共查询到20条相似文献,搜索用时 15 毫秒
1.
Oat consumption is regarded as having significant health benefits. The enrichment of white salted noodles with oat flour would provide a potential health benefit but may affect the texture and sensory quality. Oat cultivars grown in Western Australia (Yallara, Kojonup, Mitika, Carrolup, and new line SV97181‐8) and a commercial oat variety were milled into flour and added to wheat flour at 10, 20, and 30% to produce oat‐enriched white salted noodles. The purpose of the study was to determine the quality characteristics of the oat flours and to assess the influence the oat flour blends had on noodle texture, color, and sensory characteristics. In addition, another goal was to determine whether the different oat cultivars had similar potential to provide health benefits by measuring the β‐glucan content before and after processing. The results indicated that protein, ash content, and noodle firmness increased with the increased percentage of oat flour in the noodle formulations, whereas the pasting properties of the noodle wheat–oat flour blends did not differ significantly. The color of raw noodle sheets and boiled noodles changed significantly with oat incorporation and resulted in lower lightness/brightness, higher redness, lower yellowness, and lower color stability in comparison to standard wheat white salted noodles. Noodles made with the lowest oat percentage (10%) scored highest for all sensory parameters and were significantly different in appearance, color, and overall acceptability compared with noodles made with 20 and 30% oat flour. The β‐glucan content of the flour blends increased with the increase in the level of oat incorporation but subsequently decreased during processing into noodles. The decrease in the β‐glucan content varied across the different oat cultivars and levels of incorporation into the noodles. A new oat cultivar, SV97181‐8, exhibited the least β‐glucan loss during processing. In this study, the quality characteristics of white salted noodles enriched with oat flour from Western Australian cultivars were determined to provide essential information for the commercial development of healthier noodles. 相似文献
2.
D. W. Hatcher M. J. Anderson R. G. Desjardins N. M. Edwards J. E. Dexter 《Cereal Chemistry》2002,79(1):64-71
Several reduction grinding conditions were used on a Canadian Western Red Spring (CWRS) farina to yield flours of comparable protein content within three specific particle size ranges (132–193, 110–132, 85–110 μm) at three starch damage levels (3.0, 3.9, 7.0 Megazyme units). White salted noodles (1% w/w NaCl) were initially processed at a fixed absorption (32%). Dynamic oscillatory and large deformation creep measurements indicated that doughs with lower starch damage, thick or thin, exhibited lower G′ (storage modulus), higher tan δ (G″ [loss modulus]/G′) values, and greater maximum strain during creep than doughs with higher starch damage. There were no clear trends between work input during sheeting and either starch damage or particle size. Instrumental texture analysis of raw noodles showed no significant differences due to either starch damage or flour particle size. Flours with fine particle size gave cooked noodles with the best textural attributes, whereas starch damage exhibited no consistent relationship with cooked noodle texture. Cooking loss was greatest in samples with highest starch damage and coarsest particle size; water uptake was inversely related to starch damage and particle size. Experiments were repeated at adjusted water absorptions (32–36.5%) for fine and coarse flours with highest and lowest starch damage. Differences in raw noodle dough rheological properties were largely eliminated, confirming that differences noted at constant absorption were primarily due to flour water absorption. Work input during sheeting was inversely related to starch damage and was higher for fine particle size. Cooking losses were highest for higher starch damage and fine particle size. Water uptake was highest for fine particle size, but in contrast to cooking loss, was higher at lower starch damage. Textural parameters indicated superior cooking quality when particle size was finer and starch damage was lower. Flour particle size and starch damage (as indicated by water absorption) are both primary quality determinants of white salted noodle properties and, to some extent, exert their influence independently. 相似文献
3.
Polyphenol oxidase (PPO) causes Asian noodles to lose their bright color over time. Null Ppo‐A1 and Ppo‐D1 alleles are available that confer very low kernel PPO levels. Our goal was to characterize the effect of the Ppo‐A1i and Ppo‐D1f null alleles on the color and texture profile of white salted noodles. A white‐seeded spring wheat carrying Ppo‐A1i/Ppo‐A2d and Ppo‐D1f was crossed to a hard white‐seeded isoline of Choteau spring wheat with Ppo‐A1b/Ppo‐A2a and Ppo‐D1b and to a hard white‐seeded isoline of Vida spring wheat with Ppo‐A1a/Ppo‐A2b and Ppo‐D1b. Resultant lines homozygous for the null‐Ppo alleles or for the alternate parent Ppo alleles were selected and grown in replicated trials. The null‐Ppo alleles had no detrimental effects on kernel or flour traits. Noodles prepared from straight‐grade or whole wheat flour from the null‐Ppo allele class were less cohesive and softer than noodles from the alternate parent Ppo allele class for the White Choteau but not the White Vida population. Noodles prepared from straight‐grade and whole wheat flour from the null‐Ppo class were brighter, more red, and more yellow after 24 h and showed less change in L* with time than noodles prepared from the alternate parent Ppo class. The relative difference between the two genotype classes for change in L* with time (0–24 h) exceeded 3.5 L* for noodles from both types of flour, which was an improvement over existing low‐Ppo alleles. Incorporating the null‐Ppo alleles into wheat varieties could improve the color profile of Asian noodles. 相似文献
4.
