首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficiently utilizing the nongrain portion of the corn plant as ruminant food and the grain for ethanol will allow the optimization of both food and fuel production. Corn and corn stover could be more effectively used if they were harvested earlier before dry down. Corn harvested at different moisture contents (MCs) may exhibit different processing characteristics for the ethanol industry, because of differences in physical and chemical properties. Therefore, the objective of this study was to investigate the effect of corn harvest MC on dry‐grind fermentation characteristics and dried distillers grains with solubles (DDGS) composition. Pioneer hybrid 32D78 was harvested at seven different dates from August 21 to November 23, 2009, with harvest MCs ranging from 73 to 21% (wb). The corn samples with different harvest MCs were evaluated by a conventional dry‐grind process. Final ethanol concentration from the corn with harvest MC of 54% (kernel dent stage) was 17.9% (v/v), which was significantly higher (0.5–1.2 percentage points) than the mature corn with lower harvest MCs (P < 0.05). Ethanol conversion efficiencies for the corn with harvest MCs of 73 and 54% (wb) were 98.5 and 93.2%, respectively, whereas ethanol conversion efficiencies for the corn with lower harvest MCs were significantly lower (P < 0.05), ranging between 83.2 and 88.3%. For DDGS composition, with corn harvest MC decreasing from 73 to 21% (wb), the residual starch concentration increased from 7.7 to 15.2%, the crude protein concentration decreased from 29.4 to 24.9%, and the neutral detergent fiber concentration decreased from 26.6 to 20.6%.  相似文献   

2.
Corn hybrids were compared to determine the fate of recombinant Bt protein (CRY1Ab from Bacillus thuringiensis) in coproducts from dry grind and wet‐milled corn during production of fuel ethanol. Two pairs of Bt and non‐Bt hybrids were wet milled, and each fraction was examined for the presence of the Bt protein. Bt protein was found in the germ, gluten, and fiber fractions of Bt hybrids. In addition, one set of Bt and non‐Bt hybrids were treated by the dry‐grind ethanol process and Bt protein was monitored during each step of the process. The Bt protein was not detected after liquefaction. Subsequent experiments determined that the Bt protein is rapidly denatured at liquefaction temperatures. Finally, five hybrids were compared for ethanol yield after dry grinding. Analysis of fermentation data with an F‐test revealed the percent of total starch available for conversion into ethanol varied significantly among the hybrids (P < 0.002), indicating ethanol yield is not exclusively dependent on starch content. No difference, however, was observed between Bt and non‐Bt corn hybrids for either ethanol productivity or yield.  相似文献   

3.
In a conventional dry‐grind corn process, starch is converted into dextrins using liquefaction enzymes at high temperatures (90–120°C) during a liquefaction step. Dextrins are hydrolyzed into sugars using saccharification enzymes during a simultaneous saccharification and fermentation (SSF) step. Recently, a raw starch hydrolyzing enzyme (RSH), Stargen 001, was developed that converts starch into dextrins at low temperatures (<48°C) and hydrolyzes dextrins into sugars during SSF. In this study, a dry‐grind corn process using RSH enzyme was compared with two combinations (DG1 and DG2) of commercial liquefaction and saccharification enzymes. Dry‐grind corn processes for all enzyme treatments were performed at the same process conditions except for the liquefaction step. For RSH and DG1 and DG2 treatments, ethanol concentrations at 72 hr of fermentation were 14.1–14.2% (v/v). All three enzyme treatments resulted in comparable ethanol conversion efficiencies, ethanol yields, and DDGS yields. Sugar profiles for the RSH treatment were different from DG1 and DG2 treatments, especially for glucose. During SSF, the highest glucose concentration for RSH treatment was 7% (w/v), whereas for DG1 and DG2 treatments, glucose concentrations had maximum of 19% (w/v). Glycerol concentrations were 0.5% (w/v) for RSH treatment and 0.8% (w/v) for DG1 and DG2 treatments.  相似文献   

