首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Soybean contains constituents that have antinutritional and bioactive properties. Enzymatic hydrolysis and germination can enhance the biological activity of these compounds in soybean. The objective of this study was to investigate the effect of germination, Alcalase (protease) hydrolysis, and their combination on the concentrations of antinutritional and bioactive compounds in Brazilian soybean cultivar BRS 133. A combination of germination and Alcalase hydrolysis resulted in the degradation of Bowman-Birk inhibitor (BBI), Kunitz trypsin inhibitor (KTI), and lunasin by 96.9, 97.8, and 38.4%. Lectin was not affected by any of the processing treatments when compared to nongerminated and nonhydrolyzed soy protein extract. Total isoflavones (ISF) and total saponins (SAP) increased by 16.2 and 28.7%, respectively, after 18 h of germination, while Alcalase hydrolysis led to the reduction of these compounds. A significant correlation was found between concentrations of BBI and KTI, BBI and lunasin, BBI and ISF, KTI and lunasin, KTI and ISF, KTI and SAP, lunasin and ISF, and ISF and SAP. Germination and Alcalase hydrolysis interacted in reducing BBI, ISF, and SAP. This study presents a process of preparing soy flour ingredients with lower concentrations of antinutritional factors and with biologically active constituents, important for the promotion of health associated with soybean consumption. In conclusion, 18 h of germination and 3 h of Alcalase hydrolysis is recommended for elimination of protease inhibitors, while bioactives are maintained by at least 50% of their original concentrations.  相似文献   

2.
Obesity is a worldwide health concern because it is a well-recognized predictor of premature mortality. The objective was to identify soybean varieties that have improved potential to inhibit fat accumulation in adipocytes by testing the effects of soy hydrolysates having a range of protein subunit compositions on lipid accumulation and adiponectin expression in 3T3-L1 adipocytes. The results showed that differences in the protein distribution of 15 soy genotypes led to different potentials for the reduction of fat accumulation. The inhibition of lipid accumulation of soy alcalase hydrolysates in 3T3-L1 adipocytes ranged from 29 to 46%. Soy hydrolysates made from genotypes with 45.3 +/- 3.3% of total protein as beta-conglycinin, on average, showed significantly higher inhibition of lipid accumulation compared to those with 24.7 +/- 1.5% of extracted total protein as beta-conglycinin. Moreover, after in vitro simulated digestion with pepsin-pancreatin of the soy alcalase hydrolysates, 86% of the original activity remained. Adiponectin expression was induced in 3T3-L1 adipocytes treated with 15 soy hydrolysates up to 2.49- and 2.63-fold for high and low molecular weight adiponectin, respectively. The inhibition of lipid accumulation calculated from a partial least squares (PLS) analysis model correlated well with experimental data (R(2) = 0.91). In conclusion, it was feasible to differentiate soy varieties on the basis of the potential of their proteins to reduce fat accumulation using a statistical model and a cell-based assay in vitro. Furthermore, beta-conglycinin embeds more peptides than glycinin subunits that inhibit lipid accumulation and induce adiponectin in 3T3-L1 adipocytes. Therefore, soy ingredients containing beta-conglycinin may be important food components for the control of lipid accumulation in adipose tissue.  相似文献   

3.
Lunasin and BBI (Bowman Birk protease inhibitor) are bioactive soy peptides that have been shown to be effective suppressors of carcinogenesis in in vitro and in vivo model systems. Since they are subject to digestion in the gastrointestinal tract, we investigated here the stabilities of lunasin and BBI to digestion in vitro by simulated intestinal fluid (SIF) and simulated gastric fluid (SGF). Samples containing lunasin and BBI of varying purities were subjected to in vitro digestion by SIF and SGF at different times and analyzed by Western blot. While the pure BBI reaction is stable after SIF and SGF digestions, the purified lunasin from soybean and synthetic lunasin are easily digested after 2 min in both in vitro digestions. In contrast, lunasin from soy protein containing BBI is comparatively stable after SIF and SGF digestions. Both lunasin and BBI are able to internalize into the cell and localize in the nucleus even after digestion, suggesting that some of the peptides are intact and bioactive. These data suggest that BBI plays a role in protecting lunasin from digestion when soy protein is consumed orally. The role of other soy protease inhibitors such as Kunitz Trypsin Inhibitor (KTI) cannot be excluded from these experiments.  相似文献   

