the expression of two genes (matrix metalloproteinase 2 (MMP2) and MMP9) that are correlated closely to cell invasion was downregulated (P<0.05) remarkably post-Meq knockdown. The Meq knockdown might affect the main features of tumorous cells, including proliferation, apoptosis, and invasion, suggesting that the Meq gene might play a crucial role in interfering with lymphomatous cell transformation.  相似文献   

2.
Cold stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. Although miRNAs and their targets have been identified in several banana species, their participation during cold accumulation in banana remains unknown. In this study, two small RNA libraries were generated from micropropagated plantlets of Musa balbisiana grown at normal and low temperature (5°C). A total of 69 known miRNAs and 32 putative novel miRNAs were detected in the libraries by Solexa sequencing. Sixty-four cold-inducible miRNAs were identified through differentially expressed miRNAs analysis. Among 43 miRNAs belonging to 26 conserved miRNA families with altered expression, 18 were upregulated and 25 downregulated under cold stress. Of 21 putative novel miRNAs with altered expression, four were downregulated and 17 upregulated. Furthermore, eight miRNAs were validated by stem-loop qRT-PCR and their dynamic differential expression was analyzed. In addition, 393 target genes of 58 identified cold-responsive miRNAs were predicted and categorized by function. These results provide important information for further characterization and functional analysis of cold-responsive miRNAs in banana.  相似文献   

3.
4.
5.
目的 预测、挖掘和分析涉及赤桉Eucalyptus camaldulensis低温胁迫应答的miRNA,为研究其调控赤桉低温胁迫应答的分子网络奠定基础。方法 采用高通量测序对低温处理组和对照(CK)组的赤桉组培苗茎尖进行小RNA测序。以miRBase21.0、Rfam14.1和巨桉E. grandis基因组为参考数据库,利用Bowtie、miREAP和miRDeep2等软件进行miRNA预测,使用RNAfold对预测到的miRNA前体进行二级结构的折叠;采用psRNATarget预测靶基因,通过DEGSeq包分析差异表达的miRNA,并对它们进行GO注释和KEGG富集分析。结果 在赤桉中,共预测到隶属于54个家族的392个已知miRNA和97个新miRNA;其中,CK组共预测到282个已知miRNA,65个新miRNA;低温处理组共预测到329个已知miRNA,51个新miRNA。挖掘到80个在低温处理下显著差异表达的miRNA,包括55个上调和25个下调。GO基因功能注释和KEGG富集分析的结果表明,这些差异表达miRNA可能通过参与代谢通路、次生代谢物的生物合成、细胞膜的改变、信号转导和生物调节等响应低温胁迫。此外,还挖掘到25个可能与ICE1-CBFs-COR通路有关的miRNA。结论 借助高通量测序和生物信息学软件初步得到了低温胁迫下差异表达的赤桉miRNA,为进一步分析这些miRNA在赤桉低温胁迫中的分子功能提供一些参考。  相似文献   

6.
《农业科学学报》2023,22(5):1445-1454
MicroRNAs (miRNAs), a class of small non-coding RNAs, are crucial endogenous gene regulators in a range of animals, including plant-parasitic nematodes. Meloidogyne graminicola is an obligate sedentary endoparasite of rice and causes significant yield losses. A number of studies focused on the roles of M. graminicola effectors during the parasitic process; however, how nematode miRNAs regulate its effectors needs elucidating. In this research, we analyzed a cluster of M. graminicola miRNAs obtained at the second-stage juveniles (J2s) stage that are closely linked to the regulation of M. graminicola effectors. There are 49 767 105 total clean reads obtained from three libraries. A total of 233 known miRNAs and 21 novel miRNAs were identified. Among the known miRNAs, mgr-lin-4, mgr-mir-1, mgr-mir-100, mgr-mir-86, mgr-mir-279, mgr-mir-87, mgr-mir-71, mgr-mir-9, mgr-mir-50, mgr-mir-72, and mgr-mir-34 are the most abundant 11 miRNAs families. Moreover, the expression levels of selected miRNAs were validated by real-time quantitative PCR. We hypothesized that these miRNAs might regulate the expression of secreted effectors during the J2s stage to facilitate its infection. Consistent with this, we found that mgr-mir-9 targets MgPDI, an important M. graminicola effector mRNA. In addition to that, J2s treated with mgr-mir-9 mimics showed down-regulation of MgPDI expression and reduced reproductive ability, alluding mgr-mir-9 is involved in nematode infection. These results provide novel insight into the regulatory functions of M. graminicola miRNAs during the infection and identify miRNAs and their effector targets as potential key management targets to limit parasite survival during the early stages of infection.  相似文献   