The consumer acceptance of white salted Asian noodles depends on starch characteristics, and the purpose of this study has been to investigate the potential of exogenous α‐amylases to enhance textural characteristics of this product. Noodles were prepared from commercial flours with low α‐amylase activity, and the endogenous enzyme remained relatively stable during various processing and storage treatments. α‐Amylase preparations of bacterial origin and from barley malt were incorporated, and the products were assessed by texture analysis and electron microscopy, as well as for color characteristics. On addition of the amylase preparations, noodles were softer when texture was assessed using either a flat cylinder probe or an axial blade. Some discoloration occurred in treated noodle sheets, although this was minimal in final products that had been cooked immediately after preparation or following drying. Scanning electron microscopy confirmed that the α‐amylase of bacterial origin had greater impact upon starch than that from barley malt. The results have implications for understanding of the adverse impact of preharvest sprouting on product characteristics. The results show that softer noodles have been obtained at these levels of enzyme additions. This was true for both enzyme preparations used. Differences in hardness (as measured using the flat cylinder probe) were greater than those for firmness (as measured using the axial blade). 相似文献
5.
Physicochemical properties of 34 wheat flours with various classes and different protein contents were related to optimum water absorption of noodle dough. Club and soft wheat flours generally exhibited higher water absorption (34–37%) of noodle dough than hard wheat flours (31–35%). Optimum water absorption of noodle dough in three hard wheat flours with five different protein contents was 33–37%. Optimum water absorption was negatively correlated with flour protein content and SDS sedimentation volume. Physical properties of flour, damaged starch content, NIRS hardness and water retention capacity, influenced optimum water absorption of noodle dough from club, soft and hard wheat flours. A prediction equation developed using protein content, water retention capacity and SDS sedimentation volume of flour provides a reliable estimation of the optimum absorption of noodle dough for making noodles. 相似文献
6.
Protein characteristics of wheat flours from various wheat classes, and of commercial flours for making noodles, were evaluated to determine the effects of protein content and quality on processing and textural properties of white salted noodles, as well as to identify protein quality required for making white salted noodles. SDS sedimentation volume based on constant protein weight, mixograph mixing time, and proportions of salt‐ and alcohol‐soluble protein of three commercial flours for making noodles were more similar to those of hard wheat than to soft wheat flours. SDS sedimentation volume of commercial flours for making noodles based on constant protein weight ranged from 38.5 to 40.0 mL and was higher than those of most soft wheat flours. Mixograph mixing time and proportion of salt‐soluble protein of hard and commercial flours for making noodles were >145 sec and mostly <13.8%, respectively, while those of club and soft wheat flours were < 95 sec and >15.0%. Both protein content and protein quality, as determined by SDS sedimentation volume based on constant protein weight, mixograph mixing time, proportion of salt‐soluble protein, and score of HMW‐GS compositions correlated with optimum water absorption of noodle dough and hardness of cooked white salted noodles. 相似文献
7.
S. L. Lagass D. W. Hatcher J. E. Dexter B. G. Rossnagel M. S. Izydorczyk 《Cereal Chemistry》2006,83(2):202-210
Fresh and dried white salted noodles (WSN) were prepared by incorporating up to 40% flour from hull‐less barley (HB) genotypes with normal amylose, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch into a 60% extraction Canada Prairie Spring White (cv. AC Vista) wheat flour. The HB flours, depending on genotype, contained four to six times the concentration of β‐glucan of the wheat flour, offering potential health benefits. The HB‐enriched noodles were made with conventional equipment without difficulty. Noodles containing 40% HB flour required less work input during sheeting, probably due to higher optimum water absorption and weakening of the dough due to dilution of wheat gluten. The addition of HB flour had a negative impact on WSN color and appearance, as evident from decreased brightness, increased redness, and more visible specking. The impact of HB flour on cooked WSN texture varied by starch type. Enrichment with HA or normal starch HB flour produced WSN with bite and chewiness values equivalent to or superior to the wheat flour control. Addition of waxy and ZAW HB flour resulted in WSN with lower values for bite and chewiness. The diversity of HB starch types allows tailoring of WSN texture to satisfy specific markets. HB flour also has potential as an ingredient in novel noodle products targeting health‐conscious consumers who associate darker colored cereal‐based foods with superior nutritional composition. 相似文献
8.