4.
The Bowman-Birk trypsin-chymotrypsin inhibitor (BBI) from soybean has been described as a potential cancer chemopreventive agent. We have compared the effects of BBI with those of two variant recombinant pea (Pisum sativum L.) seed protease inhibitors, rTI1B and rTI2B, homologous to BBI but differing in inhibitory activity, on the growth of human colorectal adenocarcinoma HT29 cells in vitro. A significant and dose-dependent decrease in the growth of HT29 cells was observed using all protease inhibitors, with rTI1B showing the largest decrease (IC50 = 46 microM). Inclusion of the pan-caspase inhibitor, Boc-D-FMK, did not negate the effects of rTI1B or rTI2B in the cell assays. The relative effectiveness of rTI1B and rTI2B may correlate with a variant amino acid sequence within their respective chymotrypsin inhibitory domain, in agreement with a chymotrypsin-like protease as a potential target.  相似文献   

5.
Protein has been reported to be the most satiating of all macronutrients. Upon gastrointestinal digestion, peptides are generated that stimulate the release of satiety hormones such as cholecystokinin (CCK) from enteroendocrine cells. As such, bioactive peptides could be the target of Functional Food ingredients with satiating effects. We set up an in vitro assay system to investigate if different protein hydrolysates exhibit varying CCK-releasing properties. Soy, pea, potato, casein, and whey protein hydrolysates were incubated with the enteric endocrine cell line STC-1 that endogenously expresses and secretes CCK. Release of CCK was measured by ELISA. All hydrolysates induced CCK release at low concentrations (>0.1 mg.L -1)); however, no significant differences in CCK-releasing properties between the different protein hydrolysates were found, suggesting a generic, nonspecific peptide-sensing mechanism in the STC-1 cells on hydrolyzed protein. As the ELISA exhibits sensitivity to all CCK isoforms possessing the C-terminal CCK octapeptide but varying in biological activity at the CCK 1 receptor (CCK 1R), a secondary module was added to the STC-1 cell assay. Intracellular calcium measurements were performed in CHO-CCK 1R cells. Following exposure of the STC-1 cells to the protein hydrolysates, the medium was tested on the CCK 1R assay. Released CCK was measured with higher sensitivity and lower variability than in the ELISA. Surprisingly, we found that some protein hydrolysates (soy > potato > casein) also directly stimulated CCK 1R-expressing cells, while whey and pea protein hydrolysates were inactive. As CCK 1R is expressed in the GI tract, direct interaction of CCK 1R with dietary peptides may contribute to their satiety effects. Future experiments developing bioactive ingredients for Functional Foods for weight management could involve isolation of the active, CCK 1R-activating peptides in, for example, soy protein hydrolysates.  相似文献   

6.
High-performance liquid chromatographic methods were developed for the isolation and quantitative determination of the group B soyasaponins, including 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP)-conjugated soyasaponins alphag, betag, and betaa, and their non-DDMP counterparts, soyasaponins V, I, and II, respectively, with formononetin used as the internal standard. The limits of quantification for soy products were 0.11-4.86 micromol/g. The within-day and between-days assay coefficients of variation were <9.8 and < 14.3%, respectively. The group B soyasaponin concentrations in 46 soybean varieties ranged from 2.50 to 5.85 micromol/g. Soy ingredients (soybean flour, toasted soy hypocotyls, soy protein isolates, textured vegetable protein, soy protein concentrates, and Novasoy) and soy foods (commercial soy milk, tofu, and tempeh) contained the group B soyasaponins from 0.20 to 114.02 micromol/g. There was no apparent correlation between isoflavone and soyasaponin concentrations in the soy products examined.  相似文献   

7.
Soyasaponins are phytochemicals of major interest for health. Their identification and quantification remain difficult owing to the large number of structural isomers in soybeans and the lack of stable standards. In this study, a rapid method using high performance liquid chromatography (HPLC) using a UV detector (205 nm) was developed to identify and quantify soyasaponins belonging to group B and compare them with isoflavones in different soy materials. 2,3-Dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP)-conjugated soyasaponins were determined using external calibration or a molecular mass ratio after alkaline hydrolysis to cleave their DDMP moieties. The detection limit of soyasaponin I, used as a reference molecule to simplify the analysis, was 0.065 micromol/g. Soyasaponin contents in seven soybean varieties ranged from 13.20 to 42.40 micromol/g in the germ and from 2.76 to 6.43 micromol/g in the cotyledons. The within-day and between-days variation coefficients did not exceed 7.9 and 9.0%, respectively, for the major soyasaponins. Soyasaponin B quantification in different soy-based health supplements was reported along with measurements of their isoflavone content to provide information on the variability of these bioactive compounds among different types of soy food materials.  相似文献   

