首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Milling method and particle size affect some properties of rice flour. To prepare ultra‐fine rice flour of <30 μm, hammer and dry jet grinding methods were examined and the effect of particle size on starch damage and pasting properties of the flour were elucidated. A jet mill could make finer flour (<10 μm mean size) with a narrower particle size distribution than a hammer mill could. Starch damage increased dramatically at a mean size of <10 μm. Particles of a similar size (<60 μm) had different levels of starch damage between mills. Not only the particle size, but also the milling method affected the level of damaged starch. Flour samples of ≥45 μm mean size had similar viscosity curves, but samples of <20 μm had different curves. Peak viscosity and final viscosity decreased sharply at <10 μm. Setback viscosity for particles of 3 μm from both brown rice and white rice were higher than the peak viscosity. Stability to heat and shearing stress were decreased for <20 μm flours as the breakdown viscosities decreased. Starch damage and pasting properties of flour ground from the nonwaxy japonica cultivar Koshihikari changed dramatically at a mean size of <10 μm.  相似文献   

2.
The pasting properties of rice flours and reconstituted rice flours from mixing a common starch with proteins extracted from different rice cultivars at different total protein content levels were studied. Results showed that not only the total protein content but also the protein composition had an effect on the pasting properties of the rice flours. Among the different strands of rice proteins, globulin had the strongest influence on the pasting properties, followed by glutelin, whereas prolamin had the least influence. At the subunit level of the proteins, proteins with a molecular weight of 17,000, most likely from globulin, had the strongest effect on the peak viscosity of the rice flour, followed by those of 33,000. In comparison with that of the rice starch, the influence of proteins in rice was limited. The effect of interactions between the rice proteins and the starch, such as the role of starch‐granule‐associated proteins, was not isolated in this study, and further investigation is required to quantify this effect.  相似文献   

3.
The influence of the cold‐water‐soluble fraction on gelatinization and pasting properties of rice flour was investigated. The cold‐water‐soluble fraction was removed by water extraction under room temperature. The gelatinization properties of untreated and treated flour were analyzed with a differential scanning calorimeter, and pasting profiles were measured with a rapid viscosity analyzer. The removal of the cold‐water‐soluble fraction resulted in the formation of a loosened starch granule structure, a morphological alteration of protein bodies, a markedly lower gelatinization temperature, and a significantly higher pasting enthalpy. The impact on paste viscosity followed different trends. In some cultivars that had lower endogenous amylase activity, the paste viscosity was greatly reduced by the removal of the cold‐water‐soluble fraction. In others, the higher level of endogenous amylase activity led to more soluble saccharides being released through starch hydrolysis. Removing the soluble fraction caused a remarkable increase in peak viscosity. The overall effect on paste viscosity of removing the cold‐water‐soluble fraction was attributed to multiple factors, involving loosening of the starch granule structure, alteration of morphology of protein bodies, and the release of saccharides by endogenous amylase activity.  相似文献   

4.
To clarify the rheological properties of fermented rice noodle (sour mifen) produced in South China, we studied the mechanical properties of gels made from fermented and nonfermented (control) rice flours using static tensile testing, two-bite testing, and dynamic viscoelastic measurement. Rheological measurement under large deformation showed that retrogradation in fermented rice gel proceeded more slowly than in nonfermented rice gel. Lower hardness and brittleness and higher cohesiveness and resilience (degree of recovery) for gels made from fermented rice flour demonstrated that the gel was less firm but more elastic and flexible. Storage moduli of both types of gel increased with time, but the starch retrogradation was suppressed for fermented rice gel. Fermented rice gel exhibited higher resilience and lower rigidity than nonfermented gel, thus the gel stability improved. The chemical analysis of both starches suggests that the partial hydrolysis of amylopectin occurred during the fermentation process.  相似文献   