A commercial gluten and glutens isolated from four soft and four hard wheat flours were incorporated into a hard and a soft white flour by replacement to directly determine the quantitative and qualitative role of gluten proteins in making noodles. Gluten incorporation (6%) decreased water absorption of noodle dough by 3%, shortened the length of the dough sheet by 15 and 18%, and increased the thickness of the dough sheet by 18 and 20% in soft and hard wheat flour, respectively. Noodles imbibed less water and imbibed water more slowly during cooking with gluten incorporation, which resulted in a 3‐min increase in cooking time for both soft and hard wheat noodles. Despite the extended cooking time of 3 min, noodles incorporated with 6% gluten exhibited decreases in cooking loss by 15% in soft wheat. In hard wheat flour, cooking loss of noodles was lowest with 2% incorporation of gluten. Tensile strength of fresh and cooked noodles, as well as hardness of cooked noodles, increased linearly with increase in gluten incorporation, regardless of cooking time and storage time after cooking. While hardness of cooked noodles either increased or showed no changes during storage for 4 hr, tensile strength of noodles decreased. There were large variations in hardness and tensile strength of cooked noodles incorporated with glutens isolated from eight different flours. Noodles incorporated with soft wheat glutens exhibited greater hardness and tensile strength than noodles with hard wheat glutens. Tensile strength of cooked noodles incorporated with eight different glutens negatively correlated with SDS sedimentation volume of wheat flours from which the glutens were isolated. 相似文献
9.
R. McLean K. M. O'Brien L. E. Talbert P. Bruckner D. K. Habernicht M. J. Guttieri E. J. Souza 《Cereal Chemistry》2005,82(5):559-564
Production of common wheat (Triticum aestivum L.) in the Pacific Northwest of the United States specifically for Asian noodle products is a relatively new goal for grain producers. We surveyed commercial fields of the hard white spring wheat cultivar Idaho 377s in two years to determine the variables contributing to Asian noodle quality and to validate previous observations made with small‐plot research. Fields were surveyed in 1998 and 1999 in two areas of the Snake River Plain of southeastern Idaho separated by ≈100 km, with both irrigated fields and rain‐fed fields sampled in both zones. Samples were evaluated for grain characteristics then milled and evaluated for flour quality, alkaline noodle color, and color and texture of nonalkaline Chinese (salted, neutral pH) noodles. Grain from rain‐fed fields produced brighter and more yellow alkaline noodles than grain from irrigated fields. Grain produced in rain‐fed fields also had lower peak flour pasting viscosity than grain produced in irrigated fields. Flour ash was lowest in grain from rain‐fed fields located in a higher elevation district (Upper Valley) and greatest in grain from irrigated fields located in a lower elevation district (Lower Valley). Noodle hardness and chewiness were greater in Chinese noodles made from grain produced in the Upper Valley than grain from the Lower Valley. Chinese noodle color had significant interaction with the location and irrigation management used for producing the grain. However, Chinese noodle brightness was consistently negatively correlated with flour protein concentration. The color and texture of noodles produced from flours milled from on‐farm commercial production was consistent with previous experiment station small‐plot research. 相似文献
10.
White salted noodles were prepared through reconstitution of fractionated flour components with blends of waxy and regular wheat starches to determine the effects of amylose content on textural properties of white salted noodles without interference of protein variation. As the proportion of waxy wheat starch increased from 0 to 52% in starch blends, there were increases in peak viscosity from 210 to 640 BU and decreases in peak temperature from 95.5 to 70.0°C. Water retention capacity of waxy wheat starches (80–81%) was much higher than that of regular wheat starch (55–62%). As the waxy wheat starch ratio increased in the starch blends, there were consistent decreases in hardness of cooked noodles prepared from reconstituted flours, no changes in springiness and increases in cohesiveness. White salted noodles produced from blends of regular and waxy wheat flours became softer as the proportion of waxy wheat flour increased, even when protein content of flour blends increased. Amylose content of starch correlated positively with hardness and negatively with cohesiveness of cooked white salted noodles. Protein content of flour blends correlated negatively with hardness of cooked noodles, which were prepared from blends of regular (10.5% protein) and waxy wheat flours (> 16.4% protein). 相似文献
11.