8.
Seventeen Ohio soybeans were screened for isoflavone content and antioxidant activity. Isoflavone content was determined by C(18) reversed phase high-performance liquid chromatography coupled with a photodiode array detector. Antioxidant activities of soybean extracts were measured using 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical and photochemiluminescence (PCL) methods. The highest and lowest total isoflavone contents were 11.75 and 4.20 micromol/g soy, respectively, while the average was 7.12 micromol/g soy. Antioxidant activities of soybean extracts ranged from 7.51 to 12.18 micromol butylated hydroxytoluene (BHT) equivalent/g soy using the DPPH method. Lipid and water soluble antioxidant activities of soybean extracts ranged from 2.40 to 4.44 micromol Trolox equivalent/g soy and from 174.24 to 430.86 micromol ascorbic acid equivalent/g soy, respectively, using the PCL method.  相似文献   

9.
Epidemiological and toxicological studies often require the analysis of large numbers of samples for biological markers of exposure. The goal of this work was to develop a class-selective ELISA to detect groups of structurally closely related mercapturic acids with small nonpolar S-substituents. An assay was developed with strong recognition for mercapturates including S-benzylmercapturic acid (IC50 = 0.018 micromol/L), S-n-hexylmercapturic acid (IC50 = 0.021 micromol/L), S-phenylmercapturic acid (IC50 = 0.024 micromol/L), and S-cyclohexylmethylmercapturic acid (IC50 = 0.042 micromol/L). The same assay also showed weaker recognition for S-(1-hydroxynaphthal-2-yl)mercapturic acid and S-allylmercapturic acid (IC50 = 1.1 and 1.7 micromol/L, respectively). Subtle modifications to the hapten linker structure of the coating antigen proved to have a strong impact on the selectivity and the specificity of the assay. A slightly modified assay showed high recognition for S-benzylmercapturic acid (IC50 = 0.018 micromol/L) and weaker recognition for seven other mercapturic acids (IC50 = 0.021-10 micromol/L). Strong positive assay responses were detected in 12 urine samples obtained from persons with no known occupational exposure to exogenous electrophilic xenobiotics. Solid phase extraction and cross-reactivity indicated that the presumptive immunoreactive materials were similar in size and polarity to S-benzylmercapturic acid. The assay was more selective to mercapturic acids than the spectrophotometric thioether assay.  相似文献   

10.
The nutritional and health benefits of soy protein have been extensively studied over recent decades. The Bowman-Birk inhibitor (BBI), derived from soybeans, is a double-headed inhibitor of chymotrypsin and trypsin with anticarcinogenic and anti-inflammatory properties, which have been demonstrated in vitro and in vivo. However, the lack of analytical and purification methodologies complicates its potential for further functional and clinical investigations. This paper reports the construction of anti-BBI antibody fragments based on the principle of protein design. Recombinant antibody (scFv and diabody) molecules targeting soybean BBI were produced and characterized in vitro (K(D)~1.10(-9) M), and the antibody-binding site (epitope) was identified as part of the trypsin-specific reactive loop. Finally, an extremely fast purification strategy for BBI from soybean extracts, based on superparamagnetic particles coated with antibody fragments, was developed. To the best of the authors' knowledge, this is the first report on the design and characterization of recombinant anti-BBI antibodies and their potential application in soybean processing.  相似文献   

11.
Proteins of soybeans (Glycine max) are widely used in animal and human nutrition. In addition to the bulk of the seed storage proteins, which are classified as albumins and globulins, approximately 6% of soybean proteins are classified as inhibitors of trypsin and chymotrypsin and approximately 0.5% are sugar-binding lectins. The two major classes of inhibitors are the Kunitz trypsin inhibitor, which inhibits trypsin, and the Bowman-Birk inhibitor (BBI), which inhibits both trypsin and chymotrypsin. Unless removed or inactivated, these inhibitors and lectins can impair the nutritional quality and safety of soy-based diets. On the other hand, several studies suggest that BBI can also function as an anticarcinogen, possibly through interaction with a cellular serine protease. Good-quality soybean proteins contribute to the nutritional value of many specialty foods including infant soy formulas and milk replacers for calves, and provide texture to many processed foods. However, they may also induce occasional allergic responses in humans. This paper outlines immunoassays developed to analyze for soy proteins in different soybean lines, in processed foods, and in nonsoy foods fortified with soy proteins. An assessment of the current status of immunoassays, especially of enzyme-linked immunosorbent assays for soybean inhibitors of digestive enzymes, soy globulins, and soy lectins, demonstrates the usefulness of these methods in plant and food sciences and in medicine.  相似文献   

