首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated relationships between molecular weight distributions of unreduced grain proteins and grain, flour, and end‐use quality characteristics of soft white winter wheats grown in Oregon. Absorbance area and area percentage values of protein fractions separated by size‐exclusion HPLC (SE‐HPLC) showed significant correlations with quality characteristics, indicating associations of molecular weight distributions of proteins with quality characteristics. Specifically, high molecular weight polymeric protein fractions appeared to have a detrimental effect on soft wheat quality. This was shown by significant positive correlations with single kernel hardness index, and mixograph water absorption and tolerance, and negative correlations with break flour yield, cookie diameter, and cake volume. Higher proportions of soluble monomeric protein fraction eluted after the main gliadin peak, were associated with soft wheat quality due to negative associations with single kernel hardness index and mixograph water absorption and tolerance, and positive associations with break flour yield, cookie diameter, and cake volume. Calibration models were developed by the application of multivariate analyses to the SE‐HPLC data. These models explained >90% of the variation in mixograph water absorption and cookie diameter and thickness.  相似文献   

2.
To investigate relationships of wheat single kernel (SK) characteristics with end-use properties, we used 12 hard winter wheat cultivars harvested at six regions in Kansas in 1993. Significant positive correlations occurred among wheat hardness parameters including near-infrared reflectance hardness score, SK hardness index (SK-HI), and SK peak force (SK-PF) obtained by the Single Kernel Characterization System (SKCS). The SKCS characteristics also were significantly correlated to conventional wheat quality parameters such as test weight, kernel density, and kernel sizing. Flour yields were significantly correlated with SK-PF, SK-HI, and SK weight (SK-WT), suggesting the usefulness of SKCS in evaluating milling quality. The negative correlation of milling score with the standard deviation of SK-HI and SK-PF indicated that uniformity of SK hardness is desirable for good milling performance. However, bread loaf volumes had significant negative correlations with SK diameter and SK-WT, mainly due to the inverse relationship between wheat protein contents and kernel weights or sizes. Loaf volume regression values, the changes in loaf volumes per one percentage point of flour protein, also had significant negative correlations with SK-HI, SK-PF, and SK-WT.  相似文献   

3.
Manufacture of pasta products is paramount for durum wheat (Triticum turgidum L. var. durum). The recent development of waxy durum wheat containing starch with essentially 100% amylopectin may provide new food processing applications and present opportunities for value‐added crop production. This investigation was conducted to determine differences in some chemical and functional properties of waxy durum starch. Starch was isolated from two waxy endosperm lines and four nonwaxy cultivars of durum wheat. One of the waxy lines (WX‐1) was a full waxy durum wheat whereas the other line (WX‐0) was heterogeneous, producing both waxy and nonwaxy seed. Effects on starch swelling, solubility, pasting, gelatinization, and retrogradation were examined. The full waxy starch had four times more swelling power than the nonwaxy durum starches at 95°C, and was also more soluble at three of the four temperatures used. Starch pasting occurred earlier and peak viscosities were greater for starches from both waxy lines than for the nonwaxy starches, but their slurries were less stable with continued stirring and heating. Greater energy was required to melt gelatinized waxy starch gels, but no differences were found in either refrigerated storage or freeze‐thaw retrogradation, as determined by differential scanning calorimetry. The results of this investigation showed some significant differences in the starch properties of the waxy durum wheat lines compared to the nonwaxy durum wheats.  相似文献   

4.
A waxy spring wheat (Triticum aestivum L.) genotype was fractionated into flour and starch by roller and wet‐milling, respectively. The resultant flour and starch were evaluated for end‐use properties and compared with their counterparts from hard and soft wheats and with commercial waxy and nonwaxy corn (Zea mays L.) starches. The waxy wheat flour had exceptionally high levels of water absorption and peak viscosity compared with hard or soft wheat flour. The flour formed an intermediate‐strength dough that developed rapidly and was relatively susceptible to mixing. Analysis by differential scanning calorimetry and X‐ray diffractometry showed waxy wheat starch had higher gelatinization temperatures, a greater degree of crystallization, and an absence of an amylose‐lipid complex compared with nonwaxy wheat. Waxy wheat and corn starches showed greater refrigeration and freeze‐thaw stabilities than did nonwaxy starches as demonstrated by syneresis tests. They were also similar in pasting properties, but waxy wheat starch required lower temperature and enthalpy to gelatinize. The results show analogies between waxy wheat and waxy corn starches, but waxy wheat flour was distinct from hard or soft wheat flour in pasting and mixing properties.  相似文献   