Physicochemical properties and protein composition of 39 selected wheat flour samples were evaluated and correlated with the textural properties of Chinese hard‐bite white salted noodles. Flour samples were analyzed for their protein and wet gluten contents, sedimentation volume, starch pasting properties, and dough mixing properties by farinograph and extensigraph. Molecular weight distribution of wheat flour proteins was determined with size‐exclusion (SE) HPLC, SDS‐PAGE, and acid‐PAGE. Textural properties of Chinese hard‐bite white salted noodles were determined through texture profile analysis (TPA). Hardness, springiness, gumminess, and chewiness of cooked noodles were found to be related to the dough mixing properties. Both protein content and protein composition were found to be related to TPA parameters of noodles. The amount of total flour protein was positively correlated to hardness, gumminess, and chewiness of noodles. The absolute amounts of different peak proteins obtained from SE‐HPLC data showed positive correlations with the hardness, gumminess, chewiness, and springiness of noodles. The proportions of these peak proteins were, however, not significantly related to texture parameters. The proportions of low‐molecular‐weight glutenins/gliadins and albumins/globulins, as observed from SDS‐PAGE, were correlated positively and negatively, respectively, to the hardness, gumminess, and chewiness of cooked noodles. Among the alcohol‐soluble proteins (from acid‐PAGE data), β‐gliadins showed strong correlations with the texture properties of cooked noodles. For the selected flour samples, the total protein content of flour had a stronger relationship with the noodle texture properties than did the relative proportion of different protein subgroups. Prediction equations were developed for TPA parameters of cooked noodles with SE‐HPLC and rapid visco analysis data of the 30 flour samples, and it was found that about 75% of the variability in noodle hardness, gumminess, and chewiness values could be explained by protein composition and flour pasting properties combined together. About 50% of the variations in cohesiveness and springiness were accounted for by these prediction equations. 相似文献
12.
Perla Osorio‐Díaz Alondra Aguilar‐Sandoval Edith Agama‐Acevedo Rodolfo Rendn‐Villalobos Juscelino Tovar Luis A. Bello‐Prez 《Cereal Chemistry》2008,85(3):339-343
In search of a way to improve the nutritional profile of noodles, we prepared them with various mixtures of durum wheat flour and isolated plantain starch, and tested their proximal composition. Cooked noodles were assessed for in vitro starch digestibility, indigestible fraction content, and predicted glycemic index. The protein content declined with the addition of plantain starch. Both total starch (TS) level and the content of starch available for digestible enzymes (AS) decreased as the plantain starch level increased, a pattern that may be related to increased starch lixiviation during cooking of noodles containing plantain starch. There was an inverse pattern for resistant starch (RS). RS content in control (durum wheat flour) noodles was ≈50% lower than in the samples containing plantain starch. The soluble indigestible fraction (SIF) content in all samples was higher than the insoluble counterpart (IIF). The total indigestible fraction varied according to the wheat substitution level. Although the hydrolysis index (HI) and predicted glycemic index (pGI) of plantain starch noodles were moderate and decreased as the plantain starch proportion rose. These composite noodles exhibited higher indices than the control sample, a phenomenon that may also be dependent on the product physical structure. Results indicate that in spite of the increased starch digestion rate, plantain starch noodles are a better source of indigestible carbohydrates than pure wheat starch pasta. This might have dietetic applications. 相似文献
13.
Li Wang Jingxuan Guo Ren Wang Cunkuan Shen Yongfu Li Xiaohu Luo Yanan Li Zhengxing Chen 《Cereal Chemistry》2016,93(6):593-598
The effects of rice flour on the physicochemical properties of the raw material system and the quality of extruded potato–rice noodles were studied. The results demonstrated that the amylose content, pasting viscosities, storage modulus (G′), and loss modulus (G″) gradually increased with the included levels of rice flour, whereas the swelling power, solubility, and pasting temperature decreased with increasing rice flour content. The extruded potato–rice noodles exhibited desirable cooking qualities and textural properties with rice flour contents of up to 40%. Additionally, sensory evaluations revealed that the scores for chewiness, firmness, slipperiness, elasticity, and overall acceptability increased gradually with increasing rice flour content in the blends. Additionally, the results indicated the possibility of replacing potato flour with rice flour at a ratio of 6:4 to produce extruded potato–rice noodles of acceptable quality. 相似文献
14.