5.
Waxy (short grain), long grain, and parboiled (long grain) rice flours were extruded using three different temperatures and five different water feed rates. The water absorption and water solubility index of the extrudates was 0.67–5.86 and 86.45–10.03%, respectively. The fat absorption index was similar to that of unextruded flours with an average value of 0.96 g/g ± 0.12. Bulk density decreased with an increase in moisture, except waxy rice, which had a quadratic relationship. The viscosity profiles for long grain and parboiled rice were similar. Both initially increased in viscosity (>130 RVU), then decreased to ≈40 RVU. The final viscosity was ≈60 RVU. Waxy rice viscosity remained low (<20 RVU), then doubled upon cooling. The main difference in the digestion profiles was due to temperature. The flours extruded at 100°C digested significantly slower than those extruded at 125 and 150°C. Significant differences were not detected for a given temperature and moisture (P > 0.05) except for long grain and parboiled rice extruded at 100°C and 15% added moisture (F = 4.48, P = 0.03) and 150°C and 20% added moisture (F = 3.72, P = 0.05). Moisture appeared to have little effect for a given temperature, except when parboiled rice was extruded at 150°C. The digestion rate for 11 and 25% added moisture was significantly less than that for 20% (P ≤ 0.05).  相似文献   

6.
The total protein of gluten obtained by the cold‐ethanol displacement of starch from developed wheat flour dough matches that made by water displacement, but functional properties revealed by mixing are altered. This report characterizes mixing properties in a 10‐g mixograph for cold‐ethanol‐processed wheat gluten concentrates (CE‐gluten) and those for the water‐process concentrates (W‐gluten). Gluten concentrates were produced at a laboratory scale using batter‐like technology: development with water as a batter, dispersion with the displacement fluid, and screening. The displacing fluid was water for W‐gluten and cold ethanol (≥70% vol, ‐12°C) for CE‐gluten. Both gluten types were freeze‐dried at ‐10°C and then milled. Mixograms were obtained for 1) straight gluten concentrates hydrated to absorptions of 123–234%, or 2) gluten blended with a low protein (9.2% protein) soft wheat flour to obtain up to 16.2% total protein. The mixograms for gluten or gluten‐fortified flour were qualitatively and quantitatively distinguishable. We found differences in the mixogram parameters that would lead to the conclusion of greater stability and strength for CE‐gluten than for W‐Gluten. Differences between the mixograms for these gluten types could be markedly exaggerated by increasing the amount of water to the 167–234% range. Mixograms for evaluation of gluten have not been previously reported in this hydration range. Mixograms for fortification suggest that less CE‐gluten than W‐gluten would be required for the same effect.  相似文献   

7.
《Cereal Chemistry》2017,94(3):519-523
This study investigated the effect of solid‐state yeast fermentation on the nutritional and antioxidant properties of brown rice flour (BRF). Three brands of commercial baker's yeast (Eagle, Saf‐levure, and Mauripan) were used to ferment BRF at 25°C for 12 h. There were significant increases in protein, ash, insoluble and soluble fiber, phosphorus, zinc, magnesium, calcium, and iron contents after yeast fermentation. Fermented BRF with Eagle yeast possessed the highest contents of protein, ash, zinc, and calcium. Fermentation of BRF with Eagle yeast was more effective in increasing antioxidant activity and total phenolic contents from 1.01 to 1.54 mmol of Trolox equivalents per gram and from 1.09 to 1.21 mg of gallic acid equivalents per gram, respectively. Yeast fermentation reduced phytic acid content of BRF (124.59 ± 0.48 µg/g), and the Eagle yeast‐fermented sample had the lowest value (36.55 µg/g) compared with the other fermented samples. Fermented flour with Eagle yeast also had the highest α‐amylase activity, because it recorded the lowest stirring number. Solid‐state fermentation with commercial yeast, particularly Eagle yeast, was effective in improving the nutritional and antioxidant properties of underutilized BRF as a food ingredient.  相似文献   

8.
Rice flour and rice starch were single‐screw extruded and selected product properties were determined. Neural network (NN) models were developed for prediction of individual product properties, which performed better than the regression models. Multiple input and multiple output (MIMO) models were developed to simultaneously predict five product properties or three product properties from three input parameters; they were extremely efficient in predictions with values of R2 > 0.95. All models were feedforward backpropagation NN with three‐layered networks with logistic activation function for the hidden layer and the output layers. Also, model parameters were very similar except for the number of neurons in the hidden layer. MIMO models for predicting product properties from three input parameters had the same architecture and parameters for both rice starch and rice flour.  相似文献   