4.
Widespread epidemics of Stenocarpella ear rot (formerly Diplodia ear rot) have occurred throughout the central U.S. Corn Belt in recent years, but the influence of S. maydis infected grain on corn ethanol production is unknown. In this study, S. maydis infected ears of variety Heritage 4646 were hand‐harvested in 2010 from a production field in central Illinois and segregated into one of five levels of ear rot severity based upon visual symptoms. The concentration of ergosterol, a sterol produced by fungi but not plants, was observed to increase with the severity of ear rot (127–306.5 μg/g), and none was detected in the control corn. Corn test weight declined with progression of the disease and was 42.6% lower for the most severely rotted grain from ears infected early in their development. Accompanying changes in composition were also apparent. Crude fat and oil contents decreased (from 4.7 to 1.5%) and fiber increased (from 6.6 to 9.6%), but starch content remained largely invariant. Oil composition also varied among the infected samples. Control and infected corn samples were subjected to ethanol fermentation with a laboratory‐scale corn dry‐grind ethanol process. Ethanol yields for control and infected samples were similar on an equivalent weight basis (2.77–2.85 gal/bu). In comparison with the control, S. maydis infection altered the distillers dried grains with solubles (DDGS) properties, wherein the crude protein was significantly higher and oil significantly reduced, and ash, fiber, and yield per ton were not significantly different. Based upon these results, we conclude that Stenocarpella ear rot has the potential to affect DDGS composition but not ethanol yield on an equivalent weight basis.  相似文献   

5.
An amylase corn has been developed that produces an α‐amylase enzyme that is activated in the presence of water at elevated temperatures (>70°C). Amylase corn in the dry‐grind process was evaluated and compared with the performance of exogenous amylases used in dry‐grind processing. Amylase corn (1–10% by weight) was added to dent corn (of the same genetic background as the amylase corn) as treatments and resulting samples were evaluated for dry‐grind ethanol fermentation using 150‐g and 3‐kg laboratory procedures. Ethanol concentrations during fermentation were compared with the control treatment (0% amylase corn addition or 100% dent corn) which was processed with a conventional amount of exogenous α‐amylase enzymes used in the dry‐grind corn process. The 1% amylase corn treatment (adding 1% amylase corn to dent corn) was sufficient to liquefy starch into dextrins. Following fermentation, ethanol concentrations from the 1% amylase corn treatment were similar to that of the control. Peak and breakdown viscosities of liquefied slurries for all amylase corn treatments were significantly higher than the control treatment. In contrast, final viscosities of liquefied slurries for all amylase corn treatments were lower than those of the control. Protein, fat, ash, and crude fiber contents of DDGS samples from the 3% amylase corn treatment and control were similar.  相似文献   

6.
In dry‐grind processing to produce ethanol from corn, unfermented solids are removed from ethanol by distillation and dried to produce distillers dried grains with solubles (DDGS), an animal food. Fouling of thin stillage evaporators has been identified as an important energy consumption issue in dry‐grind facilities. Using an annular fouling apparatus, four batches of thin stillage were analyzed to determine repeatability of fouling rate and induction period measurements. Dry solids, protein and ash concentrations, and pH were correlated to fouling rate and induction period to determine how variation in thin stillage from the same dry‐grind facility affects these fouling parameters. Effects of increasing Reynolds number (Re) in the laminar region on fouling rate, induction period, and fouling deposit protein and ash concentrations were also determined. Repeatability of fouling rate measurements was similar to other studies (CV < 7.0%) but repeatability of induction period measurements was high relative to other studies (CV < 88.7%). Fouling rate increased with increasing dry solids concentration. Thin stillage at Re = 440 had shorter induction periods and greater fouling rates than at Re = 880. Fouling deposits collected from Re = 440 tests had similar protein concentrations and lower ash concentrations compared with deposits from Re = 880 tests.  相似文献   

7.
Three different modified dry‐grind corn processes, quick germ (QG), quick germ and quick fiber (QGQF), and enzymatic milling (E‐Mill) were compared with the conventional dry‐grind corn process for fermentation characteristics and distillers dried grains with solubles (DDGS) composition. Significant effects were observed on fermentation characteristics and DDGS composition with these modified dry‐grind processes. The QG, QGQF, and E‐Mill processes increased ethanol concentration by 8–27% relative to the conventional dry‐grind process. These process modifications reduced the fiber content of DDGS from 11 to 2% and increased the protein content of DDGS from 28 to 58%.  相似文献   