5.
6.
The relative effects of environment, genotype, and their interactions on the modification of Asian noodle quality attributes were assessed using 38 winter wheat (Triticum aestivum L.) cultivars and breeding lines grown in replicated trials at three Nebraska locations in harvest year 2000. Noodle color was determined in both white salted and yellow alkaline procedures, and noodle textural features were investigated by producing white salted noodles. Significant environmental, genotypic, and genotype‐by‐environment variation was observed for nearly all initial and 24‐hr noodle color traits in both types of noodles. Significant genotypic effects were observed for several textural traits, while significant environmental effects were observed only for noodle hardness and water uptake. However, among the noodle textural traits, the genotype‐by‐environment interaction was significant only for noodle firmness. High and significant phenotypic correlations were observed between color traits in the two noodle applications. Genetic correlations were of lower magnitude, indicating the possibility of breeding wheats specifically for various noodle color types. Strong negative phenotypic and genetic correlations were observed between flour protein content and noodle brightness (L*) values in both yellow alkaline and white‐salted applications. Textural traits largely were independent of noodle color traits. When significant phenotypic or genetic correlations were observed between variable pairs, invariably similar correlations were observed with flour protein content. Noodle cutting force, cutting area, and final thickness showed strong phenotypic and genetic correlations with each other and with protein content. These variables largely were independent of noodle firmness and hardness, which were, in turn, more dependent on alleles at the wheat wx‐A1 and wx‐B1 (waxy) loci. Noodle firmness was greatest in flours from wild‐type wheats; lines with a null allele only at the wx‐A1 locus did not differ from wild‐type. Softest noodles were produced from lines carrying null alleles at both wx‐A1 and wx‐B1, while lines with a null only at wx‐B1 were intermediate in softness.  相似文献   

7.
Free lipids (FL) were extracted from straight‐grade flours (SF) and the air‐classified high‐protein fractions (ACHPF) of nine hard winter wheats. The mean values of FL contents in 10 g (db) SF and ACHPF were, respectively, 92.8 and 178.5 mg for total FL, 74.1 and 141.9 mg for nonpolar lipids (NL), 12.8 and 20.9 mg for glycolipids (GL), and 4.9 and 12.0 mg for phospholipids (PL). FL compositions of SF and ACHPF showed nonsignificant differences in NL (80.7 and 81.1% of the FL) but significant differences in GL (13.9 and 12.0% of the FL) and PL (5.4 and 6.9% of the FL). Fortification of SF with ACHPF by blending to reach 13% protein content increased gluten quantity and thereby loaf volume but decreased gluten index, loaf volume regression, and crumb grain scores. NL contents showed significant relationships with dry gluten contents (r = 0.79) and gluten index (r = ‐0.83) values, indicating that high NL content in ACHPF could decrease gluten quality of fortified flours. Thus, an optimum balance should be maintained during fortification.  相似文献   

8.
The Waxy (Wx) gene in hexaploid wheat (Triticum aestivum L.) encodes granule‐bound starch synthase (GBSS1), which is involved in the synthesis of amylose, a mostly linear glucan polymer that makes up ∼25% of wheat starch. A null mutation of the Wx gene in each of the three genomes is associated with starch almost entirely consisting of the branched glucan polymer amylopectin (waxy starch), with corresponding changes in functionality. However, the rheological behavior of partially waxy starch remains unclear. The objective of this study was to characterize flour and baking quality in 16 near‐isogenic lines, null at the Wx locus on zero, one, two, or all three genomes, grown in four different environments. Across allelic groups, significant variations in amylose concentrations, flour paste viscosity, loaf structure and texture, dough stability, and proximate variables were observed. Because waxy wheat starch has greater water absorbance and resistance to retrogradation than normal starch, its inclusion in flour blends has been suggested as a means of improving the texture and appearance of bakery products and noodles. The results indicate that wheat encoding <3 functional homeologs of GBSS1 produces starch that has potential in the production of certain food items, such as Asian noodles. However, further research is necessary to determine the optimal amylose‐to‐amylopectin ratio to improve baking quality.  相似文献   