9.
We have modeled a rice extrusion process focusing specifically on the starch gelatinization and water solubility index (WSI) as a function of extrusion system and process parameters. Using a twin‐screw extruder, we examined in detail the effect of screw speed (350–580 rpm), barrel temperature, different screw configurations, and moisture content of rice flour on both extrusion system parameters (product temperature, specific mechanical energy [SME], and residence time distribution [RTD]) and extrudate characteristics (expansion, density, WSI, and water absorption index [WAI]). Changes in WSI were monitored to reveal a relationship between the reaction kinetics during extrusion and WSI. Reaction kinetics models were developed to predict WSI during extrusion. WSI followed a pseudo first‐order reaction kinetics model. It became apparent that the rate constant is a function of both temperature and SME. We have developed an adaptation of the kinetic model based on the Arrhenius equation that shows better correlations with SME and distinguishes data from different screw configurations. This adaptation of the model improved predictability of WSI, thereby linking the extrusion conditions with the extruded product properties.  相似文献   

10.
Frozen food products are gaining acceptance in Thai food industry and frozen bualoy dessert is a good opportunity for marketing in domestic and for exports. One important factor affecting quality of frozen starchy foods is retrogradation of starch gels. Thus freeze‐thaw stability of a frozen bualoy made from total waxy rice flour was studied and compared among the samples modified by 20 and 30% cross‐linked tapioca starch (CTS) derivatized with phosphorylation and 0.25% propylene glycol alginate (PGA). The waxy rice flour was pregelatinized by adding boiled water before shaping as a ball, then boiled and mixed with coconut syrup. All samples were subjected to five freeze‐thaw cycles over 60 days in a conventional freezer (–18°C). Texture analysis firmness and stickiness of the nonfrozen gels substituted with 20% CTS (382 ± 43, 20.5 ± 7.1 g·f) and 30% CTS (493 ± 37, 31.1 ± 7.0 g·f) were significantly different as compared with the control (329 ± 22, 14.8 ± 3.1 g·f). Similar results were observed for the samples continuously frozen for 60 days. The effects of freeze‐thaw stability to the frozen gels of the control, CTS, and PGA substituted samples appeared after two cycles and exhibited a large increase in firmness and stickiness at the fourth cycle. The firmness values obtained from the control and the samples substituted with 20% and 30% CTS were 2,397 ± 197, 2,182 ± 203, and 2,104 ± 200 g·f, respectively. This evidence was also observed with the samples containing PGA, but the effect was slightly less. This might account for the recrystallization of amylopectin molecules induced by freeze‐thawings. With DSC, the waxy rice gels showed a significant increase in the melting enthalpy (2.39 ± 0.23 J/g) at the fifth cycle from the nonfrozen gels (0.11 ± 0.02 J/g). The sensory tests of the bualoys were correlated with textural qualities that were acceptable to the panelists when the freeze‐thawing went no further than the second cycle.  相似文献   

11.
The pasting behavior of flour from several Australian rice (Oryza sativa L.) cultivars, differing in amylose content and grown in three different locations and three seasons, were determined using the Rapid Visco Analyser. Genotype, growth season, and growth location all affected the pasting behavior of rice flour. The amylose content of the same cultivar was significantly higher in the coolest growing season, resulting in RVA traces with lower peak viscosity and higher setback than samples with lower amylose content. When the same cultivar of rice was grown in different locations in the same season, there were no significant differences in the total starch, protein, lipid, and amylose content of the flour, but there were significant differences in the pasting behavior. This indicates that environmental as well as genetic factors influence the pasting behavior of rice flour. Flour from parboiled and quick‐cooking rice did not paste and had low viscosities compared with unprocessed rice. Results from this study showed that the pasting behavior of rice flour was related to genotype and was influenced by environmental factors that brought about subtle changes in the grains that were not picked up by chemical analyses.  相似文献   

12.
Rice flour composition played a key role in determining the changes in pasting properties of rice flour. The influence of incorporating defatted rice bran (DFRB), rice bran fiber (RBF), rice bran protein (RBP), and stabilized rice bran (SRB) fractions on the mechanism of rice flour pasting viscosities was investigated. Pasting properties of long‐ and medium‐grain rice flour substituted with 5, 10, 15, 20, and 100% bran fractions resulted in a significant decrease (P < 0.05) in rice flour pasting property values. Flour substituted with RBP had the lowest pasting property measurements compared with other fractions, and the greater the percentage substituted, the lower the pasting property values. DFRB and RBF were least affected properties when used as a replacement. Results were attributed to the contribution of rice starch in the mechanism of rice paste formation, in which decreasing starch in a rice flour sample, as a result of substituting with fractions of SRB, may have resulted in faster swelling of starch granules to the maximum extent and increased their susceptibility to be disrupted by shear, resulting in low paste viscosities. Results also suggested that protein structural integrity and the nature of starch–protein bonding affected rice flour pasting mechanism formation.  相似文献   