7.
MicroRNAs (miRNAs) have been widely identified in porcine testicular tissues and implicated as crucial regulators of proliferation, apoptosis, and differentiation in porcine spermatogenesis related cells. However, the function roles of most of the miRNAs that have been identified in Sertoli cells are poorly understood. In the present study, six experiments were conducted to study the regulatory role of miR-10b in porcine immature Sertoli cells. In experiment 1, the results showed that the relative mRNA expression level of miR-10b in porcine testicular tissues decreased quadratically (P<0.001) with increasing age, while the relative mRNA expression level of DAZAP1 gene increased (P<0.001). In addition, the mRNA expression of miR-10b was negatively (P<0.01) correlated with DAZAP1 mRNA expression (r=?0.550). In experiment 2, the results from the bioinformatic analysis and a luciferase reporter assay demonstrated that miR-10b directly targeted the DAZAP1 gene in porcine immature Sertoli cells. DAZAP1 mRNA and protein expressions were both regulated (P<0.05) by miR-10b. In experiments 3 to 5, the over-expression of miR-10b or the siRNA-mediated knockdown of the DAZAP1 gene promoted (P<0.05) porcine immature Sertoli cell proliferation, as determined by the Cell Counting Kit-8 (CCK-8) assay and the 5-Ethynyl-2'-deoxyuridine (EdU) assay. However, an annexin V-FITC/PI staining assay and the expression of cell survival-related genes indicated that over-expression of miR-10b or knockdown of DAZAP1 had no effect (P>0.05) on porcine immature Sertoli cell apoptosis. In experiment 6, the co-transfection treatment results showed that miR-10b promoted (P<0.05) porcine immature Sertoli cell proliferation by targeting DAZAP1 gene. Overall, these experiments demonstrated that miR-10b promotes porcine immature Sertoli cell proliferation by targeting the DAZAP1 gene.  相似文献   

8.
In this study, the characteristic of three transformants named as B1 C106-1, B1 C106-2, and B1 C106-3 were studied that carried three innate resistant genes Bph14, Bph15, and Xa23, and two enthetic resistant genes Cry1 Ca# and Bar. The five resistant genes were all verified by PCR and the two enthetic genes were identified in single copy insertion by Southern blot. At tillering stage, the Cry1 C and PAT(phosphinothricin acetyl transferase) protein contents in leaf, sheath, and stem of T2 generation were in the similar pattern: leafstemsheath, and showed significant difference(P0.01) among three organs. The average contents of Cry1 C protein in plant of B1 C106-1, B1 C106-2, and B1 C106-3 were 12.95, 6.57, and 11.30 μg g–1, respectively, and showed significant difference(P0.01) among them. However, the average contents of PAT in plant of B1 C106-1, B1 C106-2, and B1 C106-3 were 28.54, 27.66, and 28.02 μg g–1, respectively, and there were no significant difference among three transformants. The glufosinate tolerable concentration of three transformants of T3 generation reached at least 6 g L–1, and the mortality of rice leaf rollers were above 97.4% in 5 days after being fed with fresh transformants' leaves. The Cry1 C protein toxicity was also assessed by silkworms, and the mortality of silkworms feeding mulberry leaves smeared with Cry1 C protein extracts of leaves of B1 C106-1, B1 C106-2, and B1 C106-3 were 90, 67.8, and 87.8%, respectively, that were positive correlation(r=0.993) with Cry1 C protein contents in plant of three transformants. The three transformants also maintained high resistance to brown planthopper and bacterial blight as the original version. The above results indicate the tetra-resistant rice germplasm was well-developed by pyramiding innate and enthetic resistant genes in an elite line to provide with resistances of glufosinate, rice leaf roller, brown planthopper, and bacterial blight.  相似文献   

9.
Skeletal muscle development is closely related with the amount of meat production and its quality in chickens. Natriuretic peptides(NPs) play an important role in myotube formation and fat oxidation of skeletal muscle in animals. The effect of C-type natriuretic peptide(CNP), an important member of the NPs, and its underlying molecular mechanisms in skeletal muscle are incompletely understood. Treatment of myoblasts with CNP led to enhanced proliferation/differentiation and significantly upregul...  相似文献   