9.
Ninety‐two wheat genotypes including 50 cultivars released in India and 42 germplasm lines were subjected to solvent retention capacity (SRC) tests using 1 g of flour and 1 g of whole meal to see the relationship with cookie‐making quality and the utility in breeding programs. Very high negative correlations (P < 0.001) were observed between cookie diameter and spread factor and alkaline water retention capacity (AWRC), and solvent retention capacities of both flour and whole meal samples. Multiple regression analysis showed that AWRC explained 43.8%, sodium carbonate SRC 27.3%, lactic acid SRC 15.1%, and protein content 13.8% of the total variability (multiple r = 0.87) in cookie diameter. Total variability (multiple r = 0.85) in spread factor was explained 40.3% by AWRC, 27.4% by SODSRC, 14.5% by LASRC, and 17.8% by protein content. When the technique was further used to reduce the number of parameters contributing to cookie diameter, AWRC explained 67.2% of the total variability (multiple r = 0.85) and the rest by lactic acid SRC and protein content. Surprisingly, multiple regression analysis of whole meal samples exhibited that lactic acid SRC and sodium carbonate SRC explained 88 and 12%, respectively, of the total variability (multiple r = 0.76) in cookie diameter and 78 and 22%, respectively, of the total variability (multiple r = 0.71) in spread factor. Among the soft wheat flour samples selected based on W > 7.70 cm, pentosan content as revealed by sucrose SRC explained 87.7% of the total variability (multiple r = 0.54) of cookie diameter and 83.8% of total variability (multiple r = 0.52) in spread factor. Clustering of genotypes based on SRC profiles using both flour and whole meal produced clusters with similar average cookie diameter and spread factor. The data clearly demonstrate that whole meal tests can be used in screening the recombinant lines as well as in selecting desirable genotypes for making crosses to enhance cookie‐making quality.  相似文献   

10.
Breeding for high‐amylose corn requires a rapid analytical method for determining starch amylose so that generating wet chemistry values does not pose a major limitation in the volume of materials that can be screened. Two methods for determining apparent amylose content (AAC) were examined and compared with an iodine‐binding method involving the solubilization of isolated starch in a sodium hydroxide solution (method 1). These methods included one based on near‐infrared transmittance spectroscopy (NIRT) (method 2) and another iodine‐binding method involving the solubilizing of starch from ground whole corn with a DMSO‐iodine solution (method 3). These methods were chosen because, aside from initial set up costs, they are relatively rapid and inexpensive to perform. The materials evaluated consisted of various exotic corn populations including plant introductions and experimental materials generated from the Germplasm Enhancement of Maize (GEM) project. Crosses were made between these materials and a Corn Belt dent hybrid (OH43 × H99) converted with the amylose‐extender (ae) allele. Grain from F2 ears, presumed to be homozygous for the ae allele based on visual selection of mutant kernels on F1 ears from which they were planted, were then evaluated to identify possible modifiers of ae conditioning high starch AAC. From a total of 1,006 F2 ears, a core set consisting of 155 samples was established and only these were subjected to starch AAC analysis, using all three methods to compare the methods. Method 2 showed poor correlation to method 1 (r = 0.88), however, NIRT did appear to discriminate between samples converted to ae vs. those with a normal or possibly segregating endosperm type. Method 3 showed a slightly better correlation with method 1 (r = 0.92) and appeared to more fully discriminate among samples with AAC values >65% from those at ≈55%. Results from this study suggest that NIRT may be useful when a quick screening method is needed to discriminate mutant from nonmutant genotypes within grain samples of exotic germplasm especially when visual identification is difficult. In addition, method 3 could be used to replace the more time‐consuming method 1 when trying to identify high AAC levels among ae genotypes, even though some inconsistency was observed between the two methods. Finally, this study revealed that exotic germplasm may be an important source of new modifiers to the ae allele because values as high as 70% AAC were identified.  相似文献   