13.
Rice endosperm often develop a yellow discoloration during commercial storage in conditions of high temperature and moisture, thereby reducing the value of the grain. This postharvest yellowing (PHY) appears to be coincidental with fungal presence. To study the yellowing process in a controlled manner, we developed a technique to induce PHY on a small, laboratory scale. Milled rice kernels were rinsed with water and incubated in clear test tubes or microfuge tubes at 65–80°C. This allowed direct observation of the color change and measurement using a colorimeter. Every rice cultivar tested (long and medium grain japonicas and indicas) showed some level of PHY, which increased with temperature yielding a maximum color change at 79°C. Most color change occurred within one day. The moisture parameters required for yellowing to occur were measured. Using sterilization and culture techniques, we found no indications of direct fungal involvement in the yellowing process.  相似文献   

14.
Commingling of rice cultivars commonly occurs during harvest, drying, and storage operations. Because different cultivars often have different functional properties, there is a need to study the impact of commingling on these properties. Two long‐grain hybrid (H) cultivars, CL XL745 and CL XL729, and two long‐grain pureline (P) cultivars, CL 151 and Wells, were used to prepare H/P, H/H, and P/P commingles in various proportions. Gelatinization and pasting properties of all individual lots and commingled samples were measured. When two cultivar lots with different onset gelatinization temperatures (Tos) were commingled, the To of the commingled sample was similar to the To of that cultivar in the commingle with the lower To. Tps, Tcs, and ΔHs of commingled samples generally increased or decreased according to the mass percentages of the cultivars in the samples. Peak, breakdown, and final viscosities of commingled samples also varied according to the mass percentages of the cultivars in the commingled samples. These findings are intended to help make decisions regarding cultivar commingling and to optimize process conditions and product characteristics, given the gelatinization and pasting properties of individual‐cultivar lots.  相似文献   

15.
Extrudate expansion of cereal‐based products is largely dependent on the molecular interactions and structural transformations that proteins undergo during extrusion processing. Such changes strongly influence the characteristic rheological properties of the melt. It is possible to modify rheological properties of wheat flour during extrusion processing, in particular shear viscosity, with cysteine. The objective of this work was to further develop an understanding of the molecular interactions and structural transformations of wheat flour from dynamic oscillatory rheological measurements. Temperature and frequency sweeps were conducted in the linear viscoelastic range of the material. Changes in the storage modulus (G′), the loss modulus (G″) and the loss tangent (tan δ) of 25% moisture wheat flour disks as a function of cysteine concentration (0–0.75%) were monitored. Molecular weight between cross‐links (Mc) and the number of cross‐links (Nc) per glutenin molecule were determined from frequency sweep data. Increasing cysteine concentration broke cross‐links by decreasing G′ maximum and increasing tan δ values. Molecular weight between cross‐links increased and the number of cross‐links decreased. G′ values from temperature sweeps showed a similar trend. This information leads to a better understanding of the viscoelastic behavior of wheat flour doughs during extrusion cooking and elucidation of protein‐protein reaction mechanisms and other interactions in extruded cereal‐based snack foods.  相似文献   

16.
The objective of this research was to identify and define mixing characteristics of gluten‐fortified flours attributable to differences in the method for producing the gluten. In these studies, a wheat gluten concentrate (W‐gluten) was produced using a conventional process model. This model applied physical water displacement of starch (dispersion and screening steps), freeze‐drying, and milling. W‐gluten was the reference or “vital” gluten in this report. An experimental W‐concentrate was produced using a new process model. The new model applied coldethanol (CE) displacement of starch (dispersion and screening steps), freeze‐drying, and milling. Freeze‐drying was used to eliminate thermal denaturation and thereby focus on functional changes due only to the separation method. The dry gluten concentrates were blended with a weak, low‐protein (9.2%), soft wheat flour and developed with water in a microfarinograph. We found that both water and cold‐ethanol processed gluten successfully increased the stability (St) and improved mixing tolerance index (MTI) to create in the blended flour the appearance of a breadbaking flour. Notably, in the tested range of 9–15% protein, the St for CE‐gluten was always higher then the St for W‐gluten. Furthermore, the marginal increase in St (slope of the linear St vs. protein concentration) for the CE‐gluten was ≈57% greater than that for the W‐gluten. The slope of the MTI vs. protein data was lower for the CE‐gluten by 24%. Flour fortified with CE‐gluten exhibited higher water absorption (up to 1.8% units at 13.5% P) than flour fortified with W‐gluten.  相似文献   