8.
A new low temperature liquefaction and saccharification enzyme STARGEN 001 (Genencor International, Palo Alto, CA) with high granular starch hydrolyzing activity was used in enzymatic dry‐grind corn process to improve recovery of germ and pericarp fiber before fermentation. Enzymatic dry‐grind corn process was compared with conventional dry‐grind corn process using STARGEN 001 with same process parameters of dry solid content, pH, temperature, enzyme and yeast usage, and time. Sugar, ethanol, glycerol and organic acid profiles, fermentation rate, ethanol and coproducts yields were investigated. Final ethanol concentration of enzymatic dry‐grind corn process was 15.5 ± 0.2% (v/v), which was 9.2% higher than conventional process. Fermentation rate was also higher for enzymatic dry‐grind corn process. Ethanol yields of enzymatic and conventional dry‐grind corn processes were 0.395 ± 0.006 and 0.417 ± 0.002 L/kg (2.65 ± 0.04 and 2.80 ± 0.01 gal/bu), respectively. Three additional coproducts, germ 8.0 ± 0.4% (db), pericarp fiber 7.7 ± 0.4% (db), and endosperm fiber 5.2 ± 0.6% (db) were produced in addition to DDGS with enzymatic dry‐grind corn process. DDGS generated from enzymatic dry‐grind corn process was 66% less than conventional process.  相似文献   

9.
To evaluate the ethanol production performance of waxy sorghum hybrids and the effects of location and harvest year on ethanol yield, samples of four waxy sorghum hybrids collected from two Nebraska locations (Mead and Lincoln) in both 2009 and 2010 were tested for ethanol production in a dry‐grind process. No significant difference (P = 0.216) in starch contents was observed among the four hybrids, but starch contents of the hybrids were significantly affected by growth location (P = 0.0001) and harvest year (P = 0.0258). Location, hybrid, and harvest year all had significant effects on ethanol fermentation efficiency in the dry‐grind process. Lincoln sorghum samples showed higher (P = 0.022) ethanol fermentation efficiency (90.4%) than did Mead sorghum samples (90.0%). Sorghums harvested in 2010 had higher (P < 0.001) ethanol fermentation efficiency (91.1%) than those harvested in 2009 (89.3%). The 2009 sorghum flours had more amylose‐lipid complexes than the 2010 samples did, and amylose‐lipid complexes as previously reported had adverse effects on ethanol fermentation. Residual starch contents in distillers dried grains with solubles (DDGS) were significantly affected by hybrid and harvest year (P < 0.0001), but we observed no difference in protein content in DDGS from the four hybrids.  相似文献   

10.
The effects of alternative corn wet‐milling (intermittent milling and dynamic steeping (IMDS), gaseous SO2 and alkali wet‐milling) and dry grind ethanol (quick germ and quick fiber with chemicals) production technologies were evaluated on the yield and phytosterol composition (ferulate phytosterol esters, free phytosterols, and fatty acyl phytosterol esters) of corn germ and fiber oil and compared with the conventional wet‐milling process. Small but statistically significant effects were observed on the yield and composition of corn germ and fiber oil with these alternative milling technologies. The results showed that the germ and fiber fractions from two of the alternative wet‐milling technologies (the gaseous SO2 and the IMDS) had, for almost all of the individual phytosterol compounds, either comparable or signficantly higher yields compared with the conventional wet‐milling process. Also, both of the modified dry grind ethanol processes (the quick germ and quick fiber) with chemicals (SO2 and lactic acid) can be used as a new source of corn germ and fiber and can produce oils with high yields of phytosterols. The alkali wet‐milling process showed significantly lower yields of phytosterols compounds in germ but showed significantly higher yield of free phytosterols, fatty acyl phytosterol esters and total phytosterols in the fiber fraction.  相似文献   