10.
Twenty-eight male, weaned Chinese Holstein calves((156.8±33.4) kg) were used to investigate the effects of dietary forage to concentrate ratio(F:C) and forage length on nutrient digestibility, plasma metabolites, ruminal fermentation, and fecal microflora. Animals were randomly allocated to four treatments in a 2×2 factorial arrangement: whole-length forage(WL) with low F:C(50:50); WL with high F:C(65:35); short-length forage(SL) with high F:C(65:35); and SL with low F:C(50:50). Chinese wildrye was used as the only forage source in this trial. The grass in the SL treatments was chopped using a chaff cutter to achieve small particle size(~50% particles 19 mm). Dry matter intake(DMI) and organic matter(OM) intake was increased by increasing both F:C(P0.01) and forage length(FL)(P0.05), while acid detergent fiber(ADF) and neutral detergent fiber(NDF) intakes were only increased by increasing the F:C(P0.01). The digestibility of NDF was increased as the FL increased(P0.01), and it was also affected by interaction between F:C and FL(P0.05). Cholesterol(CHO)(P0.01), leptin(LP)(P0.05), and growth hormone(GH)(P0.01) concentrations in plasma were increased as dietary F:C increased. A significant increase in plasma triglyceride(TG)(P0.01), insulin(INS)(P0.05), and GH(P0.01) levels was observed with decreasing dietary FL. Ruminal p H values of calves fed with low F:C diets were significantly lower than those in high F:C treatment(P0.05). Increasing the F:C enhanced ruminal acetic acid(P0.05) and acetic acid/propionic acid(P0.01). Fecal Lactobacillus content was significantly higher, while Escherichia coli and Salmonella contents were significantly lower in WL and high F:C groups(P0.05). Lower fecal scores(higher diarrhea rate) were observed in calves fed with SL hay compared to WL hay(P0.05). Denatured gradient gel electrophoresis(DGGE) bands and richness index(S) were significantly affected by the interaction between F:C and FL(P0.05), under high F:C, band numbers and richness index from WL group were higher than that from SL group(P0.05), whereas there were no differences between WL andSL groups under low F:C(P0.05). Microflora similarity was 50–73% among the different treatments. It is concluded that the WL with high F:C(65:35) diet is suitable for weaned calves.  相似文献   

11.
《农业科学学报》2023,22(6):1847-1856
San-Huang chicken is a high-quality breed in China with yellow feather, claw and break. However, the abnormal phenomenon of the yellow shank turning into green shank of San-Huang chicken has been a concern, as it seriously reduces the carcass quality and economic benefit of yellow-feathered broilers. In this study, the cause of this abnormal green skin in shank was systematically investigated. Physiological anatomy revealed that the abnormal skin in shank was primarily due to the deposition of melanin under the dermis. After analyzing multiple potential causes such as heredity (pedigree and genetic markers), environment (water quality monitoring) and feed composition (mycotoxin detection), excessive aflatoxin B1 (AFB1) in feed was screened, accompanied with a higher L-dihydroxy-phenylalanine (L-DOPA) (P<0.05) and melanin content (P<0.01). So it was speculated that excessive AFB1 might be the main cause of abnormal green skin in shank. Subsequently, the further results showed that a high concentration of AFB1 (>170 μg kg–1) indeed induced the abnormal green skin in shank compared to the normal AFB1 content (<10 μg kg–1), and the mRNA levels of TYR, TYRP1, MITE, MC1R and EDN3 genes related to melanin deposition would significantly up-regulate (P<0.01) and the content and activity of tyrosinase (TyR) significantly increased (P<0.05). At the same time, the content of L-DOPA and melanin deposition also increased significantly (P<0.01), which also confirmed the effect of excessive AFB1 on melanin deposition in skin of shank. Results of additional experiments revealed that the AFB1’s negative effect on melanin deposition in skin of shank could last for a longer time. Taken together, the results of this study explained the occurrence and possible mechanisms of the abnormal AFB1-related green skin in shank of chickens. Excessive AFB1 in diets increased the L-DOPA content and melanin abnormal deposition in the chicken shank possibly via promoting TyR content and activity, and the expression of melanin synthesis-related genes. Furthermore, our findings once again raised the alarm of the danger of AFB1 in the broiler production.  相似文献   