12.
It has been previously demonstrated that lunasin is a novel and promising cancer preventive peptide from soybean. The Bowman-Birk protease inhibitor (BBI) and isoflavones are well-studied substances from soy. This study evaluated the levels and bioactivities of these three compounds as affected by stages of seed development and sprouting under light and dark conditions. BBI and lunasin appear at 7 and 6 weeks, respectively, after flowering and increase as the seed matures. Daidzein and genistein both decrease during seed maturation. During sprouting under light, BBI increases up to the 6th day and decreases thereafter, disappearing at the 9th day after soaking. Under dark conditions, BBI increases up to the 7th day after soaking and decreases thereafter, disappearing at the 10th day. Lunasin starts to decrease at 2 days after soaking and disappears completely at 7 days under light and dark conditions. Daidzein and genistein increase continuously during the 10 days of soaking, and both increase more in the dark than under light conditions. Protein extracts from early seed development (2-5 weeks after flowering) suppress cell viability to a greater degree than those from later stages (6-9 weeks). Inhibition of foci formation by protein extracts from later stages is greater than those from earlier stages. Lunasin and BBI suppress foci formation more than the isoflavones. Sprouting decreases lunasin and BBI contents but increases isoflavones. Protein extracts from early soaking times inhibit foci formation more and suppress cell viability less than those from later soaking times. Light and dark conditions have no influence on the bioactivities of protein extracts. These data are useful in the preparation of soy fractions enriched in lunasin, BBI, and isoflavones and in making dietary recommendations.  相似文献   

13.
Protein hydrolysates (5, 10, and 15% degrees of hydrolysis) were made from minced salmon muscle treated with one of four alkaline proteases (Alcalase 2.4L, Flavourzyme 1000L, Corolase PN-L, and Corolase 7089) or endogenous digestive proteases. Reaction conditions were controlled at pH 7.5, 40 degrees C, and 7.5% protein content, and enzymes were added on the basis of standardized activity units (Azocoll units). Proteases were heat inactivated, insoluble and unhydrolyzed material was centrifuged out, and soluble protein fractions were recovered and lyophilized. Substrate specificities for the proteases was clearly different. Protein content for the hydrolysates ranged from 71.7 to 88.4%, and lipid content was very low. Nitrogen recovery ranged from 40.6 to 79.9%. The nitrogen solubility index was comparable to that of egg albumin and ranged from 92.4 to 99.7%. Solubility was high over a wide range of pH. The water-holding capacity of fish protein hydrolysates added at 1.5% in a model food system of frozen minced salmon patties was tested. Drip loss was on average lower for the fish protein hydrolysates than for egg albumin and soy protein concentrate, especially for Alcalase hydrolysates. Emulsification capacity for fish protein hydrolysates ranged quite a bit (75-299 mL of oil emulsified per 200 mg of protein), and some were better than soy protein concentrate (180 mL of oil emulsified per 200 mg of protein), but egg albumin had the highest emulsifying capacity (417 mL of oil emulsified per 200 mg of protein). Emulsification stability for fish protein hydrolysates (50-70%) was similar to or lower than those of egg albumin (73%) or soy protein concentrate (68%). Fat absorption was greater for 5 and 10% degrees of hydrolysis fish protein hydrolysates (3.22-5.90 mL of oil/g of protein) than for 15% hydrolysates, and all had greater fat absorption than egg albumin (2. 36 mL of oil/g of protein) or soy protein concentrate (2.90 mL of oil/g of protein).  相似文献   

14.
15.
Topoisomerases are targets of several anticancer agents because their inhibition impedes the processes of cell proliferation and differentiation in carcinogenesis. With very limited information available on the inhibitory activities of peptides derived from dietary proteins, the objectives of this study were to employ co-immunoprecipitation to identify inhibitory peptides in soy protein hydrolysates in a single step and to investigate their molecular interactions with topoisomerase II. For this, soy protein isolates were subjected to simulated gastrointestinal digestion with pepsin and pancreatin, and the human topoisomerase II inhibitory peptides were co-immunoprecipitated and identified on a CapLC- Micromass Q-TOF Ultima API system. The inhibitory activity of these peptides from soy isolates toward topoisomerase II was confirmed using three synthetic peptides, FEITPEKNPQ, IETWNPNNKP,and VFDGEL, which have IC 50 values of 2.4, 4.0, and 7.9 mM, respectively. The molecular interactions of these peptides evaluated by molecular docking revealed interaction energies with the topoisomerase II C-terminal domain (CTD) (-186 to -398 kcal/mol) that were smaller than for the ATPase domain (-169 to -357 kcal/mol) and that correlated well with our experimental IC 50 values ( R (2) = 0.99). In conclusion, three peptides released from in vitro gastrointestinal enzyme digestion of soy proteins inhibited human topoisomerase II activity through binding to the active site of the CTD domain.  相似文献   