11.
Maize starches of the endosperm mutants waxy (wx), dull:waxy (duwx), and amylose‐extender:dull:waxy (aeduwx) from inbred line Ia453 lack amylose. However, in addition to high molecular weight (HMW) amylopectin, the duwx and aeduwx starches contained 40 and 80%, respectively, intermediate branched material of low molecular weight (LMW). As gelatinized, the amylopectin of the wx starch was easily hydrolyzed into small dextrins by the α‐amylase of B. amyloliquefaciens, but components of duwx and aeduwx possessed partial resistance to amylolytic attack. Residual material of intermediate size obtained by a 4‐hr α‐amylolysis could not be separated from LMW dextrins by fractional precipitation in methanol. It is suggested that this material possessed a more regularly branched structure, in which the d ‐glucosyl chain segments were too short to allow α‐amylase action. The granular starches of duwx and aeduwx genotypes were initially considerably more resistant than the wx sample to α‐amylase attack. This was possibly due to an altered structure in the amylopectin component or the high content of intermediate material in the former granules.  相似文献   

12.
The practical applications of flour from waxy (amylose‐free) hexaploid wheat (Triticum aestivum L.) were assessed. The applications evaluated were bread, cakes, white salted noodles, and pasta for gyoza. An excessive addition of waxy hexaploid wheat flour to total wheat flour (>20%) resulted in poorer functional properties (sticky, lumpy, or less crispy textures) in almost every end use product. However, incorporation of <20% waxy hexaploid wheat flour, produced considerable improvement in shelf‐life characteristics. After one day of storage, the bread from flour including waxy hexaploid wheat flour maintained moistness, softness, and stickiness. This application of waxy hexaploid wheat flour as an antistaling ingredient was also confirmed in cake products. Tests were also conducted on alimentary pasta products. In alimentary pasta, waxy hexaploid wheat flour was most effective when utilized for frozen fried dumplings (gyoza). By using flour including 30 or 50% waxy hexaploid wheat flour, the problem of firmness was solved without other ingredients. In conclusion, flour from waxy hexaploid wheat may be useful in developing more increased staling‐ and freezing‐tolerant grain‐based foods. Starch properties could be responsible for these improved characteristics.  相似文献   

13.
Double‐null partial waxy wheat (Triticum aestivum L.) flours were used for isolation of starch and preparation of white salted noodles and pan bread. Starch characteristics, textural properties of cooked noodles, and staling properties of bread during storage were determined and compared with those of wheat flours with regular amylose content. Starches isolated from double‐null partial waxy wheat flours contained 15.4–18.9% amylose and exhibited higher peak viscosity than starches of single‐null partial waxy and regular wheat flours, which contained 22.7–25.8% amylose. Despite higher protein content, double‐null partial waxy wheat flours, produced softer, more cohesive and less adhesive noodles than soft white wheat flours. With incorporation of partial waxy prime starches, noodles produced from reconstituted soft white wheat flours became softer, less adhesive, and more cohesive, indicating that partial waxy starches of low amylose content are responsible for the improvement of cooked white salted noodle texture. Partial waxy wheat flours with >15.1% protein produced bread of larger loaf volume and softer bread crumb even after storage than did the hard red spring wheat flour of 15.3% protein. Regardless of whether malt was used, bread baked from double‐null partial waxy wheat flours exhibited a slower firming rate during storage than bread baked from HRS wheat flour.  相似文献   