15.
John M. Martin Luther E. Talbert Debra K. Habernicht Susan P. Lanning Jamie D. Sherman Gregg Carlson Michael J. Giroux 《Cereal Chemistry》2004,81(2):188-193
Amylose content in wheat endosperm is controlled by three Wx loci, and the proportion of amylose decreases with successive accumulation of Wx null alleles at the three loci. The proportion of amylose is believed to influence end‐use quality of bread and Asian noodles. The objectives of this study were to determine influence of the allelic difference at Wx‐B1 locus on bread quality, bread firmness, and white salted noodle texture in a spring wheat cross segregating for the Wx‐B1 locus and in a set of advanced spring wheat breeding lines differing in allelic state at the Wx‐ B1 locus. In addition, we examined the relationship between amylose content and flour swelling properties on bread and noodle traits. Fifty‐four recombinant inbred lines of hard white spring wheat plus parents were grown in replicated trials in two years, and 31 cultivars and breeding lines of hard spring wheat were grown in two locations. Bread and white salted noodles were processed from these trials. The presence of the Wx‐B1 null allele reduced amylose content by 2.4% in a recombinant inbred population and 4.3% in a survey of advanced breeding lines and cultivars compared with the normal. The reduced amylose was accompanied by an average increase in flour swelling power (FSP) for the Wx‐B1 null group of 0.8 g/g for the cross progeny and 2.3 g/g for the cultivar survey group. The Wx‐B1 allelic difference did not affect flour protein in cross progeny where the allelic difference was not confounded with genetic background. Bread from the Wx‐B1 null groups on average had increased loaf volume and was softer than the normal group for the cross progeny and cultivar survey group. The Wx‐B1 allelic difference altered white salted noodle texture, most notably noodle springiness and cohesiveness where the Wx‐B1 null groups was more springy and more cohesive than the normal groups for both sets of genetic materials. Flour protein was more highly related to loaf volume than were FSP or amylose. Both flour protein and FSP were positively related to noodle textural traits, but especially noodle springiness and cohesiveness. 相似文献
16.
The rheological properties of cooked white salted noodles made from eight wheat cultivars with varied amylose content were analyzed at small and large deformation. Their dynamic shear viscoelasticity was measured using a rheometer with parallel plate geometry. Compressive force and creep‐recovery curves were measured using various probes and sample shapes. Noodles with lower amylose content showed a lower storage shear modulus (G′) and a higher frequency dependence of G′. The G′ values of noodles were highly correlated with amylose content in wheat flour and with G′ values of 30 and 40% starch gels. Remarkable differences in the characteristics of creep‐recovery curves were observed between cultivars. The difference in amylose content in wheat flour reflected the creep‐recovery properties of noodles. A negative correlation was demonstrated between amylose content and both maximum creep and recovery compliance. The compressive force required for 20, 50, 80, and 95% strains was compared. At 20 and 50% strain, noodles made from lower amylose wheat flour showed lower compressive force. Noodles of waxy wheat had a higher compressive force than nonwaxy noodles when the strain was >80%, indicating the waxy wheat noodles are soft but difficult to completely cut through. 相似文献
17.
The introduction of novel quality characteristics from wheat (Triticum aestivum L.) landraces can enhance the genetic diversity of current wheat breeding programs. The composition of starch and protein in wheat is important when determining the end‐product quality, particularly for white salted noodles (WSN). Quality characteristics that contribute to the production of improved WSN include high starch pasting peak viscosity, low amylose content, high proportion of A‐type granules, low protein content, soft grain texture, and high protein quality as measured by SDS sedimentation volume. A survey of 133 wheat landraces from Afghanistan, China, Egypt, Ethiopia, India, Iran, Syria, and Turkey was conducted to examine the genetic variability of starch and protein quality characteristics. Two wheat cultivars, Rosella and Meering, were used as the quality controls. The variation in starch pasting peak viscosities observed among the wheat landraces had a range of 175–295 Rapid Visco Analyser units (RVU), where 52 of the landraces were not significantly different from Rosella, a commercial soft grain wheat with high pasting properties. The amylose content of the landrace population was 23.4–30.2%, where 17 landraces had significantly lower values than Rosella. The proportion of A‐type granules was 60.5–73.9%, where 112 landraces had significantly higher values than Rosella. The grain texture hardness score was 28.0–99.3, the total protein content was 8.0–15.1%, and the adjusted SDS sedimentation volume (SDS/protein) was 1.6–7.0 mL/%P. The landrace AUS4635 had high starch pasting peak viscosity, high breakdown, low amylose content, low protein content, soft grain texture, and high protein quality flour. This wheat is an ideal parent to use in a breeding program that increases the genetic variation available to develop cultivars with high‐quality WSN characteristics. 相似文献
18.