16.
LC/UV/ESI-MS analysis of isoflavones in Edamame and Tofu soybeans   总被引:2,自引:0,他引:2  
High-performance liquid chromatography coupled with ultraviolet and electrospray ionization mass spectrometry (HPLC/UV/ESI-MSD) was applied to the study of isoflavones in both Edamame and Tofu soy varieties, from which the immature fresh soybeans or the mature soybean seeds are consumed, respectively. Positive atmospheric pressure interface (API) MS and MS/MS were used to provide molecular mass information and led to the identification of a total 16 isoflavones, including three aglycones, three glycosides, two glycoside acetates, and eight glycoside malonates. The major isoflavones in soybean seeds were daidzein and genistein glycoside and their malonate conjugates. Trace levels of daidzein and genistein acetyl glycosides were found only in the mature dry soybean seeds. To facilitate quantitative analysis, acid hydrolysis during extraction of soy samples was selected to convert the various phytoestrogen conjugates into their respective isoflavone aglycones, allowing accurate quantitation of total phytoestrogens as aglycones. On the basis of HPLC combined with UV and MS detection, all three targeted soy isoflavone aglycones, daidzein, genistein and glycitein in hydrolyzed extracts were successfully quantified within 25 min with formononetin used as the internal standard. The standard curves of UV detection were fitted in the range of 14.16-29000 ng/mL for daidzein, 15.38-31500 ng/mL for genistein, and 11.72-24000 ng/mL for glycitein. For MS detection, the standard curves were established in the range of 3.54-1812.5 ng/mL for daidzein, 3.85-1968.75 ng/mL for genistein, and 2.93-1500 ng/mL for glycitein. Good linearities (r(2) > 0.999 for UV and r(2) > 0.99 for MS) for standard curves were achieved for each isoflavone. The accuracy and precision (RSD) were within 10% for UV detection and 15% for MS detection (n = 10). Using this method, the phytoestrogen levels of total isoflavone aglycones from 30 soybean seed varieties were then evaluated for confirmation of the technique. Total isoflavones ranged across the varieties from 0.02 to 0.12% in the Edamame varieties, which are harvested while the seeds are still immature, and from 0.16 to 0.25% in Tofu varieties, harvested when the seeds are physiologically mature. While the literature has focused on the isoflavone content of soy products and processing soy, this report provides a reliable analytical technique for screening of authenticated fresh immature Edamame soybeans and Tofu soybeans.  相似文献   

17.
The in vitro angiotensin I-converting enyzme (ACE) inhibitory activity of Pacific hake hydrolysates was investigated as a function of hydrolysis conditions, starting material variability, and ultrafiltration. Hake fillets were hydrolyzed using Protamex protease under various conditions of pH, hydrolysis time, and enzyme-to-substrate ratio (% E/S) according to a response surface methodology (RSM) central composite design. The hydrolysate produced at pH 6.5, 125 min, and 3.0% E/S had an IC 50 of 165 +/- 9 microg of total solids/mL. ACE-inhibitory activity was not significantly different (P < 0.05) for hydrolysates produced using higher time-enzyme combinations within the model or from fish of different catches. Ultrafiltration (10 kDa molecular mass cutoff) resulted in an IC50 value of 44 +/- 7 microg of peptides/mL, 2.5 times more potent than the commercial product PeptACE Peptides (IC50 = 114 +/- 8 microg of peptides/mL). These results suggest that hydrolysates prepared with minimal fractionation from Pacific hake, an undervalued fish, may be a commercially competitive source of ACE-inhibitory peptides.  相似文献   