14.
Effects of heat stress (mean day/night temperatures of 35.2/16.1 and 27.4/15.6°C for heat stress and control, respectively) during different grain‐filling phases (1–10, 11–20, 21–30, 31–40, and 1–40 days after pollination [DAP]) on the grain yield and quality of waxy maize were investigated using two varieties. Heat stress decreased the number and weight of grains, thereby reducing grain yield. The effects of heat stress at an early grain development stage (before 20 DAP) were severe. Compared with the control, starch deposition was not affected by heat stress in Suyunuo5, and it was only decreased by heat stress at 1–10 DAP in Yunuo7. Protein content responses to heat stress were variety and stage dependent. Heat stress increased the iodine‐binding capacities of both varieties. Peak and breakdown viscosities were decreased by heat stress, and the effects gradually decreased with postponement of high temperature. Heat stress increased gelatinization temperature and retrogradation percentage for both varieties, and the response was stage dependent. Heat stress during the whole grain‐filling period increased the pasting and gelatinization temperatures but decreased gelatinization enthalpy. Changes in protein and starch contents as well as the proportion of long chains in amylopectin affected the pasting and thermal properties.  相似文献   

15.
A single wheat class or blended wheats from two wheat classes are usually milled in a flour mill. A near‐infrared (NIR) reflectance spectrometer, previously evaluated as granulation sensor for first‐break ground wheat from six wheat classes, was evaluated for a single wheat class, hard red winter (HRW) wheat, using offline methods. The HRW wheats represented seven cultivars ground by an experimental roller mill at five roll gap settings (0.38, 0.51, 0.63, 0.75, and 0.88 mm) which yielded 35 ground wheat samples each for the calibration and validation sets. Granulation models based on partial least squares regression were developed with cumulative mass of size fractions as a reference value. Combinations of four data pretreatments (log 1/R, baseline correction, unit area normalization, and derivatives) and subregions of the 400–1,700 nm wavelength range were evaluated. Models that used pathlength correction (unit area normalization) predicted well each of the four size fractions of first‐break ground wheat. The best model, unit area normalization and first derivative, predicted all the validation spectra with standard errors of performance of 3.80, 1.29, 0.43, and 0.68 for the >1041, >375, >240, and >136 μm size fractions, respectively. Ground HRW wheats have narrower particle size distribution and better sieving properties than ground wheat from six wheat classes. Thus, HRW wheat granulation models performed better than the previously reported models for six wheat classes.  相似文献   

16.
Plant breeding programs are active worldwide in the development of waxy hexaploid (Triticum aestivum L.) and tetraploid (T. turgidum L. var. durum) wheats. Conventional breeding practices will produce waxy cultivars adapted to their intended geographical region that confer unique end use characteristics. Essential to waxy wheat development, a means to rapidly and, ideally, nondestructively identify the waxy condition is needed for point‐of‐sale use. The study described herein evaluated the effectiveness of near‐infrared (NIR) reflectance single‐kernel spectroscopy for classification of durum wheat into its four possible waxy alleles: wild type, waxy, and the two intermediate states in which a null allele occurs at either of the two homologous genes (Wx‐1A and Wx‐1B) that encodes for the production of the enzyme granule bound starch synthase (GBSS) that controls amylose synthesis. Two years of breeders' samples (2003 and 2004), corresponding to 47 unique lines subdivided about equally into the four GBSS genotypes, were scanned in reflectance (1,000–1,700 nm) on an individual kernel basis. Linear discriminant analysis models were developed using the best set of four wavelengths, best four wavelength differences, and best four principal components. Each model consistently demonstrated the high ability (typically >95% of the time) to classify the fully waxy genotype. However, correct classification among the three other genotypes (wild type, wx‐A1 null, and wx‐B1 null) was generally not possible.  相似文献   