11.
In the dry‐grind ethanol process, distillers dried grains with solubles (DDGS) is the main coproduct, which is primarily used as an ingredient in ruminant animal diets. Increasing the value of DDGS will improve the profitability of the dry‐grind ethanol process. One way to increase DDGS value is to use pigmented maize as the feedstock for ethanol production. Pigmented maize is rich in anthocyanin content, and the anthocyanin imparts red, blue, and purple color to the grain. It is reported that anthocyanin would be absorbed by yeast cell walls during the fermentation process. The effects of anthocyanin on fermentation characteristics in the dry‐grind process are not known. In this study, the effects of anthocyanin in conventional (conventional starch hydrolyzing enzymes) and modified (granular starch hydrolyzing enzymes [GSHE]) dry‐grind processes were evaluated. The modified process using GSHE replaced high‐temperature liquefaction. The ethanol conversion efficiencies of pigmented maize were comparable to that of yellow dent corn in both conventional (78.4 ± 0.5% for blue maize, 74.3 ± 0.4% for red maize, 81.2 ± 1.0% for purple maize, and 75.1 ± 0.2% for yellow dent corn) and modified dry‐grind processes using GSHE (83.8 ± 0.8% for blue maize, 81.1 ± 0.3% for red maize, 93.5 ± 0.8% for purple maize, and 85.6 ± 0.1% for yellow dent corn). Total anthocyanin content in DDGS from the modified process was 1.4, 1.9, and 2.4 times of that from the conventional process for purple, red, and blue maize samples, respectively. These results indicated that pigmented maize rich in anthocyanin did not negatively affect the fermentation characteristics of the dry‐grind process and that there was a potential to use pigmented maize in the dry‐grind process, especially when using GSHE.  相似文献   

12.
A modified dry‐grind corn process has been developed that allows recovery of both pericarp and endosperm fibers as coproducts at the front end of the process before fermentation. The modified process is called enzymatic milling (E‐Mill) dry‐grind process. In a conventional dry‐grind corn process, only the starch component of the corn kernel is converted into ethanol. Additional ethanol can be produced from corn if the fiber component can also be converted into ethanol. In this study, pericarp and endosperm fibers recovered in the E‐Mill dry‐grind process were evaluated as a potential ethanol feedstock. Both fractions were tested for fermentability and potential ethanol yield. Total ethanol yield recovered from corn by fermenting starch, pericarp, and endosperm fibers was also determined. Results show that endosperm fiber produced 20.5% more ethanol than pericarp fiber on a g/100 g of fiber basis. Total ethanol yield obtained by fermenting starch and both fiber fractions was 0.370 L/kg compared with ethanol yield of 0.334 L/kg obtained by fermenting starch alone.  相似文献   

13.
Four pearl millet genotypes were tested for their potential as raw material for fuel ethanol production in this study. Ethanol fermentation was performed both in flasks on a rotary shaker and in a 5‐L bioreactor using Saccharomyces cerevisiae (ATCC 24860). For rotary‐shaker fermentation, the final ethanol yields were 8.7–16.8% (v/v) at dry mass concentrations of 20–35%, and the ethanol fermentation efficiencies were 90.0–95.6%. Ethanol fermentation efficiency at 30% dry mass on a 5‐L bioreactor reached 94.2%, which was greater than that from fermentation in the rotary shaker (92.9%). Results showed that the fermentation efficiencies of pearl millets, on a starch basis, were comparable to those of corn and grain sorghum. Because pearl millets have greater protein and lipid contents, distillers dried grains with solubles (DDGS) from pearl millets also had greater protein content and energy levels than did DDGS from corn and grain sorghum. Therefore, pearl millets could be a potential feedstock for fuel ethanol production in areas too dry to grow corn and grain sorghum.  相似文献   