Proximate characteristics and protein compositions of selected commercial flour streams of three Australian and two U.S. wheats were investigated to evaluate their effects on the quality of white salted noodles. Wheat proteins of flour mill streams were fractionated into salt‐soluble proteins, sodium dodecyl sulfate (SDS)‐soluble proteins, and SDS‐insoluble proteins with a sequential extraction procedure. SDS‐soluble proteins treated by sonication were subsequently separated by nonreducing SDS polyacrylamide gel electrophoresis (SDS‐PAGE). There was a substantial amount of variation in distributions of protein content and protein composition between break and reduction mill streams. SDS‐insoluble proteins related strongly to differences in protein quantity and quality of flour mill streams. The soluble protein extracted by SDS buffer included smaller glutenin aggregates (SDS‐soluble glutenin) and monomeric proteins, mainly gliadin (α‐, β‐, γ‐, and ω‐types) and albumin and globulin. SDS‐soluble proteins of different flour mill streams had similar protein subunit composition but different proportions of the protein subunit groups. Noodle brightness (L) decreased and redness (a) increased with increased SDS‐insoluble protein and decreased monomeric gliadin. Noodle cooking loss and cooking weight gain decreased with increased glutenin aggregate (SDS‐soluble glutenin and SDS‐insoluble glutenin) and decreased monomeric gliadin. Noodle hardness, springiness, cohesiveness, gumminess, chewiness, tensile strength, breaking length, and area under the tensile strength versus breaking length curve increased with increased glutenin aggregate. Monomeric gliadin contributed differently to texture qualities of cooked noodles from glutenin aggregate. Monomeric albumin and globulin were not related to noodle color attributes (except redness), noodle cooking quality, and texture qualities of cooked noodles. The results suggested that variation in protein composition of flour mill streams was strongly associated with noodle qualities. 相似文献
19.
Hydrothermal treatments, which are routine in oat processing, have profound effects on oat flour dough rheological properties. The influence of roasting and steam treatments of oat grain on dough mixing and breadbaking properties was investigated when hydrothermally treated oat flour was blended with wheat flour. Roasting of oat grain (105°C, 2 hr) resulted in oat flours that were highly detrimental to wheat flour dough mixing properties and breadbaking quality. Steaming (105°C, 20 min) or a combination of roasting and steaming of oat grain significantly improved the breadbaking potential of the oat flours. The addition of oat flours increased water absorption and mixing requirements of the wheat flour dough and also decreased bread loaf volume. However, at the 10% substitution level, steamed oat flours exhibited only a gluten dilution effect on bread loaf volume when wheat starch was used as a reference. Oat flour in the breadbaking system decreased the retrogradation rate of bread crumb starch. The results indicate that adequate hydrothermal treatments of oat grain are necessary for oat flour breadbaking applications. Steamed oat flours used at a 10% level retarded bread staling without adversely affecting the loaf volume. 相似文献
20.
Rice noodles, which are widely consumed noodles in Southeast Asia, were evaluated as a potential carrier for fortificants such as vitamin A, folic acid, and iron. Because flour particle size was found to affect the noodle properties, this study was conducted to investigate the effect of five different particle sizes (≤63, 80, 100, 125, and 140 µm) of dry‐milled rice flour on the cooking quality, microstructure, texture, and sensory characteristics of the rice noodles. The retention of fortificant in the noodles at every stage of processing as affected by the flour particle size was also determined. It was found that the rice noodles produced from flour with the smallest particle size studied (≤63 µm) had the best quality and were the most liked by the consumers. In addition, the noodles had the most compact and regular structure, which could be attributed to having the most severely gelatinized starch. This starch would have caused the least leaching of the fortificant into the surrounding water during the boiling stage of the rice noodle processing. Retention of iron in the cooked fortified rice noodles prepared from flour with the smallest particle size was high at around 87%, whereas that of vitamin A and folic acid were below 15%. Because the losses of the fortificant from the rice noodles were mostly owing to the boiling process, further improvements of the rice noodle processing conditions are required for reduction of the vitamin losses. 相似文献