12.
13.
14.
MicroRNAs(miRNAs) are implicated in swine spermatogenesis via their regulations of cell proliferation, apoptosis, and differentiation. Recent studies indicated that miR-34 c is indispensable in the late steps of spermatogenesis. However, whether miR-34 c plays similar important roles in immature porcine Sertoli cells remain unknown. In the present study, we conducted two experiments using a completely randomised design to study the function roles of miR-34 c. The results from experiment I demonstrated that the relative expression level of miR-34 c in swine testicular tissues increased(P=0.0017) quadratically with increasing age, while the relative expression level of SMAD family member 7(SMAD7) decreased(P=0.0009) with curve. Furthermore, miR-34 c expression levels showed a significant negative correlation(P=0.013) with SMAD7 gene expression levels. The results from experiment II indicated that miR-34 c directly targets the SMAD7 gene using a luciferase reporter assay, and suppresses(P0.05) SMAD7 mRNA and protein expressions in immature porcine Sertoli cells. Overexpression of miR-34 c inhibited(P0.05) proliferation and enhanced(P0.05) apoptosis in the immature porcine Sertoli cells, which was supported by the results from the Cell Counting Kit-8(CCK-8) assay, the 5-Ethynyl-2′-deoxyuridine(EdU) assay, and the Annexin V-FITC/PI staining assay. Furthermore, knockdown of SMAD7 via small interfering RNA(siR NA) gave a similar result. It is concluded that miR-34 c inhibits proliferation and enhances apoptosis in immature porcine Sertoli cells by targeting the SMAD7 gene.  相似文献   

15.
16.
17.
18.
19.
Without known analogous sex-determining factors like SRY (sex determining region Y) in mammals, the chicken (Gallus gallus) sex determination mechanism still remains unclear, which highly restricts the biological research on chicken development and poultry single-sex reproduction. Here we not only characterized a new female-biased gene UBE2I and identified the expression pattern by qRT-PCR, but also described the functional role of UBE2I in the gonadal development of chicken embryos. Results showed that UBE2I exhibited a female-biased expression pattern in the early stage of PGCs (primordial germ cells) in embryonic gonads and robust expression in ovaries of newborn chickens. Most importantly, we successfully developed an effective method to interfere or overexpress UBE2I in chicken embryos through the intravascular injection. The qRT-PCR analysis showed that the sex-related genes (FOXL2, CYP19A1 and HINTW) in females were upregulated (P<0.05) under the overexpression of UBE2I and the sex-related genes (SOX9, DMRT1 and WT1) in females were downregulated (P<0.05) after interfering UBE2I. Furthermore, the change of UBE2I expression was associated with the level of estradiol and its receptors (AR and ESR), which suggests that UBE2I is necessary to initiate the female-specific development in chickens. In conclusion, this work demonstrates that UBE2I is a crucial sex differentiation-related gene in the embryonic development of chickens, which provides insights for further understanding the mechanism of sex determination in chickens.  相似文献   

20.
This study investigated cold plasmas for multiple biological applications. Our previous work has found dielectric barrier discharge plasma improves chicken sperm quality. The number of Sertoli cells (SCs) decides spermatogenesis. However, whether cold plasma can regulate SC proliferation remains unclear. This study explored the effects of cold plasma on immature chicken SC proliferation and the regulation mechanism. Results showed that cold plasma exposure at 2.4 W for 30 s twice with an interval of 6 h produced (P<0.05) the maximum SC viability, cell growth, and cell cycle progression. SC proliferation-promoting effect of cold plasma treatment was regulated by increasing (P<0.05) the adenosine triphosphate production and the respiratory enzyme activity in the mitochondria. This process was potentially mediated by the adenosine monophosphate-activated protein kinase (AMPK)–mammalian target of rapamycin (mTOR) signaling pathway, which was regulated by the microRNA (miRNA) targeting regulation directly and by the intracellular reactive oxygen species homeostasis indirectly. The cold plasma treatment increased (P<0.01) the miR-7450-5p expression and led to a decreased (P<0.01) AMPKα1 level. On the other hand, miR-100-5p expression was reduced (P<0.05) and led to an increased (P<0.05) mTOR level in SCs. A single-stranded synthetic miR-7450-5p antagomir and a double-stranded synthetic miR-100-5p agomir reduced (P<0.05) the SC proliferation. However, this could be ameliorated (P<0.05) by the cold plasma treatment. Our findings suggest that appropriate cold plasma treatment provides a safe strategy to improve SC proliferation, which is beneficial to elevating male chicken reproductive capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号