14.
The objectives of this study were to investigate the relationship between milling yield and grain hardness. A preliminary study was carried out with 20 samples (both hard and soft wheats) using the Brabender hardness tester (BHT) with two grind settings: one‐step grind (0‐10) and two‐step grind (2‐12: coarse; 0‐8: fine). The two‐step grind was correlated with particle size index, single‐kernel characterization system (SKCS) hardness, break yield, and reduction yield (P < 0.05), whereas there was no correlation with the one‐step grind method. An additional 64 samples were ground with the two‐step grind setting to further validate this method. In terms of the BHT crush profile, no discernible differences were observed between varieties for the coarse grind, whereas for the fine grind, hard wheat gave a higher BHT maximum peak height and shorter grinding time compared with soft wheat. The break and reduction yields were significantly correlated with both BHT and SKCS hardness (P < 0.05). The findings indicated that the BHT method could be used to differentiate for milling yield among the different varieties. Based on the results, two milling yield models were developed, and both gave highly significant correlations between the predicted and Buhler mill break (R2 = 0.791, P < 0.05) and reduction yield (R2 = 0.896, P < 0.05).  相似文献   

15.
With increasing production of distillers dried grains with solubles (DDGS), both fuel ethanol and animal feed industries are demanding standardized protocols for characterizing quality. AOCS Approved Procedure (Am 5‐04) was used for measuring crude oil content in milled corn and resulting DDGS. Selected factors, including sample type (milled corn, DDGS), sample origin (ethanol plant 1, 2, 3), sample particle size (original matrix, <0.71 mm, <0.50 mm mesh opening; the last two materials were obtained by grinding and sieving), solvent type (petroleum ether, hexane), extraction time (30, 60 min), and postextraction drying time (30, 60 min) were investigated by a complete factorial design. For milled corn, only sample origin and extraction time had significant effects (P < 0.05) on crude oil values measured, but for DDGS, besides those two factors, sample particle size, solvent type, and drying time also had significant effects. Among them, the particle size of DDGS had the most effect. On average, measured oil content in DDGS ranged from 11.11% (original matrix) to 12.12% (<0.71 mm) and to 12.55% (<0.50 mm). For measuring the crude oil content of DDGS, particle size reduction, 60 min of extraction, and 60 min of drying are recommended. Regardless of the underlining factors, the method was very repeatable (standard errors <0.05). The observed particle size effect on crude oil analysis of DDGS suggests the need for similar confirmations using other analytical methods.  相似文献   

16.
Aflatoxins, like all mycotoxins, are toxic fungal metabolites that can have adverse health effects on animals and human beings. Aflatoxins are a major concern for the dry‐grind corn processing industry as it is believed that aflatoxins affect yeast and reduce its efficacy in producing ethanol. In the present study, aflatoxin B1 (100, 200, 350, or 775 ppb) was added to mycotoxin‐free corn and laboratory‐scale fermentations were conducted. No effect of aflatoxin B1 was observed on the fermentation rates or final ethanol concentrations. Mean ethanol concentration in the fermenter was 14.01–14.51% (v/v) at 60 hr for all the treatments. In the dry‐grind ethanol process, 55% of aflatoxin B1 was detected in wet grains and 45% in thin stillage.  相似文献   

17.
The phenolic acid composition and concentration of four manually separated fractions (pericarp, aleurone layer, germ, and endosperm fractions) as well as whole grains of yellow corn, wheat, barley, and oats were analyzed by HPLC‐MS/MS following microwave‐assisted alkaline aqueous extraction. Phenolic acid compositions in whole grains and their fractions were similar, with minor differences among the grain fractions. Significant differences (P < 0.05), however, were observed in phenolic acid concentrations among cereal types, within cereal varieties, and among grain fractions, with yellow corn exhibiting the highest values. The concentrations of p‐coumaric and syringic acid in the pericarp were 10‐ to 15‐fold and 6‐ to 10‐fold higher, respectively, in yellow corn than in wheat, barley, and oats. In the aleurone layer, sinapic and vanillic acids in yellow corn were about 8‐ and 30‐fold more than in wheat. The germ fraction of wheat had 1.8 times more syringic acid than yellow corn germ. Grain fractions, excluding endosperm, had enhanced levels of phenolic acids compared with whole grain. Sinapic acid was more concentrated in the pericarp and germ of wheat, whereas isoferulic acid was concentrated in the germ of purple barley. Syringic and vanillic acids were concentrated in the pericarp and sinapic acid in the aleurone layer of yellow corn. These findings are important in understanding the composition and distribution of phenolic acids, and they act as a guide in identification of grain fractions for use as food ingredients. In addition, yellow corn fractions (aleurone and pericarp) may be potential alternative phenolic‐rich functional food ingredients in grain‐based food products.  相似文献   