17.
The objective of this study was to evaluate protein composition and its effects on flour quality and physical dough test parameters using waxy wheat near‐isogenic lines. Partial waxy (single and double nulls) and waxy (null at all three waxy loci, Wx‐A1, Wx‐B1, and Wx‐D1) lines of N11 set (bread wheat) and Svevo (durum) were investigated. For protein composition, waxy wheats in this study had relatively lower albumins‐globulins than the hard winter wheat control. In the bread wheats (N11), dough strength as measured by mixograph peak dough development time (MDDT) (r = 0.75) and maximum resistance (Rmax) (r = 0.70) was significantly correlated with unextractable polymeric protein (UPP), whereas in durum wheats, moderate correlation was observed (r = 0.73 and 0.59, respectively). This may be due to the presence of high molecular weight glutenin subunits (HMW‐GS) Dx2+Dy12 at the Glu‐D1 locus instead of Dx5+Dy10, which are associated with dough strength. Significant correlation of initial loaf volume (ILV) to flour polymeric protein (FPP) (r = 0.75) and flour protein (FP) (r = 0.63) was found in bread wheats, whereas in durum wheats, a weak correlation of ILV was observed with FP (r = 0.09) and FPP (r =0.51). Significant correlation of ILV with FPP in bread wheats and with % polymeric protein (PPP) (r = 0.75) in durum lines indicates that this aspect of end‐use functionality is influenced by FPP and PPP, respectively, in these waxy wheat lines. High ILV was observed with 100% waxy wheat flour alone and was not affected by 50% blending with bread wheat flour. However, dark color and poor crumb structure was observed with 100% waxy flour, which was unacceptable to consumers. As the amylopectin content of the starch increases, loaf expansion increases but the crumb structure becomes increasingly unstable and collapses.  相似文献   

18.
Hard winter wheat (Triticum aestivum L.) flours (n = 72) were analyzed for free lipids (FL) and their relationships with quality parameters. The two main glycolipid (GL) classes showed contrary simple linear correlations (r) with quality parameters. Specifically, kernel hardness parameters, flour yields, and water absorptions had significant negative correlations with monogalactosyldiglycerides (MGDG) but positive correlations with digalactosyldiglycerides (DGDG). MGDG showed negative correlations with gluten content but positive correlations with gluten index. The percentages of DGDG in FL had significant positive correlations among cultivars (n = 12) with mixograph and bake mix times (r = 0.71, P < 0.01 and r = 0.67, P < 0.05, respectively), mixing tolerance (r = 0.67, P < 0.05), and bread crumb grain score (r = 0.71, P < 0.01). These results suggest that increasing DGDG in FL could contribute to enhancing wheat quality attributes including milling, dough mixing, and breadmaking quality characteristics. FL content and composition (ratio of MGDG or DGDG to GL) supplement flour protein content to develop prediction equations of mixograph mix time (R2 = 0.89), bake mix time (R2 = 0.76), and loaf volume (R2 = 0.72).  相似文献   

19.
Extrusion with CO2 injection was developed to simplify the process of producing vacuum‐puffed yukwa (rice snacks). The effects of feed moisture content and CO2 injection on the characteristics of extruded pellets (maximum viscosity and degree of gelatinization) and vacuum‐puffed yukwa (expansion ratio, bulk density, hardness, and color) were investigated. Higher feed moisture increased the size of vacuum‐puffed yukwa and the degree of gelatinization, whereas the maximum viscosity decreased. Maximum viscosity and gelatinization degree of extruded pellets were highly correlated with expansion ratio, bulk density, hardness, and color values of vacuum‐puffed yukwa. Increasing feed moisture content significantly increased expansion ratio but decreased bulk density and hardness. CO2 injection decreased bulk density and hardness of vacuum‐puffed yukwa.  相似文献   

20.
Relationships between flour functional properties and protein composition were studied using a set of 138 Argentinean wheat samples. Among different protein groups, the incremental increase of gliadin with increasing grain protein content was highest followed by polymeric protein with albumin‐globulin content much lower. Functional properties could be divided into two groups based on dependence on protein composition. Properties such as dough extensibility and bake test loaf volume correlated highly with the percentage of polymeric protein in the grain. Properties such as mixograph dough development time were best correlated with the percentage of polymeric protein in the protein (PPP). Alveograph tenacity showed no significant dependence on PPP. as found previously for extensigraph maximum resistance, but it was correlated with the percentage of unextractable polymeric protein in the protein. Energy (W) appeared to be a more useful alveograph parameter for predicting flour quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号