18.
The reliability of databases on the isoflavone composition of foods designed to estimate dietary intakes is contingent on the assumption that soy foods are consistent in their isoflavone content. To validate this, total and individual isoflavone compositions were determined by HPLC for two different soy protein isolates used in the commercial manufacture of soy foods over a 3-year period (n = 30/isolate) and 85 samples of 40 different brands of soy milks. Total isoflavone concentrations differed markedly between the soy protein isolates, varying by 200-300% over 3 years, whereas the protein content varied by only 3%. Total isoflavone content varied by up to 5-fold among different commercial soy milks and was not consistent between repeat purchases. Whole soybean milks had significantly higher isoflavone levels than those made from soy protein isolates (mean +/- SD, 63.6 +/- 21.9 mg/L, n = 43, vs 30.2 +/- 5.8 mg/L, n = 38, respectively, p < 0.0001), although some isolated soy protein-based milks were similar in content to "whole bean" varieties. The ratio of genistein to daidzein isoflavone forms was higher in isolated soy protein-based versus "whole bean" soy milks (2.72 +/- 0.24 vs 1.62 +/- 0.47, respectively, p < 0.0001), and the greatest variability in isoflavone content was observed among brands of whole bean soy milks. These studies illustrate large variability in the isoflavone content of isolated soy proteins used in food manufacture and in commercial soy milks and reinforce the need to accurately determine the isoflavone content of foods used in dietary intervention studies while exposing the limitations of food databases for estimating daily isoflavone intakes.  相似文献   

19.
Many studies investigating drug interactions with citrus compounds focus on the major grapefruit furanocoumarins bergamottin, dihydroxybergamottin, and the flavonoid naringenin. This study evaluated the influence of polymethoxylated flavones (PMFs), tangeretin, nobiletin, 3,5,6,7,8,3,4'-heptamethoxyflavone, and sinensetin, as well as other minor occurring citrus phenols, hesperetin, limettin, 7-OH-coumarin, 7-geranyloxycoumarin, and eriodictyol, on P-glycoprotein-mediated transport of the beta-blocker talinolol using the Caco-2 cell monolayer model and was used to determine the structure-function aspects of the interaction. The transport of talinolol across Caco-2 cells monolayers was determined in the absence and presence of distinct concentrations of the calcium-channel blocker verapamil (a known inhibitor of P-glycoprotein) and citrus compounds. A sigmoid dose-response model was used to fit the data and to estimate the IC50 values of the potential inhibitors. Results from this study show that PMFs significantly decreased talinolol transport from the basolateral to apical side, where tangeretin had the lowest IC50 of 3.2 micromol/L, followed by nobiletin, heptamethoxyflavone, and sinensetin with IC50 values of 3.5, 3.8, and 3.9 micromol/L, respectively. However, the efficacy of the compounds did not appear to be dependent on the number of methoxy groups. Other citrus compounds did not have any significant effect on the transport of talinolol. This study suggests that PMFs have a high potential in the interaction with P-gp-mediated talinolol transport in Caco-2 cells. Based on their relatively low concentrations (< or =3 microg/mL) in citrus, the clinical relevance of these interactions needs to be further elucidated in in vivo studies.  相似文献   

20.
Lunasin and Bowman-Birk protease inhibitor (BBI) are two soybean peptides to which health-promoting properties have been attributed. Concentrations of these peptides were determined in skim fractions produced by enzyme-assisted aqueous extraction processing (EAEP) of extruded full-fat soybean flakes (an alternative to extracting oil from soybeans with hexane) and compared with similar extracts from hexane-defatted soybean meal. Oil and protein were extracted by using countercurrent two-stage EAEP of soybeans at 1:6 solids-to-liquid ratio, 50 °C, pH 9.0, and 120 rpm for 1 h. Protein-rich skim fractions were produced from extruded full-fat soybean flakes using different enzyme strategies in EAEP: 0.5% protease (wt/g extruded flakes) used in both extraction stages; 0.5% protease used only in the second extraction stage; no enzyme used in either extraction stage. Countercurrent two-stage protein extraction of air-desolventized, hexane-defatted soybean flakes was used as a control. Protein extraction yields increased from 66% to 89-96% when using countercurrent two-stage EAEP with extruded full-fat flakes compared to 85% when using countercurrent two-stage protein extraction of air-desolventized, hexane-defatted soybean flakes. Extruding full-fat soybean flakes reduced BBI activity. Enzymatic hydrolysis reduced BBI contents of EAEP skims. Lunasin, however, was more resistant to both enzymatic hydrolysis and heat denaturation. Although using enzymes in both EAEP extraction stages yielded the highest protein and oil extractions, reducing enzyme use to only the second stage preserved much of the BBI and Lunasin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号