18.
The effects of ground corn particle size on ethanol yield and soluble solids in thin stillage was evaluated using a 2‐L laboratory dry‐grind procedure. The procedure was optimized for grinding, liquefaction, sacchari‐fication, and fermentation parameters. The optimized procedure was reproducible with a coefficient of variation of 3.6% in ethanol yield. Five particle size distributions of ground corn were obtained using a cross‐beater mill equipped with five screens (0.5, 2, 3, 4, and 5 mm). Particle size had an effect on ethanol yield and on soluble solids concentration in thin stillage. The highest ethanol yield of 12.6 mL/100 mL of beer was achieved using a 0.5‐mm screen in the cross‐beater mill. Treatment using the 0.5‐mm mill screen resulted in soluble solids concentration of 25.1 g/L and was higher than soluble solids concentrations obtained with other screens. No differences in soluble solid concentrations were observed in samples of thin stillage obtained from 2, 3, 4, and 5‐mm screens which had a mean yield of 16.2 g/L. By optimizing particle size for maximum ethanol yield and minimum solids in thin stillage, dry‐grind corn plants could realize reduced capital and operating costs.  相似文献   

19.
Five white corn hybrids were processed (nixtamalized) using 10 different processing conditions; tortillas were prepared to establish relationships between corn composition, physical characteristics, and nixtamalization process or product properties. Corn hybrids were characterized by proximate analysis and by measuring Stenvert hardness, Wisconsin breakage, percent floaters, TADD overs, thousand‐kernel weight, and test weight. Corn characteristics were correlated with process and product variables (effluent dry matter loss and pH; nixtamal moisture and color; masa moisture, color, and texture; and tortilla moisture, color, and rollability). Process and product variables such as corn solid loss, nixtamal moisture, masa texture, and tortilla color were influenced not only by processing parameters (cook temperature, cook time, and steep time) but also depended on corn characteristics. Significant regression equations were developed for nixtamalization dry matter loss (P < 0.05, r2 = 0.79), nixtamal moisture (P < 0.05, r2 = 0.78), masa gumminess (P < 0.05, r2 = 0.78), tortilla texture (P < 0.05, r2 = 0.77), tortilla moisture (P < 0.05, r2 = 0.80), tortilla calcium (P < 0.05, r2 = 0.93), and tortilla color a value (P < 0.05, r2 = 0.87).  相似文献   

20.
A modified dry‐grind process that combined the use of conventional amylases (glucoamylase [GA]), phytase, and granular starch hydrolyzing enzymes (GSHE) to achieve low liquefaction viscosities and low glucose concentrations during simultaneous saccharification and fermentation (SSF) with a high slurry solids content (>33% w/w) was developed. Doses of GSHE and GA were optimized for the modified process. At 35% solids content, the modified process had 80% lower slurry viscosity, 24% lower peak glucose concentration, 7.5% higher final ethanol concentration, and 51% higher fermentation rate compared with the conventional dry‐grind process. At 40% solids content, the modified process had lower viscosities, lower peak and residual glucose concentrations, and higher ethanol concentrations than the conventional process; however, the results were in contrast to those for 35% solids content. At 40% solids content, SSF did not run to completion for conventional or modified processes, and more than 2.5% w/v of residual glucose was left in the fermentation broth. Final ethanol concentration achieved with the modified process at 40% solids content was 19.5% v/v, similar to the ethanol concentration achieved with the modified process at 35% solids content. At 35% slurry solids content, a GSHE level of 1.25 μL/g db of corn and a GA level of 0.25 μL/g db of corn were selected as optimum enzyme doses for the modified process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号