17.
Flour mill streams prepared from two Australian and two New Zealand wheat cultivars using a pilot‐scale roller mill were analyzed for rheological and baking quality characteristics and for protein composition using size‐exclusion HPLC. Differences in mill stream protein composition, on an industrially relevant scale, and the relationships between the distribution of proteins (and their degree of thiol exposure) and the technological quality of the flour mill streams were examined. Consistent, significant differences were observed in the physicochemical and processing characteristics of the flour streams. Between mill streams, changes in the quantities of the storage protein groups were more marked than for nonstorage protein groups. Changes in protein composition differed between the break and reduction stream flours. In contrast, the degree of exposure of thiol groups on the various protein groups followed different patterns between mill streams. Numerous significant relationships were observed between dough mixing and product baking tests and the composition and thiol exposure state of the various protein classes. These relationships are discussed in context of manipulating the processing quality of flour‐based products using mill streaming. A possible role for exposed thiol groups on storage proteins in the phenomenon of flour “aging” is suggested.  相似文献   

18.
Mean residence time of rice flour in a twin‐screw extruder was determined using a blue tracer. Variables studied included moisture content, screw speed, barrel temperature, and screw configuration. Mean residence time increased with the increase of the barrel temperature and with the addition of reverse and kneading elements. Mean residence time was significantly related to screw speed, moisture content, die pressure, and screw configuration (P < 0.05). An empirical model was developed to predict mean residence time with the ability to reflect the changes of the barrel temperature and screw configuration. The effects of different extrusion operating conditions including screw speed, moisture content, barrel temperature, and screw geometry on the mean residence time were considered in the model. The validity of the developed model was extensively evaluated and verified using different screw geometries and other processing variables. The mean residence times predicted by the developed model are in good agreement with the experimental data.  相似文献   

19.
The purpose of this study was to examine the drying and grinding characteristics of sprouted and crushed wheat. The four‐day‐germinated wheat kernels were crushed, dried, and ground in a micro hammer mill. The drying kinetics of sprouts were best described by the Page and two‐factor models. The crushing of wheat sprouts before drying decreased the drying time by about half. Sprouting and crushing of wheat sprouts have a significant influence on the grinding process, both on the particle size distribution and on the grinding energy requirements. It was observed that the ground sprouts showed significantly lower values of average particle size compared with the samples of sound kernels. Sprouting caused an increase in the amount of fine particles (<0.2 mm) and a decrease in the mass fraction of coarse particles (>1.0 mm). All values of grinding indices showed that sprouting and crushing significantly reduced the grinding energy requirements. Moreover, sprouting significantly increased the total phenolics content (from 26 to 31%) and antioxidant activity (from 33 to 72%) of wheat kernels. The results showed that sprouting and crushing of sprouts followed by their drying and grinding may provide a practical method for preparing sprouted flour.  相似文献   

20.
《Cereal Chemistry》2017,94(3):539-545
Fissuring caused by rapid moisture adsorption generates broken kernels upon milling; brokens are often ground to flour. The recent increase in demand for rice flour has promoted interest in brokens. This study investigated the physical and functional characteristics of brokens resulting from milling lots with various levels of moisture adsorption‐induced fissuring. Two long‐grain (LG) cultivars and one medium‐grain (MG) cultivar were conditioned to five initial moisture contents (IMCs), rewetted, and then reconditioned to 12% moisture content. Brown rice fissure enumeration and milling analyses as well as size distribution and functionality analyses of brokens were conducted. As IMC decreased, the percentage of fissured kernels increased and, consequently, the amount of brokens generated increased. Although the number of fissures/kernel also increased with decreasing IMC, the mass distribution of the resultant brokens was not affected by IMC. Across all IMC levels, the mass percentage of the medium‐sized brokens was greatest for the LG cultivars, whereas that of the large‐sized brokens was greatest for the MG cultivar. Regardless of IMC, peak, setback, and final viscosities were greatest for head rice and decreased significantly with decreasing size of brokens. Thus, brokens of different sizes have different functional properties and, hence, may be fractionated for different end‐use applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号